Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-h9cmj Total loading time: 0 Render date: 2024-04-30T08:34:54.063Z Has data issue: false hasContentIssue false

Section 7: - Cognition

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 307 - 360
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ährlund-Richter, S., Xuan, Y., van Lunteren, J. A., Kim, H., Ortiz, C., Pollak Dorocic, I., Meletis, K., & Carlén, M. (2019). A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nature Neuroscience, 22(4), 657668.CrossRefGoogle ScholarPubMed
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.Google Scholar
Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14(10), 13381344.Google Scholar
Anderson, S. W., Damasio, H., Jones, R. D., & Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental Neuropsychology, 13(6), 909922.Google Scholar
Arend, I., Rafal, R., & Ward, R. (2008). Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain: A Journal of Neurology, 131(Pt 8), 21402152.Google Scholar
Armstrong, K. M., Chang, M. H., & Moore, T. (2009). Selection and maintenance of spatial information by frontal eye field neurons. Journal of Neuroscience, 29(50), 1562115629.Google Scholar
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14), 37433752.Google Scholar
Asanuma, C., Andersen, R. A., & Cowan, W. M. (1985). The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. Journal of Comparative Neurology, 241(3), 357381.Google Scholar
Baddeley, A. (2007). Working Memory, Thought, and Action. Oxford University Press.Google Scholar
Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19(12), 20822099.Google Scholar
Badre, D., Hoffman, J., Cooney, J. W., & D’Esposito, M. (2009). Hierarchical cognitive control deficits following damage to the human frontal lobe. Nature Neuroscience, 12(4), 515522.Google Scholar
Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907918.Google Scholar
Bastos, A. M., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173180.Google Scholar
Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A. M., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., & Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750757.Google Scholar
Bertolero, M. A., Yeo, B. T. T., & D’Esposito, M. (2015). The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 112(49), E6798–807.Google Scholar
Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., Harris, A. Z., Gordon, J. A., & Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987996.Google Scholar
Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., Harris, A. Z., Gordon, J. A., & Kellendonk, C. (2018). Publisher correction: thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 21(8), 1138.Google Scholar
Bowie, C. R., & Harvey, P. D. (2006). Administration and interpretation of the Trail Making Test. Nature Protocols, 1(5), 22772281.Google Scholar
Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832837.Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186198.Google Scholar
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862.Google Scholar
Cai, W., Oldenkamp, C. L., & Aron, A. R. (2011). A proactive mechanism for selective suppression of response tendencies. Journal of Neuroscience, 31(16), 59655969.Google Scholar
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 2026.Google Scholar
Camperi, M., & Wang, X. J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. Journal of Computational Neuroscience, 5(4), 383405.Google Scholar
Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., & Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663667.Google Scholar
Carlesimo, G. A., Lombardi, M. G., & Caltagirone, C. (2011). Vascular thalamic amnesia: a reappraisal. Neuropsychologia, 49(5), 777789.Google Scholar
Chafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79(6), 29192940.Google Scholar
Chalupa, L. M., Coyle, R. S., & Lindsley, D. B. (1976). Effect of pulvinar lesions on visual pattern discrimination in monkeys. Journal of Neurophysiology, 39(2), 354369.Google Scholar
Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. Current Opinion in Behavioral Sciences, 1, 2331.Google Scholar
Child, N. D., & Benarroch, E. E. (2013). Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology, 81(21), 18691876.Google Scholar
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111124.Google Scholar
Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5), 11761191.Google Scholar
Clinton, S. M., & Meador-Woodruff, J. H. (2004). Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophrenia Research, 69(2–3), 237253.Google Scholar
Cohen, J. D. (2017). Cognitive control: core constructs and current considerations. In Egner, T. (Ed.), The Wiley Handbook of Cognitive Control (Vol. 50, pp. 128). John Wiley & Sons, Ltd.Google Scholar
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 1208312094.Google Scholar
Cole, M. W., Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19(12), 17181726.Google Scholar
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 13481355.Google Scholar
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360.Google Scholar
Cronenwett, W. J., & Csernansky, J. (2010). Thalamic pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 509528.Google Scholar
Crosson, B., Parker, J. C., Kim, A. K., Warren, R. L., Kepes, J. J., & Tully, R. (1986). A case of thalamic aphasia with postmortem verification. Brain and Language, 29(2), 301314.Google Scholar
Crowe, S. F. (1998). The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. Journal of Clinical Psychology, 54(5), 585591.Google Scholar
Cruikshank, S. J., Lewis, T. J., & Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nature Neuroscience, 10(4), 462468.Google Scholar
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415423.Google Scholar
Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24(16), 39443952.Google Scholar
Danziger, S., Ward, R., Owen, V., & Rafal, R. (1999). The effects of unilateral pulvinar damage in humans on reflexive orienting and filtering of irrelevant information. Behavioural Neurology, 13(3, 4), 95104.Google Scholar
de Bourbon-Teles, J., Bentley, P., Koshino, S., Shah, K., Dutta, A., Malhotra, P., Egner, T., Husain, M., & Soto, D. (2014). Thalamic control of human attention driven by memory and learning. Current Biology: CB, 24(9), 993999.Google Scholar
Dehaene, S., & Changeux, J. P. (1991). The Wisconsin Card Sorting Test: theoretical analysis and modeling in a neuronal network. Cerebral Cortex, 1(1), 6279.Google Scholar
Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 12451255.Google Scholar
D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 761772.Google Scholar
D’Esposito, M., & Chen, A. J. W. (2013). Remediating frontal lobe dysfunction: from bench to bedside. In Stuss, D. T & Knight, R. T. (Eds.), Oxford Handbook of Frontal Lobe Function (pp. 726–741). Oxford University Press.Google Scholar
D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and Cognition, 41(1), 6686.Google Scholar
D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 133(1), 311.Google Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959964.Google Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179.Google Scholar
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 23492361.Google Scholar
Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893905.Google Scholar
Everling, S., & Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. Journal of Neuroscience, 20(1), 387400.Google Scholar
Fellows, L. K. (2017). Cognitive control in the injured brain. In Egner, T. (Ed.), The Wiley Handbook of Cognitive Control (Vol. 67, pp. 513538). John Wiley & Sons, Ltd.Google Scholar
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 1751017515.Google Scholar
Fischer, J., & Whitney, D. (2012). Attention gates visual coding in the human pulvinar. Nature Communications, 3, 1051.Google Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective & Behavioral Neuroscience, 1(2), 137160.Google Scholar
Fries, P. (2015). Rhythms for cognition: communication through coherence. Neuron, 88(1): 220235.Google Scholar
Funahashi, S. (2013). Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex. Frontiers in Systems Neuroscience, 7, 36.Google Scholar
Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365(6448), 753756.Google Scholar
Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652654.Google Scholar
Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17(3), 507517.Google Scholar
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129135.Google Scholar
Gazzaley, A., Rissman, J., & D’Esposito, M. (2004). Functional connectivity during working memory maintenance. Cognitive, Affective & Behavioral Neuroscience, 4(4), 580599.Google Scholar
Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277(2), 195213.Google Scholar
Gläscher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., Paul, L. K., & Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 1468114686.Google Scholar
Gläscher, J., Adolphs, R., & Tranel, D. (2019). Model-based lesion mapping of cognitive control using the Wisconsin Card Sorting Test. Nature Communications, 10(1), 20.Google Scholar
Goldman-Rakic, P. S., & Porrino, L. J. (1985). The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. Journal of Comparative Neurology, 242(4), 535560.Google Scholar
Gordon, E. M., Lynch, C. J., Gratton, C., Laumann, T. O., Gilmore, A. W., Greene, D. J., Ortega, M., Nguyen, A. L., Schlaggar, B. L., Petersen, S. E., Dosenbach, N. U. F., & Nelson, S. M. (2018). Three distinct sets of connector hubs integrate human brain function. Cell Reports, 24(7), 1687–1695.e4.Google Scholar
Graff-Radford, N. R., Eslinger, P. J., Damasio, A. R., & Yamada, T. (1984). Nonhemorrhagic infarction of the thalamus: behavioral, anatomic, and physiologic correlates. Neurology, 34(1), 1423.Google Scholar
Graff-Radford, N. R., Tranel, D., Van Hoesen, G. W., & Brandt, J. P. (1990). Diencephalic amnesia. Brain: A Journal of Neurology, 113 (Pt 1), 125.Google Scholar
Greene, D. J., Marek, S., Gordon, E. M., Siegel, J. S., Gratton, C., Laumann, T. O., Gilmore, A. W., Berg, J. J., Nguyen, A. L., Dierker, D., Van, A. N., Ortega, M., Newbold, D. J., Hampton, J. M., Nielsen, A. N., McDermott, K. B., Roland, J. L., Norris, S. A., Nelson, S. M., … Dosenbach, N. U. F. (2020). Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron, 105(4), 742–758.e6.Google Scholar
Gregoriou, G. G., Rossi, A. F., Ungerleider, L. G., & Desimone, R. (2014). Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience, 17(7), 10031011.Google Scholar
Guillery, R. W., & Sherman, S. M. (2002). Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron, 33(2), 163175.Google Scholar
Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895900.Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186.Google Scholar
Halassa, M. M., & Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 16691679.Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139(1), 105118.Google Scholar
Hwang, K., Bertolero, M. A., Liu, W. B., & D’esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37(23), 55945607.Google Scholar
Hwang, K., Bruss, J., Tranel, D., & Boes, A. D. (2020). Network localization of executive function deficits in patients with focal thalamic lesions. Journal of Cognitive Neuroscience, 32(12), 23032319.Google Scholar
