Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-sgvz2 Total loading time: 0 Render date: 2024-04-30T08:15:30.760Z Has data issue: false hasContentIssue false

Section 5: - Sensory Processing

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 187 - 268
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, D. L., Sincich, L. C., and Horton, J. C. (2007). Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27, 1039110403.CrossRefGoogle ScholarPubMed
Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J., and Ungerleider, L. G. (2000). Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419, 377393.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A., and Nelson, J. C. (1994). Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 341, 3949.Google Scholar
Albrecht, D. G., and Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis Neurosci 7, 531546.Google Scholar
Alonso, J. M. (2018). Motion processing picks up speed in the brain. Nature 558, 3839.CrossRefGoogle ScholarPubMed
Alonso, J. M., and Swadlow, H. A. (2005). Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J Neurophysiol 94, 2632.CrossRefGoogle ScholarPubMed
Alonso, J. M., Usrey, W. M., and Reid, R. C. (1996). Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815819.Google Scholar
Alonso, J. M., Usrey, W. M., and Reid, R. C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21, 40024015.CrossRefGoogle ScholarPubMed
Anderson, P. A., Olavarria, J., and Van Sluyters, R. C. (1988). The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8, 21832200.CrossRefGoogle ScholarPubMed
Andrews, T. J., Halpern, S. D., and Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17, 28592868.CrossRefGoogle ScholarPubMed
Antonini, A., Fagiolini, M., and Stryker, M. P. (1999). Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19, 43884406.CrossRefGoogle ScholarPubMed
Bagnall, M. W., Hull, C., Bushong, E. A., Ellisman, M. H., and Scanziani, M. (2011). Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron 71, 180194.CrossRefGoogle ScholarPubMed
Baker, C. L., Jr., Hess, R. F., and Zihl, J. (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11, 454461.CrossRefGoogle Scholar
Banton, T., and Levi, D. M. (1991). Binocular summation in vernier acuity. J Opt Soc Am A 8, 673680.Google Scholar
Bereshpolova, Y., Hei, X., Alonso, J. M. & Swadlow, H. A. Three rules govern thalamocortical connectivity of fast-spike inhibitory interneurons in the visual cortex. eLife 9, doi:10.7554/eLife.60102 (2020), PMC7723404Google Scholar
Bereshpolova, Y., Stoelzel, C. R., Su, C., Alonso, J. M., and Swadlow, H. A. (2019). Activation of a visual cortical column by a directionally selective thalamocortical neuron. Cell Rep 27, 3733–3740 e3733.Google Scholar
Berman, R. A., and Wurtz, R. H. (2008). Exploring the pulvinar path to visual cortex. Prog Brain Res 171, 467473.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., and Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J Neurosci 35, 1052310534.Google Scholar
Bienkowski, M. S., Benavidez, N. L., Wu, K., Gou, L., Becerra, M., and Dong, H. W. (2019). Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol 527, 14191442.Google Scholar
Binzegger, T., Douglas, R. J., and Martin, K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24, 84418453.CrossRefGoogle ScholarPubMed
Bischof, H. J., and Watanabe, S. (1997). On the structure and function of the tectofugal visual pathway in laterally eyed birds. Eur J Morphol 35, 246254.Google Scholar
Blasdel, G. G., and Lund, J. S. (1983). Termination of afferent axons in macaque striate cortex. J Neurosci 3, 13891413.CrossRefGoogle ScholarPubMed
Boyd, J. D., and Matsubara, J. A. (1996). Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J Comp Neurol 365, 659682.Google Scholar
Bruno, R. M., and Simons, D. J. (2002). Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22, 1096610975.Google Scholar
Bryant, K. L., Suwyn, C., Reding, K. M., Smiley, J. F., Hackett, T. A., and Preuss, T. M. (2012). Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry. Brain Behav Evol 80, 210221.CrossRefGoogle ScholarPubMed
Callaway, E. M. (2005). Structure and function of parallel pathways in the primate early visual system. J Physiol 566, 1319.Google Scholar
Cammack, J., Whight, J., Cross, V., Rider, A. T., Webster, A. R., and Stockman, A. (2016). Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness. Clin Ophthalmol 10, 15931606.Google Scholar
Cano, M., Bezdudnaya, T., Swadlow, H. A., and Alonso, J. M. (2006). Brain state and contrast sensitivity in the awake visual thalamus. Nat Neurosci 9, 12401242.Google Scholar
Chapman, B., Zahs, K. R., and Stryker, M. P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J Neurosci 11, 13471358.CrossRefGoogle ScholarPubMed
Chatterjee, S., and Callaway, E. M. (2003). Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668671.Google Scholar
Chichilnisky, E. J., and Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22, 27372747.CrossRefGoogle Scholar
Cleland, B. G., Dubin, M. W., and Levick, W. R. (1971). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J Physiol 217, 473496.Google Scholar
Conway, J. L., and Schiller, P. H. (1983). Laminar organization of tree shrew dorsal lateral geniculate nucleus. J Neurophysiol 50, 13301342.Google Scholar
Cowey, A. (2010). Visual system: how does blindsight arise? Curr Biol 20, R702704.Google Scholar
Cowey, A., Stoerig, P., and Bannister, M. (1994). Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience 61, 691705.CrossRefGoogle ScholarPubMed
Cruikshank, S. J., Lewis, T. J., and Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10, 462468.CrossRefGoogle ScholarPubMed
Cruz-Martin, A., El-Danaf, R. N., Osakada, F., Sriram, B., Dhande, O. S., Nguyen, P. L., Callaway, E. M., Ghosh, A., and Huberman, A. D. (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358361.Google Scholar
Curcio, C. A., and Allen, K. A. (1990). Topography of ganglion cells in human retina. J Comp Neurol 300, 525.Google Scholar