Hwang, K., Ghuman, A. S., Manoach, D. S., Jones, S. R., & Luna, B. (2014). Cortical neurodynamics of inhibitory control. Journal of Neuroscience, 34(29), 95519561.Google Scholar
Hwang, K., Shine, J. M., & D’Esposito, M. (2019). Frontoparietal activity interacts with task-evoked changes in functional connectivity. Cerebral Cortex, 29(2), 802813.Google Scholar
Isseroff, A., Rosvold, H. E., Galkin, T. W., & Goldman-Rakic, P. S. (1982). Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Research, 232(1), 97113.Google Scholar
Jiang, J., Beck, J., Heller, K., & Egner, T. (2015). An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nature Communications, 6, 8165.Google Scholar
Jones, E. G. (1998). Viewpoint: the core and matrix of thalamic organization. Neuroscience, 85(2), 331345.Google Scholar
Jones, E. G., & Leavitt, R. Y. (1974). Retrograde axonal transport and the demonstration of non‐specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. Journal of Comparative Neurology, 154(4), 349377.Google Scholar
Kamiński, M., Ding, M., Truccolo, W. A., & Bressler, S. L. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85(2), 145157.Google Scholar
Kastner, S., O’Connor, D. H., Fukui, M. M., Fehd, H. M., Herwig, U., & Pinsk, M. A. (2004). Functional imaging of the human lateral geniculate nucleus and pulvinar. Journal of Neurophysiology, 91(1), 438448.Google Scholar
Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 1498014986.Google Scholar
Kortte, K. B., Horner, M. D., & Windham, W. K. (2002). The Trail Making Test, Part B: cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9(2), 106109.Google Scholar
Krause, T., Brunecker, P., Pittl, S., Taskin, B., Laubisch, D., Winter, B., Lentza, M. E., Malzahn, U., Villringer, K., Villringer, A., & Jungehulsing, G. J. (2012). Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. Journal of Neurology, Neurosurgery, and Psychiatry, 83(8), 776784.Google Scholar
Krauth, A., Blanc, R., Poveda, A., Jeanmonod, D., Morel, A., & Székely, G. (2010). A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. NeuroImage, 49(3), 20532062.Google Scholar
Krol, A., Wimmer, R. D., Halassa, M. M., & Feng, G. (2018). Thalamic reticular dysfunction as a circuit endophenotype in neurodevelopmental disorders. Neuron, 98(2), 282295.Google Scholar
Kubat-Silman, A. K., Dagenbach, D., & Absher, J. R. (2002). Patterns of impaired verbal, spatial, and object working memory after thalamic lesions. Brain and Cognition, 50(2), 178193.Google Scholar
Kuljic-Obradovic, D. C. (2003). Subcortical aphasia: three different language disorder syndromes? European Journal of Neurology, 10(4), 445448.Google Scholar
Laird, A. R., Lancaster, J. J., & Fox, P. T. (2005). BrainMap. Neuroinformatics, 3(1), 6577.Google Scholar
Lee, T. G., & D’Esposito, M. (2012). The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI–TMS study. Journal of Neuroscience, 32(44), 1545815466.Google Scholar
Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology, 36(1), 316338.Google Scholar
Liebermann, D., Ploner, C. J., Kraft, A., Kopp, U. A., & Ostendorf, F. (2013). A dysexecutive syndrome of the medial thalamus. Cortex, 49(1), 4049.Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279281.Google Scholar
Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016). Gamma and beta bursts underlie working memory. Neuron, 90(1), 152164.Google Scholar
Luo, T. Z., & Maunsell, J. H. R. (2019). Attention can be subdivided into neurobiological components corresponding to distinct behavioral effects. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 2618726194. https://doi.org/10.1073/pnas.1902286116Google Scholar
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347356.CrossRefGoogle ScholarPubMed
Mackey, W. E., Devinsky, O., Doyle, W. K., Golfinos, J. G., & Curtis, C. E. (2016). Human parietal cortex lesions impact the precision of spatial working memory. Journal of Neurophysiology, 116(3), 10491054.Google Scholar
Manoach, D. S., Greve, D. N., Lindgren, K. A., & Dale, A. M. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. NeuroImage, 20(3), 16701684.Google Scholar
Miller, B. T., Vytlacil, J., Fegen, D., Pradhan, S., & D’Esposito, M. (2011). The prefrontal cortex modulates category selectivity in human extrastriate cortex. Journal of Cognitive Neuroscience, 23(1), 110.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.Google Scholar
Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 51545167.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., & Witzki, A. H. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49100.Google Scholar
Morel, A., Magnin, M., & Jeanmonod, D. (1997). Multiarchitectonic and stereotactic atlas of the human thalamus. Journal of Comparative Neurology, 387(4), 588630.Google Scholar
Morishima, Y., Akaishi, R., Yamada, Y., Okuda, J., Toma, K., & Sakai, K. (2009). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nature Neuroscience, 12(1), 8591.Google Scholar
Nasreddine, Z. S., & Saver, J. L. (1997). Pain after thalamic stroke: right diencephalic predominance and clinical features in 180 patients. Neurology, 48(5), 11961199.Google Scholar
Nee, D. E., & D’Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. eLife, 5. https://doi.org/10.7554/eLife.12112Google Scholar
Nobre, A., & Stokes, M. S. (2020). Memory and attention: the back and forth. In Gazzaniga, M. S. (Ed.), The Cognitive Neurosciences (6th ed., pp. 291–300). MIT Press.Google Scholar
Norman, D. A., & Shallice, T. (1986). Attention to action. In Davidson, R. J., Schwartz, G. E., & Shapiro, D. (Eds.), Consciousness and Self-Regulation: Advances in Research and Theory Volume 4 (pp. 118). Springer US.Google Scholar
O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584587.Google Scholar
Peräkylä, J., Sun, L., Lehtimäki, K., Peltola, J., Öhman, J., Möttönen, T., Ogawa, K. H., & Hartikainen, K. M. (2017). Causal evidence from humans for the role of mediodorsal nucleus of the thalamus in working memory. Journal of Cognitive Neuroscience, 29(12), 20902102.Google Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 5963.Google Scholar
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72(5), 692697.Google Scholar
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews. Neuroscience, 18(2), 115.Google Scholar
Posner, M. I., Snyder, C. R., & Solso, R. (2004). Attention and cognitive control. In Balota, D. & Marsh, E. (Eds.), Cognitive Psychology: Key Readings (pp. 55–85). Psychology Press.Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678.Google Scholar
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798813.Google Scholar
Rafal, R. D., & Posner, M. I. (1987). Deficits in human visual spatial attention following thalamic lesions. Proceedings of the National Academy of Sciences of the United States of America, 84(20), 73497353.Google Scholar
Ranganath, C., DeGutis, J., & D’Esposito, M. (2004). Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Brain Research. Cognitive Brain Research, 20(1), 3745.Google Scholar
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873922.Google Scholar
Rikhye, R. V., Gilra, A., & Halassa, M. M. (2018). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 17531763.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychological Medicine, 44(10), 20292040.Google Scholar
Romanski, L. M., Giguere, M., Bates, J. F., & Goldman-Rakic, P. S. (1997). Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 379(3), 313332.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. Journal of Neuroscience, 32(36), 1241112420.Google Scholar
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J.-D., Rees, G., Josephs, O., Deichmann, R., & Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology: CB, 16(15), 14791488.Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753756.Google Scholar
Schell, G. R., & Strick, P. L. (1984). The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. Journal of Neuroscience, 4(2), 539560.Google Scholar
Schmahmann, J. D. (2003). Vascular syndromes of the thalamus. Stroke, 34(9), 22642278.Google Scholar
Schmahmann, J. D., & Pandya, D. N. (1990). Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. Journal of Comparative Neurology, 295(2), 299326.Google Scholar
Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219223.Google Scholar
Selemon, L. D., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. Journal of Neuroscience, 8(11), 40494068.Google Scholar
Serences, J. T., Saproo, S., Scolari, M., Ho, T., & Muftuler, L. T. (2009). Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. NeuroImage, 44(1), 223231.Google Scholar
Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., Moore, C. I., & Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proceedings of the National Academy of Sciences of the United States of America, 113(33), E4885–94.Google ScholarPubMed
Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 16951708.Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the Thalamus and Its Role in Cortical Function (2nd ed.). MIT Press.Google Scholar
Sherman, S. M., & Guillery, R. W. (2013). Functional Connections of Cortical Areas: A New View from the Thalamus. MIT Press.Google Scholar
Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron, 92(2), 544554.Google Scholar
Snow, J. C., Allen, H. A., Rafal, R. D., & Humphreys, G. W. (2009). Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 40544059.Google Scholar
Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698702.Google Scholar
Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review of Psychology, 67, 613640.Google Scholar
Sreenivasan, K. K., & D’Esposito, M. (2019). The what, where and how of delay activity. Nature Reviews. Neuroscience, 20(8), 466481.Google Scholar
Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: a conceptual view. Psychological Research, 63(3–4), 289298.Google Scholar
Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 901915.Google Scholar
Sutterer, M. J., & Tranel, D. (2017). Neuropsychology and cognitive neuroscience in the fMRI era: A recapitulation of localizationist and connectionist views. Neuropsychology, 31(8), 972980.Google Scholar
Theyel, B. B., Llano, D. A., & Sherman, S. M. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience, 13(1), 8488.Google Scholar
Trojanowski, J. Q., & Jacobson, S. (1976). Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey. Journal of Comparative Neurology, 169(3), 371392.Google Scholar
Tsuchida, A., & Fellows, L. K. (2013). Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage. Cortex, 49(7), 17901800.Google Scholar
Usrey, W. M., & Kastner, S. (2020). Functions of the visual thalamus in selective attention. In Gazzaniga, M. S., Mangun, G. R., & Poeppel, D. (Eds.), The Cognitive Neurosciences (6th ed., pp. 367–378). MIT Press.Google Scholar
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683696.CrossRefGoogle ScholarPubMed
Van der Werf, Y. D., Scheltens, P., Lindeboom, J., Witter, M. P., Uylings, H. B. M., & Jolles, J. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia, 41(10), 13301344.Google Scholar
Van der Werf, Y. D., Witter, M. P., & Groenewegen, H. J. (2002). The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Research. Brain Research Reviews, 39(2–3), 107140.Google Scholar
Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229239.Google Scholar
Verbruggen, F., McLaren, I. P. L., & Chambers, C. D. (2014). Banishing the control homunculi in studies of action control and behavior change. Perspectives on Psychological Science, 9(5), 497524.Google Scholar
von Cramon, D. Y., Hebel, N., & Schuri, U. (1985). A contribution to the anatomical basis of thalamic amnesia. Brain: A Journal of Neurology, 108 (Pt 4), 9931008.Google Scholar
Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24(8), 455463.Google Scholar
Watanabe, Y., & Funahashi, S. (2004a). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, delay-, and response-period activity. Journal of Neurophysiology, 92(3), 17381755.Google Scholar
Watanabe, Y., & Funahashi, S. (2004b). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. Journal of Neurophysiology, 92(3), 17561769.Google Scholar
Watanabe, Y., Takeda, K., & Funahashi, S. (2009). Population vector analysis of primate mediodorsal thalamic activity during oculomotor delayed-response performance. Cerebral Cortex, 19(6), 13131321.Google Scholar
Watson, R. T., & Heilman, K. M. (1979). Thalamic neglect. Neurology, 29(5), 690694.Google Scholar
Wilke, M., Turchi, J., Smith, K., Mishkin, M., & Leopold, D. A. (2010). Pulvinar inactivation disrupts selection of movement plans. Journal of Neuroscience, 30(25), 86508659.Google Scholar
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 13361346.CrossRefGoogle ScholarPubMed
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705709.Google Scholar
Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316(5831), 16091612.Google Scholar
Xiao, D., Zikopoulos, B., & Barbas, H. (2009). Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience, 161(4), 10671081.Google Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670.Google Scholar
Yeo, B. T. T., Krienen, F. M., Eickhoff, S. B., Yaakub, S. N., Fox, P. T., Buckner, R. L., Asplund, C. L., & Chee, M. W. L. (2015). Functional specialization and flexibility in human association cortex. Cerebral Cortex, 25(10), 36543672.Google Scholar
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165.Google Scholar
Yu, Q., Panichello, M. F., Cai, Y., Postle, B. R., & Buschman, T. J. (2020). Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory. PLoS Biology, 18(9), e3000854.Google Scholar
Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656661.Google Scholar
Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. Journal of Neurophysiology, 100(4), 17401748.Google Scholar
Zhou, H., Schafer, R. J., & Desimone, R. (2016). Pulvinar-cortex interactions in vision and attention. Neuron, 89(1), 209220.Google Scholar
Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26(28), 73487361.Google Scholar

References

Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. Journal of Comparative Neurology 419, 377393 (2000).Google Scholar
Alonso, J.-M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815819 (1996).Google Scholar
Arcaro, M. J. & Livingstone, M. S. Retinotopic organization of scene areas in macaque inferior temporal cortex. Journal of Neuroscience 37, 7373 (2017).Google Scholar
Arcaro, M. J., Pinsk, M. A., Chen, J. & Kastner, S. Organizing principles of pulvino-cortical functional coupling in humans. Nature Communications 9, 5382 (2018).Google Scholar
Arcaro, M. J., Pinsk, M. A. & Kastner, S. The anatomical and functional organization of the human visual pulvinar. Journal of Neuroscience 35, 9848 (2015).Google Scholar
Arend, I., Rafal, R. & Ward, R. Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain 131, 21402152 (2008).Google Scholar
Baldwin, M. K. L., Balaram, P. & Kaas, J. H. The evolution and functions of nuclei of the visual pulvinar in primates. Journal of Comparative Neurology 525, 32073226 (2017).Google Scholar
Baleydier, C. & Mauguiere, F. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. Journal of Comparative Neurology 232, 219228 (1985).Google Scholar
Barron, D. S., Eickhoff, S. B., Clos, M. & Fox, P. T. Human pulvinar functional organization and connectivity. Human Brain Mapping 36, 24172431 (2015).Google Scholar
Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R. & Usrey, W. M. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience 34, 7639 (2014).Google Scholar
Battaglia‐Mayer, A. & Caminiti, R. Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. Brain 125, 225237 (2002).Google Scholar
Bekisz, M. & Wróbel, A. 20 Hz rhythm of activity in visual system of perceiving cat. Acta Neurobiologiae Experimentalis 53, 175182 (1993).Google Scholar
Bender, D. B. Receptive-field properties of neurons in the macaque inferior pulvinar. Journal of Neurophysiology 48, 117 (1982).Google Scholar
Bender, D. B. & Youakim, M. Effect of attentive fixation in macaque thalamus and cortex. Journal of Neurophysiology 85, 219234 (2001).Google Scholar
Bennett, C. et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102, 477–492.e5 (2019).Google Scholar
Bereshpolova, Y. et al. Getting drowsy? Alert/nonalert transitions and visual thalamocortical network dynamics. Journal of Neuroscience 31, 17480 (2011).Google Scholar
Bickford, M. Thalamic circuit diversity: modulation of the driver/modulator framework. Frontiers in Neural Circuits 9, 86 (2016).Google Scholar
Bourne, J. A. & Morrone, M. C. Plasticity of visual pathways and function in the developing brain: is the pulvinar a crucial player? Frontiers in Systems Neuroscience 11, 3 (2017).Google Scholar
Bridge, H., Leopold, D. A. & Bourne, J. A. Adaptive pulvinar circuitry supports visual cognition. Trends in Cognitive Sciences 20, 146157 (2016).Google Scholar
Briggs, F., Mangun, G. R. & Usrey, W. M. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499, 476480 (2013).Google Scholar
Briggs, F. & Usrey, W. M. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135146 (2009).Google Scholar
Buschman, T. J. & Kastner, S. From behavior to neural dynamics: an integrated theory of attention. Neuron 88, 127144 (2015).Google Scholar
Callaway, E. M. Structure and function of parallel pathways in the primate early visual system. Journal of Physiology 566, 1319 (2005).Google Scholar
Cameron, E. L., Tai, J. C. & Carrasco, M. Covert attention affects the psychometric function of contrast sensitivity. Vision Research 42, 949967 (2002).Google Scholar
Casagrande, V. A. & Xu, X. Parallel visual pathways: a comparative perspective. In The Visual Neurosciences (eds. Chalupa, L. M. & Werner, J. S.), 494506 (MIT Press, 2004).Google Scholar
Caspari, N., Janssens, T., Mantini, D., Vandenberghe, R. & Vanduffel, W. Covert shifts of spatial attention in the macaque monkey. Journal of Neuroscience 35, 7695 (2015).Google Scholar
Chalfin, B. P., Cheung, D. T., Muniz, J. A. P. C., de Lima Silveira, L. C. & Finlay, B. L. Scaling of neuron number and volume of the pulvinar complex in new world primates: Comparisons with humans, other primates, and mammals. Journal of Comparative Neurology 504, 265274 (2007).Google Scholar
Chalupa, L. & Abramson, B. Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex. Journal of Neuroscience 9, 347 (1989).Google Scholar
Cheong, S. K., Tailby, C., Solomon, S. G. & Martin, P. R. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. Journal of Neuroscience 33, 6864 (2013).Google Scholar
Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience 12, 15941600 (2009).Google Scholar
Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761773 (1998).Google Scholar
Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z. & Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience 8, 16031610 (2005).Google Scholar
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201215 (2002).Google Scholar
Cotton, P. L. & Smith, A. T. Contralateral visual hemifield representations in the human pulvinar nucleus. Journal of Neurophysiology 98, 16001609 (2007).Google Scholar
Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81, 4586 (1984).Google Scholar
Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245250 (1998).Google Scholar
Danziger, S., Ward, R., Owen, V. & Rafal, R. The effects of unilateral pulvinar damage in humans on reflexive orienting and filtering of irrelevant information. Behavioural Neurology 13, 917570 (2002).Google Scholar
Danziger, S., Ward, R., Owen, V. & Rafal, R. Contributions of the human pulvinar to linking vision and action. Cognitive, Affective, & Behavioral Neuroscience 4, 8999 (2004).Google Scholar
Darian-Smith, C., Tan, A. & Edwards, S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. Journal of Comparative Neurology 410, 211234 (1999).3.0.CO;2-X>CrossRefGoogle ScholarPubMed
de Souza, B. O. F., Cortes, N. & Casanova, C. Pulvinar modulates contrast responses in the visual cortex as a function of cortical hierarchy. Cerebral Cortex 30, 10681086 (2019).Google Scholar
Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A. & Silver, M. A. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage 102, 358369 (2014).Google Scholar
Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology 357, 219240 (1984).Google Scholar
DeSimone, K., Viviano, J. D. & Schneider, K. A. Population receptive field estimation reveals new retinotopic maps in human subcortex. Journal of Neuroscience 35, 9836 (2015).Google Scholar
DeWeerd, P., Peralta, M. R., Desimone, R. & Ungerleider, L. G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience 2, 753758 (1999).Google Scholar
Dominguez-Vargas, A.-U., Schneider, L., Wilke, M. & Kagan, I. Electrical microstimulation of the pulvinar biases saccade choices and reaction times in a time-dependent manner. Journal of Neuroscience 37, 2234 (2017).Google Scholar
Eradath, M. K., Pinsk, M. A. & Kastner, S. Causal role of pulvinar in resting state cortico-cortical interactions. Journal of Comparative Neurology 529, 37723784 (2020).Google Scholar
Felsten, G. Different approaches to physiological psychology. Psyccritiques 28, 3840 (1983).Google Scholar
Fiebelkorn, I. C. & Kastner, S. A rhythmic theory of attention. Trends in Cognitive Sciences 23, 87101 (2019).Google Scholar
Fiebelkorn, I. C. & Kastner, S. Functional specialization in the attention network. Annual Review of Psychology 71, 221249 (2020).Google Scholar
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99, 842–853.e8 (2018).Google Scholar
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nature Communications 10, 215 (2019).Google Scholar
Fiebelkorn, I. C., Saalmann, Y. B. & Kastner, S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology 23, 25532558 (2013).CrossRefGoogle Scholar
Fischer, J. & Whitney, D. Attention gates visual coding in the human pulvinar. Nature Communications 3, 1051 (2012).Google Scholar
Foxe, J. & Snyder, A. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology 2, 154 (2011).Google Scholar
Friedman-Hill, S. R., Robertson, L. C., Desimone, R. & Ungerleider, L. G. Posterior parietal cortex and the filtering of distractors. Proceedings of the National Academy of Sciences of the United States of America 100, 4263 (2003).Google Scholar
Friedman-Hill, S. R., Robertson, L. C., & Treisman, A. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269, 853 (1995).Google Scholar
Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560 (2001).ssGoogle Scholar
Gallant, J. L., Shoup, R. E. & Mazer, J. A. A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227235 (2000).Google Scholar
Ganguli, S. et al. One-dimensional dynamics of attention and decision making in LIP. Neuron 58, 1525 (2008).Google Scholar