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. (1990). Human photoreceptor topography. J Comp Neurol 292, 497523.CrossRefGoogle ScholarPubMed
Dacey, D. M., and Petersen, M. R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89, 96669670.CrossRefGoogle ScholarPubMed
DeAngelis, G. C., Ohzawa, I., and Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol 69, 11181135.Google Scholar
Diamond, I. T., Conley, M., Fitzpatrick, D., and Raczkowski, D. (1991). Evidence for separate pathways within the tecto-geniculate projection in the tree shrew. Proc Natl Acad Sci USA 88, 13151319.Google Scholar
Drager, U. C., and Olsen, J. F. (1981). Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20, 285293.Google Scholar
Dryja, T. P., McGee, T. L., Berson, E. L., Fishman, G. A., Sandberg, M. A., Alexander, K. R., Derlacki, D. J., and Rajagopalan, A. S. (2005). Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102, 48844889.Google Scholar
Eiber, C. D., Rahman, A. S., Pietersen, A. N. J., Zeater, N., Dreher, B., Solomon, S. G., and Martin, P. R. (2018). Receptive field properties of koniocellular on/off neurons in the lateral geniculate nucleus of marmoset monkeys. J Neurosci 38, 1038410398.Google Scholar
Emran, F., Rihel, J., Adolph, A. R., Wong, K. Y., Kraves, S., and Dowling, J. E. (2007). OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci USA 104, 1912619131.Google Scholar
Enroth-Cugell, C., and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187, 517552.Google Scholar
Ferster, D., Chung, S., and Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249252.Google Scholar
Freund, T. F., Martin, K. A., Somogyi, P., and Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J Comp Neurol 242, 275291.Google Scholar
Freund, T. F., Martin, K. A., and Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J Comp Neurol 242, 263274.Google Scholar
Friedlander, M. J., Lin, C. S., and Sherman, S. M. (1979). Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus. Science 204, 11141117.Google Scholar
Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M., and Scanziani, M. (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315327.Google Scholar
Garcia-Marin, V., Kelly, J. G., and Hawken, M. J. (2019). Major feedforward thalamic input into layer 4C of primary visual cortex in primate. Cereb Cortex 29, 134149.Google Scholar
Gennari, F. (1782). De peculiari structura cerebri nonnulisque ejus morbis. (Parma, Regio Typographeo).Google Scholar
Granda, A. M., and Fulbrook, J. E. (1989). Classification of turtle retinal ganglion cells. J Neurophysiol 62, 723737.Google Scholar
Harting, J. K., Huerta, M. F., Hashikawa, T., and van Lieshout, D. P. (1991). Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304, 275306.Google Scholar
Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121, 400415.Google Scholar
Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Vis Neurosci 9, 181197.CrossRefGoogle ScholarPubMed
Hendry, S. H., and Reid, R. C. (2000). The koniocellular pathway in primate vision. Annu Rev Neurosci 23, 127153.Google Scholar
Hendry, S. H., and Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575577.Google Scholar
Hillier, D., Fiscella, M., Drinnenberg, A., Trenholm, S., Rompani, S. B., Raics, Z., Katona, G., Juettner, J., Hierlemann, A., Rozsa, B., and Roska, B. (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat Neurosci 20, 960968.Google Scholar
Holmes, J. M., and Clarke, M. P. (2006). Amblyopia. Lancet 367, 13431351.Google Scholar
Honegger, H. W. (1978). Sustained and transient responding units in the medulla of the cricket Gryllus campestris. J Comp Physiol 125, 259266.Google Scholar
Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148, 574591.Google Scholar
Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160, 106154.Google Scholar
Hull, C., Isaacson, J. S., and Scanziani, M. (2009). Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs. J Neurosci 29, 91279136.CrossRefGoogle ScholarPubMed
Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M. (1985). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233, 159189.Google Scholar
Jagadeesh, B., Wheat, H. S., and Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262, 19011904.Google Scholar
Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. W., and Ferster, D. (1997). Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J Neurophysiol 78, 27722789.CrossRefGoogle ScholarPubMed
Jansen, M., Jin, J., Li, X., Lashgari, R., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., Zaidi, Q., and Alonso, J. M. (2019). Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cereb Cortex 29, 336355.Google Scholar
Jeffery, G., and Erskine, L. (2005). Variations in the architecture and development of the vertebrate optic chiasm. Prog Retin Eye Res 24, 721753.Google Scholar
Ji, W., Gamanut, R., Bista, P., D’Souza, R. D., Wang, Q., and Burkhalter, A. (2015). Modularity in the organization of mouse primary visual cortex. Neuron 87, 632643.Google Scholar
Ji, X. Y., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., and Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cereb Cortex 26, 26122625.CrossRefGoogle ScholarPubMed
Jin, J., Wang, Y., Lashgari, R., Swadlow, H. A., and Alonso, J. M. (2011). Faster thalamocortical processing for dark than light visual targets. J Neurosci 31, 1747117479.Google Scholar
Jin, J., Wang, Y., Swadlow, H. A., and Alonso, J. M. (2011). Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat Neurosci 14, 232238.Google Scholar
Jin, J. Z., Weng, C., Yeh, C. I., Gordon, J. A., Ruthazer, E. S., Stryker, M. P., Swadlow, H. A., and Alonso, J. M. (2008). On and off domains of geniculate afferents in cat primary visual cortex. Nat Neurosci 11, 8894.Google Scholar
Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F., and Borst, A. (2010). ON and OFF pathways in Drosophila motion vision. Nature 468, 300304.Google Scholar
Jones, J. P., and Palmer, L. A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58, 11871211.Google Scholar
Kaas, J. H., Hall, W. C., Killackey, H., and Diamond, I. T. (1972). Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. Brain Res 42, 491496.Google Scholar