Gottlieb, J. & Balan, P. Attention as a decision in information space. Trends in Cognitive Sciences 14, 240248 (2010).Google Scholar
Gouws, A. D. et al. On the role of suppression in spatial attention: evidence from negative BOLD in human subcortical and cortical structures. Journal of Neuroscience 34, 1034710360 (2014).Google Scholar
Gregoriou, G. G., Gotts, S. J. & Desimone, R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73, 581594 (2012).Google Scholar
Grieve, K. L., Acuña, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends in Neurosciences 23, 3539 (2000).Google Scholar
Guedj, C. & Vuilleumier, P. Functional connectivity fingerprints of the human pulvinar: Decoding its role in cognition. NeuroImage 221, 117162 (2020).Google Scholar
Gutierrez, C., Yaun, A. & Cusick, C. G. Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. Journal of Comparative Neurology 363, 545562 (1995).Google Scholar
Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences of the United States of America 108, 19377 (2011).Google Scholar
Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends in Neurosciences 39, 680693 (2016).Google Scholar
Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nature Neuroscience 20, 16691679 (2017).Google Scholar
Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195202 (2019). 1.Google Scholar
Haynes, J.-D., Deichmann, R. & Rees, G. Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438, 496499 (2005).Google Scholar
Helfrich, R. F. et al. Neural mechanisms of sustained attention are rhythmic. Neuron 99, 854–865.e5 (2018).Google Scholar
Hendry, S. H. C. & Reid, R. C. The koniocellular pathway in primate vision. Annual Review of Neuroscience 23, 127153 (2000).Google Scholar
Hickey, T. L. & Guillery, R. W. Variability of laminar patterns in the human lateral geniculate nucleus. Journal of Comparative Neurology 183, 221246 (1979).Google Scholar
Hirsch, J. A., Wang, X., Sommer, F. T. & Martinez, L. M. How inhibitory circuits in the thalamus serve vision. Annual Review of Neuroscience 38, 309329 (2015).Google Scholar
Homman-Ludiye, J., Mundinano, I. C., Kwan, W. C. & Bourne, J. A. Extensive connectivity between the medial pulvinar and the cortex revealed in the marmoset monkey. Cerebral Cortex 30, 17971812 (2019).Google Scholar
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160, 106154 (1962).Google Scholar
Jaramillo, J., Mejias, J. F. & Wang, X.-J. Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron 101, 321–336.e9 (2019).CrossRefGoogle ScholarPubMed
Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience 4, 186 (2010).Google Scholar
Jones, E. G. The thalamus (Springer Science & Business Media, 2007).Google Scholar
Kaas, J. H. & Lyon, D. C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Research Reviews 55, 285296 (2007).Google Scholar
Karnath, H., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350360 (2002).Google Scholar
Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. Journal of Neurophysiology 91, 438448 (2004).Google Scholar
Kastner, S., Chen, Q., Jeong, S. K. & Mruczek, R. E. B. A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker. Neuropsychologia 105, 123134 (2017).Google Scholar
Kastner, S., Fiebelkorn, I. C., & Eradath, M. K. Dynamic pulvino-cortical interactions in the primate attention network. Current Opinion in Neurobiology 65, 10–19 (2020).Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751761 (1999).Google Scholar
Kastner, S., & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience 23, 315341 (2000).Google Scholar
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nature Neuroscience 16, 749755 (2013).Google Scholar
Lakatos, P., O’Connell, M. N. & Barczak, A. Pondering the pulvinar. Neuron 89, 57 (2016).Google Scholar
Landau, A. N. & Fries, P. Attention samples stimuli rhythmically. Current Biology 22, 10001004 (2012).Google Scholar
Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience 16, 16621670 (2013).Google Scholar
Lehky, S. R. & Maunsell, J. H. R. No binocular rivalry in the LGN of alert macaque monkeys. Vision Research 36, 12251234 (1996).Google Scholar
Ling, S., Pratte, M. S. & Tong, F. Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience 18, 496498 (2015).Google Scholar
Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740 (1988).Google Scholar
Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554561 (1981).Google Scholar
Lu, Z.-L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Research 38, 11831198 (1998).Google Scholar
Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77, 2442 (1997).Google Scholar
Lückmann, H. C., Jacobs, H. I. L. & Sack, A. T. The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Progress in Neurobiology 116, 6686 (2014).Google Scholar
Lyon, D. C., Nassi, J. J. & Callaway, E. M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270279 (2010).Google Scholar
Malpeli, J. G., Lee, D. & Baker, F. H. Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular magnification functions. Journal of Comparative Neurology 375, 363377 (1996).Google Scholar
Marion, R., Li, K., Purushothaman, G., Jiang, Y. & Casagrande, V. A. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. Journal of Comparative Neurology 521, 813832 (2013).Google Scholar
Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. Journal of Comparative Neurology 522, 225259 (2014).Google Scholar
Martin, A. B. et al. Temporal dynamics and response modulation across the human visual system in a spatial attention task: an ECoG study. Journal of Neuroscience 39, 333352 (2019).Google Scholar
Martin, P. R., White, A. J. R., Goodchild, A. K., Wilder, H. D. & Sefton, A. E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience 9, 15361541 (1997).Google Scholar
McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Attentional modulation of thalamic reticular neurons. Journal of Neuroscience 26, 4444 (2006).Google Scholar
McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391394 (2008).Google Scholar
McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Current Opinion in Neurobiology 31, 133140 (2015).Google Scholar
Mehta, A. D., Ulbert, I. & Schroeder, C. E. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex 10, 343358 (2000).Google Scholar
Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879888 (2009).Google Scholar
Murray, J. D., Jaramillo, J. & Wang, X.-J. Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience 37, 12167 (2017).Google Scholar
Moore, T., & Fallah, M. Control of eye movements and spatial attention. Proceedings of the national Academy of Sciences of the United States of America 98, 12731276 (2001).Google Scholar
O’Connor, D. H., Fukui, M. M., Pinsk, M. A. & Kastner, S. Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5, 12031209 (2002).CrossRefGoogle ScholarPubMed
Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends in Cognitive Sciences 13, 354359 (2009).Google Scholar
Petersen, S. E., Robinson, D. L. & Keys, W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. Journal of Neurophysiology 54, 867886 (1985).Google Scholar
Petersen, S. E., Robinson, D. L. & Morris, J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97105 (1987).Google Scholar
Phillips, J. M. et al. Topographic organization of connections between prefrontal cortex and mediodorsal thalamus: evidence for a general principle of indirect thalamic pathways between directly connected cortical areas. NeuroImage 189, 832846 (2019).Google Scholar
Pogosyan, A., Gaynor, L. D., Eusebio, A. & Brown, P. Boosting cortical activity at beta-band frequencies slows movement in humans. Current Biology 19, 16371641 (2009).Google Scholar
Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience 13, 2542 (1990).Google Scholar
Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. Journal of Experimental Psychology: General 109, 160174 (1980).Google Scholar
Purushothaman, G., Marion, R., Li, K. & Casagrande, V. A. Gating and control of primary visual cortex by pulvinar. Nature Neuroscience 15, 905912 (2012).Google Scholar
Qian, Y. et al. Robust functional mapping of layer-selective responses in human lateral geniculate nucleus with high-resolution 7T fMRI. Proceedings of the Royal Society B: Biological Sciences 287, 20200245 (2020).Google Scholar
Quax, S., Jensen, O. & Tiesinga, P. Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm. PLOS Computational Biology 13, e1005519 (2017).Google Scholar
Rafal, R. D. & Posner, M. I. Deficits in human visual spatial attention following thalamic lesions. Proceedings of the National Academy of Sciences of the United States of America 84, 7349 (1987).Google Scholar
Rockland, K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. Journal of Comparative Neurology 390, 515536 (1998).Google Scholar
Rockland, K. S., Andresen, J., Cowie, R. J. & Robinson, D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. Journal of Comparative Neurology 406, 221250 (1999).Google Scholar
Romanski, L. M., Giguere, M., Bates, J. F. & Goldman-Rakic, P. S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 379, 313332 (1997).Google Scholar
Rovó, Z., Ulbert, I. & Acsády, L. Drivers of the primate thalamus. Journal of Neuroscience 32, 17894 (2012).Google Scholar
Roy, S. et al. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. European Journal of Neuroscience 30, 15171526 (2009).Google Scholar
Saalmann, Y. B. & Kastner, S. Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209223 (2011).Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753 (2012).Google Scholar
Schmahmann, J. D. & Pandya, D. N. Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. Journal of Comparative Neurology 295, 299326 (1990).Google Scholar
Schneider, K. A. Subcortical mechanisms of feature-based attention. Journal of Neuroscience 31, 8643 (2011).Google Scholar
Schneider, K. A. & Kastner, S. Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. Journal of Neuroscience 29, 1784 (2009).Google Scholar
Schneider, K. A., Richter, M. C. & Kastner, S. Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. Journal of Neuroscience 24, 8975 (2004).Google Scholar
Sclar, G., Maunsell, J. H. R. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110 (1990).Google Scholar
Sherman, S. M. & Guillery, R. W. On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America 95, 7121 (1998).Google Scholar
Sherman, S. M. & Guillery, R. W. Functional connections of cortical areas: a new view from the thalamus (MIT Press, 2013).Google Scholar
Sherman, S. M. & Koch, C. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 120 (1986).Google Scholar
Shipp, S. The functional logic of cortico–pulvinar connections. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, 16051624 (2003).Google Scholar
Shiu, L.-P. & Pashler, H. Spatial attention and vernier acuity. Vision Research 35, 337343 (1995).Google Scholar
Smaers, J. B., Gómez-Robles, A., Parks, A. N. & Sherwood, C. C. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Current Biology 27, 714720 (2017).Google Scholar
Smith, A. T., Cotton, P. L., Bruno, A. & Moutsiana, C. Dissociating vision and visual attention in the human pulvinar. Journal of Neurophysiology 101, 917925 (2009).Google Scholar
Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychological Review 116, 283317 (2009).Google Scholar
Snow, J. C., Allen, H. A., Rafal, R. D. & Humphreys, G. W. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proceedings of the National Academy of Sciences of the United States of America 106, 4054 (2009).Google Scholar
Song, K., Meng, M., Chen, L., Zhou, K. & Luo, H. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band. Journal of Neuroscience 34, 4837 (2014).Google Scholar
Stepniewska, I. & Kaas, J. H. Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Visual Neuroscience 14, 10431060 (1997).Google Scholar
Steriade, M. Acetylcholine systems and rhythmic activities during the waking–sleep cycle. Progress in Brain Research 145, 179196 (2004).Google Scholar
Strumpf, H. et al. The role of the pulvinar in distractor processing and visual search. Human Brain Mapping 34, 11151132 (2013).Google Scholar
Szczepanski, S. M. & Kastner, S. Shifting attentional priorities: control of spatial attention through hemispheric competition. Journal of Neuroscience 33, 5411 (2013).Google Scholar
Szczepanski, S. M., Konen, C. S. & Kastner, S. Mechanisms of spatial attention control in frontal and parietal cortex. Journal of Neuroscience 30, 148 (2010).Google Scholar
Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience 13, 8488 (2010).Google Scholar
Thompson, K. G., Biscoe, K. L. & Sato, T. R. Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience 25, 9479 (2005).Google Scholar
Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cognitive Psychology 12, 97136 (1980).Google Scholar
Ungerleider, L. G., Desimone, R., Galkin, T. W. & Mishkin, M. Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 223, 368386 (1984).Google Scholar
Usrey, W. M. & Alitto, H. J. Visual functions of the thalamus. Annual Review of Vision Science 1, 351371 (2015).Google Scholar
Usrey, W. M., Reppas, J. B. & Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395, 384387 (1998).Google Scholar
VanRullen, R. Perceptual cycles. Trends in Cognitive Sciences 20, 723735 (2016).Google Scholar
VanRullen, R., Carlson, T. & Cavanagh, P. The blinking spotlight of attention. Proceedings of the National Academy of Sciences of the United States of America 104, 19204 (2007).Google Scholar
Ward, R., Danziger, S., Owen, V. & Rafal, R. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nature Neuroscience 5, 99100 (2002).Google Scholar
Warner, C. E., Kwan, W. C. & Bourne, J. A. The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. Journal of Neuroscience 32, 17073 (2012).Google Scholar
Wells, M. F., Wimmer, R. D., Schmitt, L. I., Feng, G. & Halassa, M. M. Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice. Nature 532, 5863 (2016).Google Scholar
Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology 38, 315336 (2000).Google Scholar
Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156 (1966).Google Scholar
Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D. A. Pulvinar inactivation disrupts selection of movement plans. Journal of Neuroscience 30, 8650 (2010).Google Scholar
Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705709 (2015).Google Scholar
Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609 (2007).Google Scholar
Wróbel, A., Bekisz, M. & Waleszczyk, W. 20 Hz bursts of activity in the cortico-thalamic pathway during attentive perception. In Oscillatory Event-Related Brain Dynamics (eds. Pantev, C., Elbert, T. & Lütkenhöner, B.), 311324 (Springer US, 1994).Google Scholar
Wunderlich, K., Schneider, K. A. & Kastner, S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neuroscience 8, 15951602 (2005).Google Scholar
Xu, X. et al. A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Journal of Physiology 531, 203218 (2001).Google Scholar
Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 7275 (1998).Google Scholar
Yeterian, E. H. & Pandya, D. N. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. Journal of Comparative Neurology 237, 408426 (1985).Google Scholar
Zeater, N., Cheong, S. K., Solomon, S. G., Dreher, B. & Martin, P. R. Binocular visual responses in the primate lateral geniculate nucleus. Current Biology 25, 31903195 (2015).Google Scholar
Zhang, P., Zhou, H., Wen, W. & He, S. Layer-specific response properties of the human lateral geniculate nucleus and superior colliculus. NeuroImage 111, 159166 (2015).Google Scholar
Zhang, Y., Chen, Y., Bressler, S. L. & Ding, M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156, 238246 (2008).Google Scholar
Zhou, H., Schafer, R. J. & Desimone, R. Pulvinar-cortex interactions in vision and attention. Neuron 89, 209220 (2016).Google Scholar
Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience 26, 7348 (2006).Google Scholar
Zikopoulos, B. & Barbas, H. Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. Journal of Neuroscience 32, 5338 (2012).Google Scholar

References

Aggleton, J.P., Brown, M.W., 1999. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425444.Google Scholar
Aggleton, J.P., Hunt, P.R., Nagle, S., Neave, N., 1996. The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav. Brain Res. 81, 189198. https://doi.org/10.1016/S0166-4328(96)89080–2Google Scholar
Aggleton, J.P., Keith, A.B., Sahgal, A., 1991. Both fornix and anterior thalamic, but not mammillary, lesions disrupt delayed non-matching-to-position memory in rats. Behav. Brain Res. 44, 151161. https://doi.org/10.1016/S0166-4328(05)80020–8Google Scholar
Aggleton, J.P., Nelson, A.J.D., 2015. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci. Biobehav. Rev. 54, 131144. https://doi.org/10.1016/j.neubiorev.2014.08.013Google Scholar
Alexander, A.S., Carstensen, L.C., Hinman, J.R., Raudies, F., Chapman, G.W., Hasselmo, M.E., 2020. Egocentric boundary vector tuning of the retrosplenial cortex. Sci. Adv. 6, eaaz2322. https://doi.org/10.1126/sciadv.aaz2322Google Scholar
Allen, G.V., Hopkins, D.A., 1989. Mamillary body in the rat: Topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J. Comp. Neurol. 286, 311336. https://doi.org/10.1002/cne.902860303Google Scholar
Alonso, A., Llinás, R.R., 1989. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175177. https://doi.org/10.1038/342175a0Google Scholar
Amaral, D.G., Cowan, W.M., 1980. Subcortical afferents to the hippocampal formation in the monkey. J. Comp. Neurol. 189, 573591. https://doi.org/10.1002/cne.901890402Google Scholar
Andersen, P., Curtis, D.R., 1964. The excitation of thalamic neurones by acetylcholine. Acta Physiol. Scand. 61, 8599. https://doi.org/10.1111/j.1748-1716.1964.tb02945.xGoogle Scholar
Angelaki, D.E., Cullen, K.E., 2008. Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125150. https://doi.org/10.1146/annurev.neuro.31.060407.125555Google Scholar
Arcelli, P., Frassoni, C., Regondi, M.C., Biasi, S.D., Spreafico, R., 1997. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res. Bull. 42, 2737. https://doi.org/10.1016/S0361-9230(96)00107–4Google Scholar
Bagur, S., Benchenane, K., 2018. Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of the commentary of Lockmann and Tort on Roy et al. Brain Struct. Funct. 223, 59. https://doi.org/10.1007/s00429-017-1569-xGoogle Scholar
Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick, M.J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin, R., Rabinowitz, N., Pascanu, R., Beattie, C., Petersen, S., Sadik, A., Gaffney, S., King, H., Kavukcuoglu, K., Hassabis, D., Hadsell, R., Kumaran, D., 2018. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429433. https://doi.org/10.1038/s41586-018-0102-6Google Scholar
Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., Jeffery, K., Burgess, N., 2006. The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci. 17, 7197. https://doi.org/10.1515/revneuro.2006.17.1-2.71Google Scholar
Bassant, M.-H., Poindessous‐Jazat, F., 2001. Ventral tegmental nucleus of Gudden: a pontine hippocampal theta generator? Hippocampus 11, 809813. https://doi.org/10.1002/hipo.1096Google Scholar
Bassett, J.P., Wills, T.J., Cacucci, F., 2018. Self-organized attractor dynamics in the developing head direction circuit. Curr. Biol. 28, 609–615.e3. https://doi.org/10.1016/j.cub.2018.01.010Google Scholar
Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P.L., Gioanni, Y., Battaglia, F.P., Wiener, S.I., 2010. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66, 921936. https://doi.org/10.1016/j.neuron.2010.05.013Google Scholar
Berthoz, A., Viaud-Delmon, I., 1999. Multisensory integration in spatial orientation. Curr. Opin. Neurobiol. 9, 708712. https://doi.org/10.1016/S0959-4388(99)00041–0Google Scholar
Bertram, E.H., Zhang, D.X., 1999. Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 92, 1526. https://doi.org/10.1016/S0306-4522(98)00712-XGoogle Scholar
Bicanski, A., Burgess, N., 2020. Neuronal vector coding in spatial cognition. Nat. Rev. Neurosci. 21, 453470. https://doi.org/10.1038/s41583-020–0336-9Google Scholar
Birrell, J.M., Brown, V.J., 2000. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320.Google Scholar
Blair, H.T., Cho, J., Sharp, P.E., 1998. Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study. Neuron 21, 13871397.Google Scholar
Blair, H.T., Cho, J., Sharp, P.E., 1999. The anterior thalamic head-direction signal is abolished by bilateral but not unilateral lesions of the lateral mammillary nucleus. J. Neurosci. 19, 66736683.Google Scholar
Blair, H.T., Sharp, P.E., 1995. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260.Google Scholar
Boucetta, S., Cissé, Y., Mainville, L., Morales, M., Jones, B.E., 2014. Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 34, 47084727. https://doi.org/10.1523/JNEUROSCI.2617–13.2014Google Scholar
Brandon, M.P., Bogaard, A.R., Andrews, C.M., Hasselmo, M.E., 2012. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus 22, 604618. https://doi.org/10.1002/hipo.20924Google Scholar
Brandon, M.P., Bogaard, A.R., Libby, C.P., Connerney, M.A., Gupta, K., Hasselmo, M.E., 2011. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595599. https://doi.org/10.1126/science.1201652Google Scholar
Brandon, M.P., Bogaard, A.R., Schultheiss, N.W., Hasselmo, M.E., 2013. Segregation of cortical head direction cell assemblies on alternating theta cycles. Nat. Neurosci. 16, 739748. https://doi.org/10.1038/nn.3383Google Scholar
Burak, Y., Fiete, I.R., 2009. Accurate path integration in continuous attractor network models of grid cells. PLOS Comput. Biol. 5, e1000291. https://doi.org/10.1371/journal.pcbi.1000291Google Scholar
Burgess, N., Barry, C., O’Keefe, J., 2007. An oscillatory interference model of grid cell firing. Hippocampus 17, 801812. https://doi.org/10.1002/hipo.20327CrossRefGoogle ScholarPubMed
Buzsáki, G., 2002. Theta oscillations in the hippocampus. Neuron 33, 325340.Google Scholar
Buzsáki, G., 2015. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 10731188. https://doi.org/10.1002/hipo.22488Google Scholar
Buzsáki, G., Moser, E.I., 2013. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130138. https://doi.org/10.1038/nn.3304Google Scholar
Byatt, G., Dalrymple-Alford, J.C., 1996. Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behav. Neurosci. 110, 13351348. https://doi.org/10.1037//0735-7044.110.6.1335Google Scholar
Cacucci, F., Lever, C., Wills, T.J., Burgess, N., O’Keefe, J., 2004. Theta-modulated place-by-direction cells in the hippocampal formation in the rat. J. Neurosci. 24, 82658277. https://doi.org/10.1523/JNEUROSCI.2635-04.2004Google Scholar