Kara, P., and Boyd, J. D. (2009). A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458, 627631.Google Scholar
Kawano, J. (1998). Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. J Comp Neurol 392, 439457.3.0.CO;2-1>CrossRefGoogle Scholar
Kerschensteiner, D., and Guido, W. (2017). Organization of the dorsal lateral geniculate nucleus in the mouse. Vis Neurosci 34, E008.Google Scholar
Koch, E., Jin, J., Alonso, J. M., and Zaidi, Q. (2016). Functional implications of orientation maps in primary visual cortex. Nat Commun 7, 13529.Google Scholar
Kolb, H. (1995–). Facts and figures concerning the human retina. In Webvision: the organization of the retina and visual system, Kolb, H., Fernandez, E., and Nelson, R., eds. (Salt Lake City, University of Utah Health Sciences Center). Web. http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/.Google Scholar
Kolb, H., and Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J Comp Neurol 303, 617636.Google Scholar
Kolb, H., Nelson, R., Fernandez, E., and Jones, B., eds. (1995–). Webvision: The organization of the retina and visual system. (Salt Lake City, University of Utah Health Sciences Center). Web. http://webvision.med.utah.edu/.Google Scholar
Komban, S. J., Alonso, J. M., and Zaidi, Q. (2011). Darks are processed faster than lights. J Neurosci 31, 86548658.Google Scholar
Komban, S. J., Kremkow, J., Jin, J., Wang, Y., Lashgari, R., Li, X., Zaidi, Q., and Alonso, J. M. (2014). Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 82, 224234.Google Scholar
Kremkow, J., and Alonso, J. M. (2018). Thalamocortical circuits and functional architecture. Annu Rev Vis Sci 4, 263285.Google Scholar
Kremkow, J., Jin, J., Komban, S. J., Wang, Y., Lashgari, R., Li, X., Jansen, M., Zaidi, Q., and Alonso, J. M. (2014). Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proc Natl Acad Sci USA 111, 31703175.Google Scholar
Kremkow, J., Jin, J., Wang, Y., and Alonso, J. M. (2016). Principles underlying sensory map topography in primary visual cortex. Nature 533, 5257.Google Scholar
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16, 3768.Google Scholar
Laing, R. J., Turecek, J., Takahata, T., and Olavarria, J. F. (2015). Identification of eye-specific domains and their relation to callosal connections in primary visual cortex of long evans rats. Cereb Cortex 25, 33143329.Google Scholar
Leonhardt, A., Ammer, G., Meier, M., Serbe, E., Bahl, A., and Borst, A. (2016). Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat Neurosci 19, 706715.Google Scholar
Lien, A. D., and Scanziani, M. (2013). Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci 16, 13151323.Google Scholar
Lien, A. D., and Scanziani, M. (2018). Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558, 8086.Google Scholar
Liu, B. H., Huberman, A. D., and Scanziani, M. (2016). Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature 538, 383387.Google Scholar
Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.Google Scholar
Livingstone, M. S. (1998). Mechanisms of direction selectivity in macaque V1. Neuron 20, 509526.Google Scholar
Luo-Li, G., Mazade, R., Zaidi, Q., Alonso, J. M., and Freeman, A. W. (2018). Motion changes response balance between ON and OFF visual pathways. Commun Biol 1, 60.Google Scholar
Malpeli, J. G., and Baker, F. H. (1975). The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161, 569594.Google Scholar
Martin, K. A., Somogyi, P., and Whitteridge, D. (1983). Physiological and morphological properties of identified basket cells in the cat’s visual cortex. Exp Brain Res 50, 193200.Google Scholar
Masri, R. A., Grunert, U., and Martin, P. R. (2020). Analysis of parvocellular and magnocellular visual pathways in human retina. J Neurosci 40, 81328148.Google Scholar
Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43(6)Suppl, 129175.Google Scholar
Mazade, R., and Alonso, J. M. (2017). Thalamocortical processing in vision. Vis Neurosci 34, E007.Google Scholar
Mazade, R., Jin, J., Pons, C., and Alonso, J. M. (2019). Functional specialization of ON and OFF cortical pathways for global-slow and local-fast vision. Cell Rep 27, 2881–2894 e2885.Google Scholar
McConnell, S. K., and LeVay, S. (1984). Segregation of on- and off-center afferents in mink visual cortex. Proc Natl Acad Sci USA 81, 15901593.Google Scholar
McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54, 782806.Google Scholar
McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. Nature 264, 746748.Google Scholar
McLean, J., and Palmer, L. A. (1989). Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vision Res 29, 675679.Google Scholar
Merigan, W. H., Katz, L. M., and Maunsell, J. H. (1991). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci 11, 9941001.Google Scholar
Merigan, W. H., and Maunsell, J. H. (1990). Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 5, 347352.Google Scholar
Merigan, W. H., and Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annu Rev Neurosci 16, 369402.Google Scholar
Miles, F. A. (1972). Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res 48, 6592.Google Scholar
Mohler, C. W., and Wurtz, R. H. (1977). Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophysiol 40, 7494.Google Scholar
Morin, L. P., and Studholme, K. M. (2014). Retinofugal projections in the mouse. J Comp Neurol 522, 37333753.Google Scholar
Movshon, J. A., Thompson, I. D., and Tolhurst, D. J. (1978). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283, 5377.Google Scholar
Murcia-Belmonte, V., and Erskine, L. (2019). Wiring the binocular visual pathways. Int J Mol Sci 20, 3282.Google Scholar
Nauhaus, I., Nielsen, K. J., and Callaway, E. M. (2016). Efficient receptive field tiling in primate V1. Neuron 91, 893904.Google Scholar
Newsome, W. T., and Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8, 22012211.Google Scholar
Niell, C. M., and Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. J Neurosci 28, 75207536.Google Scholar