Calton, J.L., Stackman, R.W., Goodridge, J.P., Archey, W.B., Dudchenko, P.A., Taube, J.S., 2003. Hippocampal place cell instability after lesions of the head direction cell network. J. Neurosci. 23, 97199731.Google Scholar
Carlén, M., 2017. What constitutes the prefrontal cortex? Science 358, 478482. https://doi.org/10.1126/science.aan8868Google Scholar
Carlesimo, G.A., Lombardi, M.G., Caltagirone, C., 2011. Vascular thalamic amnesia: A reappraisal. Neuropsychologia 49, 777789. https://doi.org/10.1016/j.neuropsychologia.2011.01.026Google Scholar
Carvalho, M.M., Tanke, N., Kropff, E., Witter, M.P., Moser, M.-B., Moser, E.I., 2020. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Rep. 32, 108123. https://doi.org/10.1016/j.celrep.2020.108123Google Scholar
Chaudhuri, R., Gercek, B., Pandey, B., Peyrache, A., Fiete, I., 2019. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 15121520.Google Scholar
Chen, L.L., Lin, L.H., Green, E.J., Barnes, C.A., McNaughton, B.L., 1994. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101, 823.Google Scholar
Christiansen, K., Dillingham, C.M., Wright, N.F., Saunders, R.C., Vann, S.D., Aggleton, J.P., 2016. Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. Eur. J. Neurosci. 43, 10441061. https://doi.org/10.1111/ejn.13208Google Scholar
Cissé, Y., Toossi, H., Ishibashi, M., Mainville, L., Leonard, C.S., Adamantidis, A., Jones, B.E., 2018. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in mice. eNeuro 5. https://doi.org/10.1523/ENEURO.0270-18.2018Google Scholar
Clark, B.J., Harvey, R.E., 2016. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol. Learn. Mem. 133, 6978. https://doi.org/10.1016/j.nlm.2016.06.002Google Scholar
Claudi, F., Tyson, A.L., Branco, T., 2020. Brainrender. A Python-based software for visualisation of neuroanatomical and morphological data. bioRxiv 2020.02.23.961748. https://doi.org/10.1101/2020.02.23.961748Google Scholar
Cornwall, J., Cooper, J.D., Phillipson, O.T., 1990. Projections to the rostral reticular thalamic nucleus in the rat. Exp. Brain Res. 80. https://doi.org/10.1007/BF00228857Google Scholar
Cruce, J.A.F., 1975. An autoradiographic study of the projections of the mammillothalamic tract in the rat. Brain Res. 85, 211219. https://doi.org/10.1016/0006-8993(75)90072-4Google Scholar
Curro Dossi, R., Pare, D., Steriade, M., 1991. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J. Neurophysiol. 65, 393406. https://doi.org/10.1152/jn.1991.65.3.393Google Scholar
Dalley, J.W., Cardinal, R.N., Robbins, T.W., 2004. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771784. https://doi.org/10.1016/j.neubiorev.2004.09.006Google Scholar
DeCoteau, W.E., Thorn, C., Gibson, D.J., Courtemanche, R., Mitra, P., Kubota, Y., Graybiel, A.M., 2007. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc. Natl. Acad. Sci. 104, 5644.Google Scholar
Diekelmann, S., Born, J., 2010. The memory function of sleep. Nat. Rev. Neurosci. 11, 114126. https://doi.org/10.1038/nrn2762CrossRefGoogle ScholarPubMed
Dolleman-van der Weel, M.J., Lopes da Silva, F.H., Witter, M.P., 2017. Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat. Brain Struct. Funct. 222, 24212438. https://doi.org/10.1007/s00429-016-1350-6Google Scholar
Dragoi, G., Buzsáki, G., 2006. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145157.Google Scholar
Dudai, Y., 2004. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 5186. https://doi.org/10.1146/annurev.psych.55.090902.142050CrossRefGoogle ScholarPubMed
Ego‐Stengel, V., Wilson, M.A., 2007. Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17, 161174. https://doi.org/10.1002/hipo.20253Google Scholar
Ego‐Stengel, V., Wilson, M.A., 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 110. https://doi.org/10.1002/hipo.20707CrossRefGoogle ScholarPubMed
Etienne, A.S., Jeffery, K.J., 2004. Path integration in mammals. Hippocampus 14, 180192. https://doi.org/10.1002/hipo.10173Google Scholar
Euston, D.R., Gruber, A.J., McNaughton, B.L., 2012. The tole of medial prefrontal cortex in memory and decision making. Neuron 76, 10571070. https://doi.org/10.1016/j.neuron.2012.12.002CrossRefGoogle Scholar
Euston, D.R., Tatsuno, M., McNaughton, B.L., 2007. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 11471150. https://doi.org/10.1126/science.1148979Google Scholar
Fernandez, L.M.J., Lüthi, A., 2019. Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805868. https://doi.org/10.1152/physrev.00042.2018Google Scholar
Frankland, P.W., Bontempi, B., 2005. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119130. https://doi.org/10.1038/nrn1607Google Scholar
Fuhs, M.C., Touretzky, D.S., 2006. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 42664276. https://doi.org/10.1523/JNEUROSCI.4353-05.2006Google Scholar
Fujisawa, S., Buzsáki, G., 2011. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72, 153165. https://doi.org/10.1016/j.neuron.2011.08.018Google Scholar
Gallistel, C.R., 1989. Animal cognition: the representation of space, time and number. Annu. Rev. Psychol. 40, 155189. https://doi.org/10.1146/annurev.ps.40.020189.001103CrossRefGoogle ScholarPubMed
Gent, T.C., Bandarabadi, M., Herrera, C.G., Adamantidis, A.R., 2018. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974. https://doi.org/10.1038/s41593-018-0164-7Google Scholar
Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., Zugaro, M.B., 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 12221223. https://doi.org/10.1038/nn.2384CrossRefGoogle ScholarPubMed
Gofman, X., Tocker, G., Weiss, S., Boccara, C.N., Lu, L., Moser, M.-B., Moser, E.I., Morris, G., Derdikman, D., 2019. Dissociation between postrhinal cortex and downstream parahippocampal regions in the representation of egocentric boundaries. Curr. Biol. 29, 2751–2757.e4. https://doi.org/10.1016/j.cub.2019.07.007Google Scholar
Gonzalo-Ruiz, A., Lieberman, A.R., 1995. Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. Brain Res. Bull. 37, 1735. https://doi.org/10.1016/0361-9230(94)00252-5Google Scholar
Goodridge, J.P., Taube, J.S., 1997. Interaction between the postsubiculum and anterior thalamus in the generation of head direction cell activity. J. Neurosci. 17, 93159330.Google Scholar
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I., 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801806. https://doi.org/10.1038/nature03721Google Scholar
Halassa, M.M., Acsády, L., 2016. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680693. https://doi.org/10.1016/j.tins.2016.08.001Google Scholar
Harding, A., Halliday, G., Caine, D., Kril, J., 2000. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123, 141154. https://doi.org/10.1093/brain/123.1.141Google Scholar
Harland, B., Grieves, R.M., Bett, D., Stentiford, R., Wood, E.R., Dudchenko, P.A., 2017. Lesions of the head direction cell system increase hippocampal place field repetition. Curr. Biol. 27, 27062712. https://doi.org/10.1016/j.cub.2017.07.071Google Scholar
Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G., Buzsaki, G., 2003. Organization of cell assemblies in the hippocampus. Nature 424, 552556. https://doi.org/10.1038/nature01834Google Scholar
Hasselmo, M.E., 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710715. https://doi.org/10.1016/j.conb.2006.09.002Google Scholar
Heckers, S., Geula, C., Mesulam, M.-M., 1992. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J. Comp. Neurol. 325, 6882. https://doi.org/10.1002/cne.903250107Google Scholar
Herkenham, M., 1978. The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol. 177, 589609. https://doi.org/10.1002/cne.901770405Google Scholar
Hulse, B.K., Jayaraman, V., 2020. Mechanisms underlying the neural computation of head direction. Annu. Rev. Neurosci. 43, 3154. https://doi.org/10.1146/annurev-neuro-072116-031516Google Scholar
Ito, H.T., Zhang, S.-J., Witter, M.P., Moser, E.I., Moser, M.-B., 2015. A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation. Nature 522, 5055. https://doi.org/10.1038/nature14396Google Scholar
Jacob, P.-Y., Casali, G., Spieser, L., Page, H., Overington, D., Jeffery, K., 2017. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat. Neurosci. 20, 173175. https://doi.org/10.1038/nn.4465Google Scholar
Jankowski, M.M., Islam, M.N., Wright, N.F., Vann, S.D., Erichsen, J.T., Aggleton, J.P., O’Mara, S.M., 2014. Nucleus reuniens of the thalamus contains head direction cells. eLife 3, e03075. https://doi.org/10.7554/eLife.03075Google Scholar
Jankowski, M.M., Passecker, J., Islam, M.N., Vann, S., Erichsen, J.T., Aggleton, J.P., O’Mara, S.M., 2015. Evidence for spatially-responsive neurons in the rostral thalamus. Front. Behav. Neurosci. 9. https://doi.org/10.3389/fnbeh.2015.00256Google Scholar
Jay, T.M., Glowinski, J., Thierry, A.-M., 1989. Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res. 505, 337340. https://doi.org/10.1016/0006-8993(89)91464–9Google Scholar
Johnson, A., Redish, A.D., 2007. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176.Google Scholar
Jones, B.E., 1993. The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog. Brain Res. 98, 6171. https://doi.org/10.1016/s0079-6123(08)62381-xGoogle Scholar
Jones, E.G., 2007. The Thalamus. Cambridge University Press.Google Scholar
Jones, M.W., Wilson, M.A., 2005. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLOS Biol. 3, e402. https://doi.org/10.1371/journal.pbio.0030402Google Scholar
Kaitz, S.S., Robertson, R.T., 1981. Thalamic connections with limbic cortex. II. Corticothalamic projections. J. Comp. Neurol. 195, 527545. https://doi.org/10.1002/cne.901950309Google Scholar
Kay, K., Chung, J.E., Sosa, M., Schor, J.S., Karlsson, M.P., Larkin, M.C., Liu, D.F., Frank, L.M., 2020. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell 180, 552–567.e25. https://doi.org/10.1016/j.cell.2020.01.014Google Scholar
Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L., 1995. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 16481659.Google Scholar
Kocsis, B., Prisco, G.V.D., Vertes, R.P., 2001. Theta synchronization in the limbic system: the role of Gudden’s tegmental nuclei. Eur. J. Neurosci. 13, 381388. https://doi.org/10.1111/j.1460-9568.2001.tb01708.xGoogle Scholar
Koenig, J., Linder, A.N., Leutgeb, J.K., Leutgeb, S., 2011. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592595. https://doi.org/10.1126/science.1201685Google Scholar
Kornienko, O., Latuske, P., Bassler, M., Kohler, L., Allen, K., 2018. Non-rhythmic head-direction cells in the parahippocampal region are not constrained by attractor network dynamics. eLife 7, e35949. https://doi.org/10.7554/eLife.35949Google Scholar
Kuypers, H.G., Bentivoglio, M., Catsman-Berrevoets, C.E., Bharos, A.T., 1980. Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp. Brain Res. 40, 383392. https://doi.org/10.1007/BF00236147Google Scholar
LaChance, P.A., Todd, T.P., Taube, J.S., 2019. A sense of space in postrhinal cortex. Science 365, eaax4192. https://doi.org/10.1126/science.aax4192Google Scholar
Lee, A.K., Wilson, M.A., 2002. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 11831194.Google Scholar
Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.-B., Moser, E.I., 2004. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 12951298. https://doi.org/10.1126/science.1100265Google Scholar
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., Burgess, N., 2009. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 97719777. https://doi.org/10.1523/JNEUROSCI.1319-09.2009Google Scholar