Norcia, A. M., Yakovleva, A., Hung, B., and Goldberg, J. L. (2020). Dynamics of contrast decrement and increment responses in human visual cortex. Transl Vis Sci Technol 9, 6.Google Scholar
Norton, T. T., Rager, G., and Kretz, R. (1985). ON and OFF regions in layer IV of striate cortex. Brain Res 327, 319323.Google Scholar
Osterberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica Supplement 6, 1103.Google Scholar
Pasternak, T., and Maunsell, J. H. (1992). Spatiotemporal sensitivity following lesions of area 18 in the cat. J Neurosci 12, 45214529.Google Scholar
Pasternak, T., Tompkins, J., and Olson, C. R. (1995). The role of striate cortex in visual function of the cat. J Neurosci 15, 19401950.Google Scholar
Peichl, L. (1989). Alpha and delta ganglion cells in the rat retina. J Comp Neurol 286, 120139.Google Scholar
Peters, A., and Payne, B. R. (1993). Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3, 6978.Google Scholar
Peters, A., Payne, B. R., and Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb Cortex 4, 215229.Google Scholar
Priebe, N. J., and Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45, 133145.Google Scholar
Priebe, N. J., and Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482497.Google Scholar
Raczkowski, D., and Fitzpatrick, D. (1990). Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew’s striate cortex. J Comp Neurol 302, 500514.CrossRefGoogle ScholarPubMed
Rakic, P. (1977). Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci 278, 245260.Google ScholarPubMed
Reid, R. C., and Alonso, J. M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281284.Google Scholar
Reid, R. C., Soodak, R. E., and Shapley, R. M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proc Natl Acad Sci USA 84, 87408744.Google Scholar
Reid, R. C., Soodak, R. E., and Shapley, R. M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66, 505529.Google Scholar
Rekauzke, S., Nortmann, N., Staadt, R., Hock, H. S., Schoner, G., and Jancke, D. (2016). Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci 36, 19021913.Google Scholar
Rodieck, R. W. (1998). The first steps in seeing (Sunderland, MA, Oxford University Press).Google Scholar
Salinas, K. J., Figueroa Velez, D. X., Zeitoun, J. H., Kim, H., and Gandhi, S. P. (2017). Contralateral bias of high spatial frequency tuning and cardinal direction selectivity in mouse visual cortex. J Neurosci 37, 1012510138.Google Scholar
Samonds, J. M., Choi, V., and Priebe, N. J. (2019). Mice discriminate stereoscopic surfaces without fixating in depth. J Neurosci 39, 80248037.Google Scholar
Sarnaik, R., Chen, H., Liu, X., and Cang, J. (2014). Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice. J Neurophysiol 111, 22762286.Google Scholar
Saul, A. B., and Humphrey, A. L. (1992). Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J Neurophysiol 68, 11901208.Google Scholar
Schiff, M. L., and Reyes, A. D. (2012). Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. J Neurophysiol 107, 14761488.Google Scholar
Schiller, P. H. (1982). Central connections of the retinal ON and OFF pathways. Nature 297, 580583.Google Scholar
Schiller, P. H., and Malpeli, J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol 41, 788797.Google Scholar
Schiller, P. H., Sandell, J. H., and Maunsell, J. H. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.Google Scholar
Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters, A. J., Ye, F. Q., and Leopold, D. A. (2010). Blindsight depends on the lateral geniculate nucleus. Nature 466, 373377.Google Scholar
Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., and Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219223.Google Scholar
Sedigh-Sarvestani, M., Vigeland, L., Fernandez-Lamo, I., Taylor, M. M., Palmer, L. A., and Contreras, D. (2017). Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex. J Neurosci 37, 52505262.Google Scholar
Shapley, R., Kaplan, E., and Soodak, R. (1981). Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 292, 543545.Google Scholar
Shatz, C. J. (1983). The prenatal development of the cat’s retinogeniculate pathway. J Neurosci 3, 482499.Google Scholar
Sherk, H., and Horton, J. C. (1984). Receptive field properties in the cat’s area 17 in the absence of on-center geniculate input. J Neurosci 4, 381393.Google Scholar
Sincich, L. C., Park, K. F., Wohlgemuth, M. J., and Horton, J. C. (2004). Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7, 11231128.Google Scholar
So, Y. T., and Shapley, R. (1979). Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Exp Brain Res 36, 533550.Google Scholar
Sretavan, D. W., and Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J Neurosci 6, 234251.Google Scholar
Stanley, G. B., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M. J., and Alonso, J. M. (2012). Visual orientation and directional selectivity through thalamic synchrony. J Neurosci 32, 90739088.Google Scholar
Stoelzel, C. R., Bereshpolova, Y., Gusev, A. G., and Swadlow, H. A. (2008). The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J Neurosci 28, 50185028.Google Scholar
Stoerig, P., and Cowey, A. (1997). Blindsight in man and monkey. Brain 120 (Pt 3), 535559.Google Scholar
Swadlow, H. A., and Gusev, A. G. (2002). Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci 5, 403404.Google Scholar
Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. J Neurophysiol 49, 13031318.Google Scholar
Tang, L., and Higley, M. J. (2020). Layer 5 circuits in V1 differentially control visuomotor behavior. Neuron 105, 346–354 e345.Google Scholar
Ulinski, P. S. (1977). Tectal efferents in the branded water snake, Natrix sipedon. J Comp Neurol 173, 251274.CrossRefGoogle ScholarPubMed
Usrey, W. M., Muly, E. C., and Fitzpatrick, D. (1992). Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. J Comp Neurol 319, 159171.Google Scholar
Van Essen, D. C., Donahue, C. J., and Glasser, M. F. (2018). Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91, 158169.Google Scholar
Van Essen, D. C., Newsome, W. T., and Maunsell, J. H. (1984). The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24, 429448.Google Scholar