Levey, A.I., Hallanger, A.E., Wainer, B.H., 1987. Choline acetyltransferase immunoreactivity in the rat thalamus. J. Comp. Neurol. 257, 317332. https://doi.org/10.1002/cne.902570302Google Scholar
Lozsádi, D.A., 1995. Organization of connections between the thalamic reticular and the anterior thalamic nuclei in the rat. J. Comp. Neurol. 358, 233246. https://doi.org/10.1002/cne.903580206Google Scholar
Maisson, D.J.-N., Gemzik, Z.M., Griffin, A.L., 2018. Optogenetic suppression of the nucleus reuniens selectively impairs encoding during spatial working memory. Neurobiol. Learn. Mem. 155, 7885. https://doi.org/10.1016/j.nlm.2018.06.010Google Scholar
Markus, E.J., Qin, Y.L., Leonard, B., Skaggs, W.E., McNaughton, B.L., Barnes, C.A., 1995. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 70797094. https://doi.org/10.1523/JNEUROSCI.15-11-07079.1995Google Scholar
Mathiasen, M.L., Amin, E., Nelson, A.J.D., Dillingham, C.M., O’Mara, S.M., Aggleton, J.P., 2019. Separate cortical and hippocampal cell populations target the rat nucleus reuniens and mammillary bodies. Eur. J. Neurosci. 49, 16491672. https://doi.org/10.1111/ejn.14341Google Scholar
Maurer, A.P., Cowen, S.L., Burke, S.N., Barnes, C.A., McNaughton, B.L., 2006. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J. Neurosci. 26, 1348513492. https://doi.org/10.1523/JNEUROSCI.2882–06.2006Google Scholar
McKenna, J.T., Vertes, R.P., 2004. Afferent projections to nucleus reuniens of the thalamus. J. Comp. Neurol. 480, 115142. https://doi.org/10.1002/cne.20342CrossRefGoogle ScholarPubMed
McNaughton, B.L., Barnes, C.A., Gerrard, J.L., Gothard, K., Jung, M.W., Knierim, J.J., Kudrimoti, H., Qin, Y., Skaggs, W.E., Suster, M., Weaver, K.L., 1996. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173.Google Scholar
McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.-B., 2006. Path integration and the neural basis of the “cognitive map.” Nat. Rev. Neurosci. 7, 663678. https://doi.org/10.1038/nrn1932Google Scholar
Mei, H., Logothetis, N.K., Eschenko, O., 2018. The activity of thalamic nucleus reuniens is critical for memory retrieval, but not essential for the early phase of “off-line” consolidation. Learn. Mem. 25, 129137. https://doi.org/10.1101/lm.047134.117Google Scholar
Meibach, R.C., Siegel, A., 1977. Efferent connections of the hippocampal formation in the rat. Brain Res. 124, 197224. https://doi.org/10.1016/0006-8993(77)90880-0Google Scholar
Mitchell, A.S., Dalrymple-Alford, J.C., Christie, M.A., 2002. Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. J. Neurosci. 22, 19221928. https://doi.org/10.1523/JNEUROSCI.22-05-01922.2002Google Scholar
Mittelstaedt, M.L., Mittelstaedt, H., 1980. Homing by path integration in a mammal. Naturwissenschaften 67, 566567. https://doi.org/10.1007/bf00450672Google Scholar
Mizumori, S.J., Williams, J.D., 1993. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J. Neurosci. 13, 40154028.Google Scholar
Moruzzi, G., Magoun, H.W., 1949. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455473. https://doi.org/10.1016/0013-4694(49)90219-9Google Scholar
Muir, G.M., Brown, J.E., Carey, J.P., Hirvonen, T.P., Santina, C.C.D., Minor, L.B., Taube, J.S., 2009. Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla. J. Neurosci. 29, 1452114533. https://doi.org/10.1523/JNEUROSCI.3450-09.2009Google Scholar
Muller, R.U., Bostock, E., Taube, J.S., Kubie, J.L., 1994. On the directional firing properties of hippocampal place cells. J. Neurosci. 14, 72357251.Google Scholar
Muller, R.U., Kubie, J.L., 1987. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 19511968.Google Scholar
Musil, S.Y., Olson, C.R., 1988. Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J. Comp. Neurol. 272, 203218. https://doi.org/10.1002/cne.902720205Google Scholar
Nadel, L., Moscovitch, M., 1997. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217227. https://doi.org/10.1016/s0959-4388(97)80010-4Google Scholar
Nelson, A.J.D., Kinnavane, L., Amin, E., O’Mara, S.M., Aggleton, J.P., 2020. Deconstructing the direct reciprocal hippocampal-anterior thalamic pathways for spatial learning. J. Neurosci. 40, 69786990. https://doi.org/10.1523/JNEUROSCI.0874-20.2020Google Scholar
Niimi, M., 1978. Cortical projections of the anterior thalamic nuclei in the cat. Exp. Brain Res. 31, 403416. https://doi.org/10.1007/BF00237298Google Scholar
Oda, S., Kuroda, M., Chen, S.Y., Shinkai, M., Kishi, K., 1996. Ultrastructure and distribution of axon terminals from the reticular thalamic nucleus to the anteroventral thalamic nucleus of the rat. J. Hirnforsch. 37, 459466.Google Scholar
O’Keefe, J., 1976. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78109. https://doi.org/10.1016/0014–4886(76)90055–8Google Scholar
O’Keefe, J., Burgess, N., 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425428. https://doi.org/10.1038/381425a0Google Scholar
O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171175.Google Scholar
O’Keefe, J., Nadel, L., 1978. The Hippocampus as a Cognitive Map. Clarendon Press Oxford.Google Scholar
O’Keefe, J., Recce, M.L., 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317330. https://doi.org/10.1002/hipo.450030307Google Scholar
Papez, J.W., 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38, 725743. https://doi.org/10.1001/archneurpsyc.1937.02260220069003Google Scholar
Pare, D., Steriade, M., Deschênes, M., Bouhassira, D., 1990. Prolonged enhancement of anterior thalamic synaptic responsiveness by stimulation of a brain-stem cholinergic group. J. Neurosci. 10, 2033. https://doi.org/10.1523/JNEUROSCI.10-01-00020.1990Google Scholar
Perry, B.A.L., Mercer, S.A., Barnett, S.C., Lee, J., Dalrymple‐Alford, J.C., 2018. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system. Hippocampus 28, 121135. https://doi.org/10.1002/hipo.22815Google Scholar
Perry, B.A.L., Mitchell, A.S., 2019. Considering the evidence for anterior and laterodorsal thalamic nuclei as higher order relays to cortex. Front. Mol. Neurosci. 12. https://doi.org/10.3389/fnmol.2019.00167Google Scholar
Petrof, I., Sherman, S.M., 2009. Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J. Neurosci. 29, 78157819. https://doi.org/10.1523/JNEUROSCI.1564-09.2009Google Scholar
Peyrache, A., Battaglia, F.P., Destexhe, A., 2011. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc. Natl. Acad. Sci. 108, 1720717212. https://doi.org/10.1073/pnas.1103612108Google Scholar
Peyrache, A., Duszkiewicz, A.J., Viejo, G., Angeles-Duran, S., 2019. Thalamocortical processing of the head-direction sense. Prog. Neurobiol. 183, 101693. https://doi.org/10.1016/j.pneurobio.2019.101693Google Scholar
Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S.I., Battaglia, F.P., 2009. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919926. https://doi.org/10.1038/nn.2337Google Scholar
Peyrache, A., Lacroix, M.M., Petersen, P.C., Buzsáki, G., 2015. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569575. https://doi.org/10.1038/nn.3968Google Scholar
Peyrache, A., Schieferstein, N., Buzsáki, G., 2017. Transformation of the head-direction signal into a spatial code. Nat. Commun. 8, 1752. https://doi.org/10.1038/s41467-017-01908-3Google Scholar
Peyrache, A., Seibt, J., 2020. A mechanism for learning with sleep spindles. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190230. https://doi.org/10.1098/rstb.2019.0230Google Scholar
Phillips, J.W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B.C., Korff, W., Chandrashekar, J., Lemire, A.L., Mensh, B., Dudman, J.T., Nelson, S.B., Hantman, A.W., 2019. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 19251935. https://doi.org/10.1038/s41593-019-0483-3Google Scholar
Pisokas, I., Heinze, S., Webb, B., 2020. The head direction circuit of two insect species. eLife 9, e53985. https://doi.org/10.7554/eLife.53985Google Scholar
Powell, T.P.S., Cowan, W.M., 1954. The origin of the mamillo-thalamic tract in the rat. J. Anat. 88, 489497.Google Scholar
Preuss, T.M., 1995. Do rats have prefrontal cortex? The Rose-Woolsey-Akert Program reconsidered. J. Cogn. Neurosci. 7, 124. https://doi.org/10.1162/jocn.1995.7.1.1Google Scholar
Ranck, J.B., 1985. Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. In: Buzsáki, G., Vanderwolf, C. H. (Eds.), Electrical Activity of Archicortex. Akademiai Kiado, pp. 217220.Google Scholar
Raudies, F., Brandon, M.P., Chapman, G.W., Hasselmo, M.E., 2015. Head direction is coded more strongly than movement direction in a population of entorhinal neurons. Brain Res. 1621, 355367. https://doi.org/10.1016/j.brainres.2014.10.053Google Scholar
Redish, A.D., 2016. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147159. https://doi.org/10.1038/nrn.2015.30Google Scholar
Redish, A.D., Elga, A.N., Touretzky, D.S., 1996. A coupled attractor model of the rodent head direction system. Netw. Comput. Neural Syst. 7, 671685. https://doi.org/10.1088/0954-898X_7_4_004Google Scholar
Robertson, R.T., Kaitz, S.S., 1981. Thalamic connections with limbic cortex. I. Thalamocortical projections. J. Comp. Neurol. 195, 501525. https://doi.org/10.1002/cne.901950308CrossRefGoogle ScholarPubMed
Rosene, D.L., Hoesen, G.V., 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198, 315317. https://doi.org/10.1126/science.410102Google Scholar
Rosenstock, J., Field, T.D., Greene, E., 1977. The role of mammillary bodies in spatial memory. Exp. Neurol. 55, 340352. https://doi.org/10.1016/0014-4886(77)90005-XGoogle Scholar
Roy, A., Svensson, F.P., Mazeh, A., Kocsis, B., 2017. Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: the role of the nucleus reuniens of the thalamus. Brain Struct. Funct. 222, 28192830. https://doi.org/10.1007/s00429-017-1374-6Google Scholar
Samsonovich, A., McNaughton, B.L., 1997. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900.Google Scholar
Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.-B., Moser, E.I., 2006. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758762. https://doi.org/10.1126/science.1125572Google Scholar
Satoh, K., Fibiger, H.C., 1986. Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections. J. Comp. Neurol. 253, 277302. https://doi.org/10.1002/cne.902530302Google Scholar
Savelli, F., Yoganarasimha, D., Knierim, J.J., 2008. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 12701282. https://doi.org/10.1002/hipo.20511Google Scholar
Scoville, W.B., Milner, B., 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 1121.Google Scholar
Seidenbecher, T., 2003. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301, 846850. https://doi.org/10.1126/science.1085818Google Scholar
Seki, M., Zyo, K., 1984. Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J. Comp. Neurol. 229, 242256. https://doi.org/10.1002/cne.902290209Google Scholar
Sharp, P.E., 1996. Multiple spatial/behavioral correlates for cells in the rat postsubiculum: multiple regression analysis and comparison to other hippocampal areas. Cereb. Cortex 6, 238259.Google Scholar
Sharp, P.E., Blair, H.T., Cho, J., 2001. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 24, 289294.Google Scholar
Sherman, S.M., Guillery, R.W., 2002. The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. B Biol. Sci. 357, 16951708. https://doi.org/10.1098/rstb.2002.1161Google Scholar