Van Hooser, S. D., Heimel, J. A., and Nelson, S. B. (2003). Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). J Neurophysiol 90, 33983418.Google Scholar
Warner, C. E., Kwan, W. C., Wright, D., Johnston, L. A., Egan, G. F., and Bourne, J. A. (2015). Preservation of vision by the pulvinar following early-life primary visual cortex lesions. Curr Biol 25, 424434.Google Scholar
Wassle, H., Boycott, B. B., and Illing, R. B. (1981). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc R Soc Lond B Biol Sci 212, 177195.Google Scholar
Wheatstone, C. (1838). Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc 128, 371394.Google Scholar
Wiesel, T. N., and Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29, 11151156.Google Scholar
Zahs, K. R., and Stryker, M. P. (1988). Segregation of ON and OFF afferents to ferret visual cortex. J Neurophysiol 59, 14101429.Google Scholar
Zhou, N. A., Maire, P. S., Masterson, S. P., and Bickford, M. E. (2017). The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis Neurosci 34, E011.Google Scholar
Zhuang, J., Stoelzel, C. R., Bereshpolova, Y., Huff, J. M., Hei, X., Alonso, J. M., and Swadlow, H. A. (2013). Layer 4 in primary visual cortex of the awake rabbit: contrasting properties of simple cells and putative feedforward inhibitory interneurons. J Neurosci 33, 1137211389.Google Scholar

References

Alitto, H. J., Moore, B. D., Rathbun, D. L., & Usrey, W. M. (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. Journal of Physiology, 589(Pt 1), 8799.Google Scholar
Alitto, H. J., Rathbun, D. L., Vandeleest, J. J., Alexander, P. C., & Usrey, W. M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience, 39, 56975710.Google Scholar
Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences of the United States of America, 104, 16851690.Google Scholar
Andolina, I. M., Jones, H. E., & Sillito, A.M. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology, 109(3):889–99.Google Scholar
Bal, T., Debay, D., & Destexhe, A. (2000). Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. Journal of Neuroscience, 20, 74787488.Google Scholar
Bastos, A. M., Briggs, F., Alitto, H. J., Mangun, G. R., & Usrey, W. M. (2014). Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience, 34(22), 76397644.Google Scholar
Béhuret, S., Deleuze, C., & Bal, T. (2015). Corticothalamic synaptic noise as a mechanism for selective attention in thalamic neurons. Frontiers in Neural Circuits, 9, 80.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., & Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience, 35(29), 1052310534.Google Scholar
Blasdel, G. G., & Lund, J. S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience, 3, 13891413.Google Scholar
Blumenfeld, H., & McCormick, D.A. (2000). Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Journal of Neuroscience, 20, 51535162.Google Scholar
Born, G., Erisken, S., Schneider, F. A., Klein, A., Mobarhan, M. H., Lao, C. L., Spacek, M. A. Einevoll, G. T., & Busse, L. (2020). Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. bioRxiv. doi:10.1101/2020.05.19.104000.Google Scholar
Briggs, F., Kiley, C. W., Callaway, E. M., & Usrey, W. M. (2016). Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron, 90(2), 388399.Google Scholar
Briggs, F., & Usrey, W. M. (2005). Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in the ferret. Thalamus and Related Systems, 3(2), 133139.Google Scholar
Briggs, F., & Usrey, W. M. (2009) Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135146.Google Scholar
Brody, C. D. (1998). Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains. Journal of Neurophysiology, 80, 33453351.Google Scholar
Calkins, D. J., Sappington, R. M., & Hendry, S. H. (2005). Morphological identification of ganglion cells expressing the alpha subunit of type II calmodulin-dependent protein kinase in the macaque retina. Journal of Comparative Neurology, 481(2), 94209.Google Scholar
Casagrande, V. A., Yazar, F., Jones, K. D., & Ding, Y. (2007). The morphology of the koniocellular axon pathway in the macaque monkey. Cerebral Cortex, 17(10), 23342345.Google Scholar
Cleland, B. G. (1986). The dorsal lateral geniculate nucleus of the cat. In Pettigrew, J. D., Sanderson, K. J., & Levick, W. R. (Eds.), Visual Neuroscience (pp. 111120). London: Cambridge University Press.Google Scholar
Cleland, B. G., Dubin, M. W., & Levick, W.R. (1971a). Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biology 231, 191192.Google Scholar
Cleland, B. G., Dubin, M. W., & Levick, W.R. (1971b). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. Journal of Physiology, 217, 473496.Google Scholar
Conley, M., & Raczkowski, D. (1990). Sublaminar organization within layer VI of the striate cortex in Galago. Journal of Comparative Neurology, 302(2), 425436.Google Scholar
Croner, L. J. & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35, 724.Google Scholar
Destexhe, A., Contreras, D., & Steriade, M. (1999). Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience, 92, 427443.Google Scholar
Diamond, I. T., Conley, M., Itoh, K., & Fitzpatrick, D. (1985). Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. Journal of Comparative Neurology, 242, 584610.Google Scholar
Erisir, A., Van Horn, S. C., Bickford, M. E., & Sherman, S. M. (1997). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. Journal of Comparative Neurology, 377, 535549Google Scholar
Erisir, A., Van Horn, S. C., & Sherman, S. M. (1997). Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Science, 94, 15171520.Google Scholar
Fitzpatrick, D., Carey, R. G., and Diamond, I. T. (1980). The projection of the superior colliculus upon the lateral geniculate body in Tupaia glis and Galago senegalensis. Brain Research, 194, 494499.Google Scholar
Fitzpatrick, D., Itoh, K., & Diamond, I. T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neuroscience, 3(4), 673702.Google Scholar
Fitzpatrick, D., Lund, J. S., & Blasdel, G. G. (1985). Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C. Journal of Neuroscience, 5, 33293349.Google Scholar
Fitzpatrick, D., Usrey, W. M., Schofield, B. R., & Einstein, G. (1994). The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Visual Neuroscience, 11, 307315.Google Scholar
Freund, T. F., Martin, K. A. C., & Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. Journal of Comparative Neurology, 242, 263274.Google Scholar
Friedlander, M. J., Lin, C.-S., Stanford, L. R., & Sherman, S. M. (1981). Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. Journal of Neurophysiology, 46, 80129.Google Scholar
Gilbert, C. D., & Kelly, J. P. (1975). The projections of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology, 163, 81106.Google Scholar
Graham, J. (1977). An autoradiographic study of the efferent connections of the superior colliculus of the cat. Journal of Comparative Neurology, 173, 629654.Google Scholar
Guillery, R. W. (1969). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Zeitschrift für Zellforschung und Mikroskopische Anatomie. 96, 3948Google Scholar
Hasse, J. M., Bragg, E. M., Murphy, A. J., & Briggs, F. (2019). Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys. Journal of Comparative Neurology, 527(3), 546557.Google Scholar
Hasse, J. M., & Briggs, F. (2017). Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proceedings of the National Academy of Science USA, 114(30), E6222E6230.Google Scholar
Headon, M. P., Sloper, J. J., Hiorns, R. W., & Powell, T. P. S. (1985). Sizes of neurons in the primate lateral geniculate nucleus during normal development. Developmental Brain Research, 18, 5156.Google Scholar
Hendrickson, A. E., Wilson, J. R., & Ogren, M. P. (1978). The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. Journal of Comparative Neurology, 182, 123136.Google Scholar
Hendry, S. H. C., Hockfield, S., Jones, E. G., & McKay, R. (1984). Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat. Nature, 307, 267269.Google Scholar
Hockfield, S., & Sur, M. (1990). Monoclonal antibody cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 300, 320330.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. Journal of Physiology, 155(2), 385–98.Google Scholar
Huberman, A. D., & Niell, C. M. (2011). What can mice tell us about how vision works? Trends in Neuroscience, 34(9), 464473.Google Scholar
Humphrey, A. L., Sur, M., Uhlrich, D. J., & Sherman, S. M. (1985a). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology, 233, 159189.Google Scholar
Humphrey, A. L., Sur, M., Uhlrich, D. J., & Sherman, S. M. (1985b). Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17–18 border region, and to both areas 17 and 18. Journal of Comparative Neurology, 233, 190212.Google Scholar
Ichida, J. M., Mavity-Hudson, J. A., & Casagrande, V. A. (2014). Distinct patterns of corticogeniculate feedback to different layers of the lateral geniculate nucleus. Eye and Brain, 2014(6 Suppl 1), 5773.Google Scholar
Iwai, L., Ohashi, Y., van der List, D., Usrey, W. M., Miyashita, Y., & Kawasaki, H. (2013). FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cerebral Cortex, 23(9), 22042212.Google Scholar
Jahnsen, H., & Llinás, R. (1984a). Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology, 349, 205226.Google Scholar
Jahnsen, H., & Llinás, R. (1984b). Ionic basis for the electroresponseiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology, 349, 227247.Google Scholar
Jones, E. G. (2007). The Thalamus: Second Edition. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, H. E., Andolina, I. M., Oakely, N. M., Murphy, P. C., & Sillito, A. M. (2000). Spatial summation in lateral geniculate nucleus and visual cortex. Experimental Brain Research, 135, 279284.Google Scholar
Kaplan, E., & Shapley, R. (1984). The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Experimental Brain Research, 55, 111116.Google Scholar
Katz, L. C. (1987). Local circuitry of identified projection neurons in cat visual cortex brain slices. Journal of Neuroscience, 4, 1223–49.Google Scholar
Lachica, E. A., & Casagrande, V. A. (1992). Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology. Journal of Comparative Neurology, 319(1), 141158.Google Scholar
Lachica, E. A., & Casagrande, V. A. (1993). The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus. Visual Neuroscience, 10(3), 403418.Google Scholar
Leventhal, A. G. (1979). Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Experimental Brain Research, 37(2), 349372.Google Scholar
Levitt, J. B., Schumer, R. A., Sherman, S. M., Spear, P. D., & Movshon, J. A. (2001). Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. Journal of Neurophysiology, 85, 21112129.Google Scholar
Li, L., & Ebner, F. F. (2007). Cortical modulation of spatial and angular tuning maps in the rat thalamus. Journal of Neuroscience, 27, 167179.Google Scholar
Livingstone, M. S., & Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291(5816), 554561.Google Scholar
Lund, J. S., & Boothe, R. (1975). Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology, 159, 305334.Google Scholar
Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., & Fuchs, A. F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology, 164, 287304.Google Scholar
Mastronarde, D. N. (1987). Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. Journal of Neurophysiology, 57, 381413Google Scholar
Maunsell, J. H. R., Ghose, G. M., Assad, J. A., McAdams, C. J., Boudreau, C. E., & Noerager, B. D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience, 16, 114.Google Scholar
McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular neurons. Journal of Neuroscience, 26, 44444450.Google Scholar
McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456, 391394.Google Scholar
Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Annual Reviews in Neuroscience, 16, 369402.Google Scholar
Murphy, A. J., Shaw, L., Hasse, J. M., Goris, R. L. T., & Briggs, F. (2020). Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons. Computational Neuroscience. Online ahead of print. doi:10.1007/s10827-020-00754-5.Google Scholar
Murphy, P. C., & Sillito, A. M. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. Journal of Neuroscience, 16, 11801192.Google Scholar