Shibata, H., 1992. Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J. Comp. Neurol. 323, 117127. https://doi.org/10.1002/cne.903230110Google Scholar
Shibata, H., 1993a. Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat. J. Comp. Neurol. 337, 431445. https://doi.org/10.1002/cne.903370307Google Scholar
Shibata, H., 1993b. Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J. Comp. Neurol. 330, 533542. https://doi.org/10.1002/cne.903300409Google Scholar
Shibata, H., Kato, A., 1993. Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neurosci. Res. 17, 6369. https://doi.org/10.1016/0168–0102(93)90030-tGoogle Scholar
Siapas, A.G., Lubenov, E.V., Wilson, M.A., 2005. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46, 141151. https://doi.org/10.1016/j.neuron.2005.02.028Google Scholar
Siapas, A.G., Wilson, M.A., 1998. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 11231128.Google Scholar
Sikes, R.W., Vogt, B.A., 1987. Afferent connections of anterior thalamus in rats: sources and association with muscarinic acetylcholine receptors. J. Comp. Neurol. 256, 538551. https://doi.org/10.1002/cne.902560406Google Scholar
Sirota, A., Csicsvari, J., Buhl, D., Buzsáki, G., 2003. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. U.S.A. 100, 2065.Google Scholar
Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., Buzsaki, G., 2008. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683697. https://doi.org/10.1016/j.neuron.2008.09.014Google Scholar
Skaggs, W.E., McNaughton, B.L., 1996. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 18701873.Google Scholar
Solstad, T., Boccara, C.N., Kropff, E., Moser, M.-B., Moser, E.I., 2008. Representation of geometric borders in the entorhinal cortex. Science 322, 18651868. https://doi.org/10.1126/science.1166466Google Scholar
Squire, L.R., 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195231. https://doi.org/10.1037/0033-295x.99.2.195Google Scholar
Sripanidkulchai, K., Wyss, J.M., 1986. Thalamic projections to retrosplenial cortex in the rat. J. Comp. Neurol. 254, 143165. https://doi.org/10.1002/cne.902540202Google Scholar
Stackman, R.W., Taube, J.S., 1998. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J. Neurosci. 18, 90209037.Google Scholar
Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G., Buzsáki, G., 2013. Inhibition-induced theta resonance in cortical circuits. Neuron 80, 12631276. https://doi.org/10.1016/j.neuron.2013.09.033Google Scholar
Steriade, M., McCormick, D.A., Sejnowski, T.J., 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679685.Google Scholar
Sutherland, R.J., Rodriguez, A.J., 1989. The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behav. Brain Res. 32, 265277. https://doi.org/10.1016/S0166-4328(89)80059–2Google Scholar
Swanson, L.W., Cowan, W.M., 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 172, 4984. https://doi.org/10.1002/cne.901720104Google Scholar
Swanson, L.W., Cowan, W.M., 1979. The connections of the septal region in the rat. J. Comp. Neurol. 186, 621655. https://doi.org/10.1002/cne.901860408Google Scholar
Sziklas, V., Petrides, M., 1998. Memory and the region of the mammillary bodies. Prog. Neurobiol. 54, 5570. https://doi.org/10.1016/S0301-0082(97)00064-6Google Scholar
Taube, J.S., 1995. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci. 15, 7086.Google Scholar
Taube, J.S., 2007. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181207. https://doi.org/10.1146/annurev.neuro.29.051605.112854Google Scholar
Taube, J.S., Bassett, J.P., 2003. Persistent neural activity in head direction cells. Cereb. Cortex 13, 11621172. https://doi.org/10.1093/cercor/bhg102Google Scholar
Taube, J.S., Muller, R.U., Ranck, J.B., 1990a. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420435.Google Scholar
Taube, J.S., Muller, R.U., Ranck, J.B., Jr, 1990b. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436447.Google Scholar
Touretzky, D.S., Redish, A.D., 1996. Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247270. https://doi.org/10.1002/(SICI)1098-1063(1996)6:3%3C247::aid-hipo4%3E3.0.CO;2-KGoogle Scholar
Tsanov, M., Chah, E., Vann, S.D., Reilly, R.B., Erichsen, J.T., Aggleton, J.P., O’Mara, S.M., 2011. Theta-modulated head direction cells in the rat anterior thalamus. J. Neurosci. 31, 94899502. https://doi.org/10.1523/JNEUROSCI.0353-11.2011Google Scholar
Tsanov, M., Wright, N., Vann, S.D., Erichsen, J.T., Aggleton, J.P., O’Mara, S.M., 2011. Hippocampal inputs mediate theta-related plasticity in anterior thalamus. Neuroscience 187, 5262. https://doi.org/16/j.neuroscience.2011.03.055Google Scholar
Uylings, H., Groenewegen, H.J., Kolb, B., 2003. Do rats have a prefrontal cortex? Behav. Brain Res. 146, 317.Google Scholar
Valerio, S., Taube, J.S., 2012. Path integration: how the head direction signal maintains and corrects spatial orientation. Nat. Neurosci. 15, 14451453. https://doi.org/10.1038/nn.3215Google Scholar
van der Meer, M.A.A., Knierim, J.J., Yoganarasimha, D., Wood, E.R., van Rossum, M.C.W., 2007. Anticipation in the rodent head direction system can be explained by an interaction of head movements and vestibular firing properties. J. Neurophysiol. 98, 18831897. https://doi.org/10.1152/jn.00233.2007Google Scholar
van Groen, T., Kadish, I., Wyss, J.M., 1999. Efferent connections of the anteromedial nucleus of the thalamus of the rat. Brain Res. Rev. 30, 126. https://doi.org/10.1016/s0165-0173(99)00006-5Google Scholar
van Groen, T., Kadish, I., Wyss, J.M., 2002. Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behav. Brain Res. 132, 1928. https://doi.org/10.1016/S0166-4328(01)00390-4Google Scholar
van Groen, T., Wyss, J.M., 1995. Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. J. Comp. Neurol. 358, 584604. https://doi.org/10.1002/cne.903580411Google Scholar
Vanderwolf, C.H., 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407418. https://doi.org/10.1016/0013-4694(69)90092-3Google Scholar
Vann, S.D., Aggleton, J.P., 2004. The mammillary bodies: two memory systems in one? Nat. Rev. Neurosci. 5, 3544. https://doi.org/10.1038/nrn1299Google Scholar
Vann, S.D., Brown, M.W., Aggleton, J.P., 2000. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 101, 983991. https://doi.org/10.1016/s0306-4522(00)00288-8Google Scholar
Vantomme, G., Rovó, Z., Cardis, R., Béard, E., Katsioudi, G., Guadagno, A., Perrenoud, V., Fernandez, L.M.J., Lüthi, A., 2020. A thalamic reticular circuit for head direction cell tuning and spatial navigation. Cell Rep. 31, 107747. https://doi.org/10.1016/j.celrep.2020.107747Google Scholar
Varela, C., Kumar, S., Yang, J.Y., Wilson, M.A., 2014. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 219, 911929. https://doi.org/10.1007/s00429-013-0543-5Google Scholar
Varela, C., Wilson, M.A., 2020. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 9, e48881. https://doi.org/10.7554/eLife.48881Google Scholar
Veazey, R.B., Amaral, D.G., Cowan, W.M., 1982. The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections.J. Comp. Neurol. 207, 135156. https://doi.org/10.1002/cne.902070204Google Scholar
Vertes, R.P., Albo, Z., Prisco, Viana Di, G., 2001. Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience 104, 619625. https://doi.org/10.1016/S0306-4522(01)00131-2Google Scholar
Vertes, R.P., Hoover, W.B., Szigeti-Buck, K., Leranth, C., 2007. Nucleus reuniens of the midline thalamus: Link between the medial prefrontal cortex and the hippocampus. Brain Res. Bull. 71, 601609.Google Scholar
Viejo, G., Cortier, T., Peyrache, A., 2018. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders. PLOS Comput. Biol. 14, e1006041. https://doi.org/10.1371/journal.pcbi.1006041Google Scholar
Viejo, G., Peyrache, A., 2020. Precise coupling of the thalamic head-direction system to hippocampal ripples. Nat. Commun. 11, 2524. https://doi.org/10.1038/s41467-020-15842-4Google Scholar
Walz, N., Mühlberger, A., Pauli, P., 2016. A human open field test reveals thigmotaxis related to agoraphobic fear. Biol. Psychiatry 80, 390397. https://doi.org/10.1016/j.biopsych.2015.12.016Google Scholar
Wang, B., Gonzalo-Ruiz, A., Sanz, J.M., Campbell, G., Lieberman, A.R., 1999. Immunoelectron microscopic study of gamma-aminobutyric acid inputs to identified thalamocortical projection neurons in the anterior thalamus of the rat. Exp. Brain Res. 126, 369382. https://doi.org/10.1007/s002210050744Google Scholar
Watanabe, K., Kawana, E., 1980. A horseradish peroxidase study on the mammillothalamic tract in the rat. Cells Tissues Organs 108, 394401. https://doi.org/10.1159/000145322Google Scholar
Weel, M.J.D.-V. der, Silva, F.H.L. da, Witter, M.P., 1997. Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J. Neurosci. 17, 56405650. https://doi.org/10.1523/JNEUROSCI.17-14-05640.1997Google Scholar
Welday, A.C., Shlifer, I.G., Bloom, M.L., Zhang, K., Blair, H.T., 2011. Cosine directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory interference. J. Neurosci. 31, 1615716176. https://doi.org/10.1523/JNEUROSCI.0712-11.2011Google Scholar
Wierzynski, C.M., Lubenov, E.V., Gu, M., Siapas, A.G., 2009. State-dependent Spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587596. https://doi.org/10.1016/j.neuron.2009.01.011Google Scholar
Wilson, M.A., McNaughton, B.L., 1994. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676.Google Scholar
Wiltschko, A.B., Johnson, M.J., Iurilli, G., Peterson, R.E., Katon, J.M., Pashkovski, S.L., Abraira, V.E., Adams, R.P., Datta, S.R., 2015. Mapping sub-second structure in mouse behavior. Neuron 88, 11211135. https://doi.org/10.1016/j.neuron.2015.11.031Google Scholar
Wimmer, R.D., Schmitt, L.I., Davidson, T.J., Nakajima, M., Deisseroth, K., Halassa, M.M., 2015. Thalamic control of sensory selection in divided attention. Nature 526, 705709. https://doi.org/10.1038/nature15398Google Scholar
Winter, S.S., Clark, B.J., Taube, J.S., 2015. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 347, 870874. https://doi.org/10.1126/science.1259591Google Scholar
Wood, E.R., Dudchenko, P.A., Robitsek, R.J., Eichenbaum, H., 2000. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623633. https://doi.org/10.1016/S0896-6273(00)00071-4Google Scholar
Wright, N.F., Erichsen, J.T., Vann, S.D., O’Mara, S.M., Aggleton, J.P., 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. J. Comp. Neurol. 518, 23342354. https://doi.org/10.1002/cne.22336Google Scholar
Wright, N.F., Vann, S.D., Erichsen, J.T., O’Mara, S.M., Aggleton, J.P., 2013. Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat. J. Comp. Neurol. 521, 29662986. https://doi.org/10.1002/cne.23325Google Scholar
Xu, W., Südhof, T.C., 2013. A neural circuit for memory specificity and generalization. Science 339, 12901295. https://doi.org/10.1126/science.1229534Google Scholar
Yoder, R.M., Taube, J.S., 2011. Projections to the anterodorsal thalamus and lateral mammillary nuclei arise from different cell populations within the postsubiculum: Implications for the control of head direction cells. Hippocampus 21, 10621073. https://doi.org/10.1002/hipo.20820Google Scholar
Yoganarasimha, D., Yu, X., Knierim, J.J., 2006. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells. J. Neurosci. 26, 622631. https://doi.org/10.1523/JNEUROSCI.3885-05.2006Google Scholar
Zugaro, M.B., Berthoz, A., Wiener, S.I., 2001. Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons. J. Neurosci. 21, RC154.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×