Murphy, P. C., & Sillito, A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature, 329, 727729.Google Scholar
O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5, 12031209.Google Scholar
Olsen, S. R., Bortone, D., Adesnik, H., & Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 4752.Google Scholar
Ortuño, T. Grieve, K. L., Cao, R., Cudeiro, J., & Rivadulla, C. (2014). Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback. Frontiers in Behavioral Neuroscience, 8, 198.Google Scholar
Percival, K. A., Koizumi, A., Masri, R. A., Buzás, P., Martin, P. R., & Grünert, U. (2014). Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. Journal of Neuroscience, 34(11), 38213825.Google Scholar
Przybyszewski, A. W., Gaska, J. P., Foote, W., & Pollen, D.A. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience, 17(4), 485494.Google Scholar
Rathbun, D. L., Alitto, H. J., Warland, D. K., & Usrey, W. M. (2016) Stimulus contrast and retinogeniculate signal processing. Frontiers in Neural Circuits, 10, 8. doi:10.3389/fncir.2016.00008.Google Scholar
Rathbun, D. L., Warland, D. K., & Usrey, W. M. (2010). Spike timing and information transmission at retinogeniculate synapses. Journal of Neuroscience, 30, 1355813566.Google Scholar
Roy, S. A., & Alloway, K. D. (2001). Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. Journal of Neuroscience, 21, 24622473.Google Scholar
Saul, A. B., & Humphrey, A. L. (1990). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology, 64, 206224.Google Scholar
Schiller, P. H., & Logothetis, N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13, 392398.Google Scholar
Schiller, P. H., & Malpeli, J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 41,788797.Google Scholar
Shapley, R. M. (1992). Parallel retinocortical channels: X and Y and P and M. In Brannan, J. (Ed.), Applications of Parallel Processing in Vision (pp. 336). New York: Elsevier.Google Scholar
Sherman, S. M. (1985). Functional organization of the W-, X-, and Y-cell pathways in the cat: a review and hypothesis. In Sprague, J. M. & Epstein, A. N. (Eds.), Progress in Psychobiology and Physiological Psychology, Vol. 11 (pp. 233314). Orlando: Academic Press.Google Scholar
Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neuroscience, 24(2), 122126.Google Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proceedings of the National Academy of Science USA, 95(12), 71217126.Google Scholar
Sherman, S. M., & Guillery, R. W. (2009). Exploring the Thalamus and Its Role in Cortical Function. 2nd ed. Cambridge, MA: MIT Press.Google Scholar
Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357, 17391752.Google Scholar
Sillito, A. M., Jones, H. E., Gerstein, G. L., & West, D. C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature, 369, 479482.Google Scholar
Sincich, L. C., Adams, D. L., Economides, J. R., & Horton, J. C. (2007). Transmission of spike trains at the retinogeniculate synapse. Journal of Neuroscience, 27, 26832692.Google Scholar
So, Y. T., & Shapley, R. (1979). Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Experimental Brain Research, 36, 533550.Google Scholar
Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neuroscience, 28, 317324.Google Scholar
Stoelzel, C. R., Bereshpolova, Y., Alonso, J.-M., & Swadlow, H. A. (2017). Axonal conduction delays, brain state, and corticogeniculate communication. Journal of Neuroscience, 37(26), 63426358.Google Scholar
Stone, J. (1983). Parallel Processing in the Visual System. New York: Plenum Press.CrossRefGoogle Scholar
Swadlow, H. A., & Gusev, A.G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402408.Google Scholar
Szmajda, B. A., Grünert, U., & Martin, P. R. (2008). Retinal ganglion cell inputs to the koniocellular pathway. Journal of Comparative Neurology, 510(3), 251268.Google Scholar
Temereanca, S., & Simons, D.J. (2004). Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron, 41, 639651.Google Scholar
Troy, J. B., & Lennie, P. (1987). Detection latencies of X and Y type cells of the cat’s dorsal lateral geniculate nucleus. Experimental Brain Research, 65, 703706.Google Scholar
Tsumoto, T., & Suda, K. (1980). Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. Journal of Comparative Neurology, 193, 223236.Google Scholar
Usrey, W. M., & Alitto, H. J. (2015). Visual functions of the thalamus. Annual Review of Vision Science, 1, 351371.Google Scholar
Usrey, W. M., Alonso, J. M., & Reid, R.C. (2000). Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. Journal of Neuroscience, 20, 54615467.Google Scholar
Usrey, W. M., & Fitzpatrick, D. (1996). Specificity in the axonal connections of layer VI neurons in tree shrew striate cortex: evidence for distinct granular and supragranular systems. Journal of Neuroscience, 16(3), 12031218.Google Scholar
Usrey, W. M., Muly, E., & Fitzpatrick, D. (1992). Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. Journal of Comparative Neurology 319, 159171.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395, 384387.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 35273540.Google Scholar
Usrey, W. M., & Sherman, S. M. (2019) Corticofugal circuits: Communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology, 527, 640650.Google Scholar
Wang, W., Andolina, I. M., Lu, Y., Jones, H. E., & Sillito, A. M. (2018). Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cerebral Cortex, 28(1), 267280.Google Scholar
Weyand, T. G. (2007). Retinogeniculate transmission in wakefulness. Journal of Neurophysiology, 98, 769785.Google Scholar
Xu, X., Ichida, J. M., Allison, J. D., Boyd, J. D., Bonds, A. B., & Casagrande, V. A. (2001). A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Journal of Physiology, 531(Pt 1), 203218.Google Scholar

References

Alloway, KD, Olson, ML, Smith, JB (2008) Contralateral corticothalamic projections from M1 whisker cortex: potential route for modulating hemispheric interactions. J. Comp. Neurol. 510: 100116.Google Scholar
Alloway, KD, Smith, JB, Watson, GDR (2013) Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J. Neurophysiol. 111: 3650.Google Scholar
Andermann, ML, Moore, CI (2006) A somatotopic map of vibrissa motion direction within a barrel column. Nat. Neurosci. 9: 543551.Google Scholar
Armstrong-James, M, Fox, K (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel” cortex. J. Comp. Neurol. 263: 265281.Google Scholar
Arsenault, D, Zhang, ZW (2006) Developmental remodeling of the lemniscal synapse in the ventral basal thalamus of the mouse. J. Physiol. 573: 121132.Google Scholar
Bae, YC, Yoshida, S (2011) Ultrastructure basis for craniofacial sensory processing in the brainstem. Int. Rev. Neurobiol. 97: 99141.Google Scholar
Barthó, P, Freund, TF, Acsády, L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur. J. Neurosci. 16: 9991014.Google Scholar
Bokor, H, Acsády, L, Deschênes, M (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J. Neurosci. 28: 51695177.Google Scholar
Bokor, H, Frère, SGA, Eyre, MD, Slézia, A, Ulbert, I, Luthi, A, Acsady, L (2005) Selective GABAergic control of higher thalamic relays. Neuron 45: 929940.Google Scholar
Bourassa, J, Pinault, D, Deschênes, M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci. 7: 1930.Google Scholar
Brecht, M, Preilowski, B, Merzenich, MM (1997) Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84: 8197.Google Scholar
Brown, J, Oldenburg, IA, Telia, GI, Griffin, S, Voges, M, Jain, V, Adesnik, H (2021) Spatial integration during active tactile sensation drives orientation perception. Neuron. 107: 17071720.Google Scholar
Brumberg, JC, Pinto, DJ, Simons, DJ (1999) Cortical columnar processing in the rat whisker-to-barrel system. J. Neurophysiol. 82: 18081817.Google Scholar
Bruno, RM, Khatri, V, Land, PW, Simons, DJ (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J. Neurosci. 23: 95659574.Google Scholar
Castro-Alamancos, MA (2002). Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J. Neurophysiol. 87: 946953.Google Scholar
Cheung, JA, Maire, P, Kim, J, Lee, K, Flynn, G, Hires, SA (2020) Independent representations of self-motion and object location in barrel cortex output. PLoS Biol. 8:e3000882.Google Scholar
Curtis, JC, Kleinfeld, D (2009) Phase to rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12: 492501.Google Scholar
de Kock, CPJ, Pie, J, Pieneman, AW, Mease, RA, Bast, A, Guest, JM, Oberlaender, M Huibert, D, Mansvelder, HD, Sakmann, B (2021) High-frequency burst spiking in layer 5 thick-tufted pyramids of rat primary somatosensory cortex encodes exploratory touch. Commun. Biol. 4: 709.Google Scholar
Deschênes, M, Timofeeva, E, Lavallée, P (2003) The relay of high-frequency signals in the whisker-to-barrel pathway. J. Neurosci. 23: 67786787.Google Scholar
Deschênes, M, Urbain, N (2016) Vibrissal afferents from trigeminus to cortices. In Prescott, TJ et al. (eds), Scholarpedia of touch, Atlantis Press, pp. 657672.Google Scholar
Deschênes, M, Veinante, P, Zhang, ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Rev. 28: 286308.Google Scholar
Diamond, ME, Armstrong-James, M, Budway, MJ, Ebner, FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex. J. Comp. Neurol. 319: 6684.Google Scholar
Elbaz, M, Callado-Pérez, A, Demers, M, Foo, C, Kleinfeld, D, Deschênes, M (2022) A vibrissa pathway that activates the limbic system. eLife. 11: e72096.Google Scholar
Frangeul, L, Porrero, C, Garcia-Amado, M, Maimone, B, Maniglier, M, Clascá, F, Jabaudon, D (2014) Specific activation of the paralemniscal pathway during nociception. Eur. J. Neurosci. 39: 14551464.Google Scholar
Furuta, T, Deschênes, M, Kaneko, T (2011) Anisotropic distribution of thalamocortical boutons in barrels. J. Neurosci. 31: 64326439.Google Scholar
Furuta, T, Kaneko, T, Deschênes, M (2009) Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway. J. Neurosci. 29: 40894095.Google Scholar
Furuta, T, Timofeeva, E, Nakamura, K, Okamoto-Furuta, K, Togo, M, Kaneko, T, Deschênes, M (2008) Inhibitory gating of vibrissal inputs in the brainstem. J. Neurosci. 28: 17891797.Google Scholar
Geerling, JC, Yokota, S, Rikhadze, I, Roe, D, Chamberlin, NL (2017) Kölliker-Fuse GABAergic and glutamatergic neurons project to distinct targets. J. Comp. Neurol. 525: 18441860.Google Scholar
Grant, RA, Sperber, AL, Prescott, TJ (2012) The role of orienting in vibrissal touch sensing. Front. Behav. Neurosci. 6: 39. doi.org/10.3389/fnbeh.2012.00039.Google Scholar
Groenewegen, HJ, Witter, MP (2004) Thalamus. In Paxinos, G (ed), The rat nervous system, 3rd edition, Academic Press, pp. 407453.Google Scholar
Haidarliu, S, Ahissar, E (2001) Size gradients of barreloids in the rat thalamus. J. Comp. Neurol. 429: 372387.Google Scholar
Haidarliu, S, Simony, E, Golomb, D, Ahissar, E (2010) Muscle architecture in the mystacial pad of the rat. Anat. Rec. 293: 11921206.Google Scholar
Harrell, ER, Renard, A, Bathellier, B (2021) Fast cortical dynamics encode tactile grating orientation during active touch. Sci. Adv. 7. doi.org/10.1126/sciadv.abf7096.Google Scholar
Henderson, TA, Jacquin, MF (1995) What makes subcortical barrels? In Jones, EG and Diamond, IT (eds), Cerebral Cortex, the Barrel Cortex of Rodents, Vol. 11, Plenum, pp. 123187.Google Scholar
Isett, BR, Feasel, SH, Lane, MA, Feldman, DE (2018) Slip-based coding of local shape and texture in mouse S1. Neuron. 97: 418433.Google Scholar
Isett, BR, Feldman, DE (2020) Cortical coding of whisking phase during surface whisking. Curr. Biol. 30: 30653074.Google Scholar
Ito, M (1988) Response properties and topography of vibrissa-sensitive VPM neurons in the rat. J. Neurophysiol. 60: 11811197.CrossRefGoogle ScholarPubMed
Jacquin, MF, Rhoades, RW (1990) Cell structure and response properties in the trigeminal subnucleus oralis. Somatosens. Mot. Res. 7: 265288.Google Scholar
Jadhav, SP, Wolfe, J, Feldman, DE (2009) Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. 12: 792800.Google Scholar
Killackey, HP, Sherman, SM (2003) Corticothalamic projections from the rat primary somatosensory cortex. J. Neurosci. 23: 73817384.Google Scholar
Kleinfeld, D, Deschênes, M (2011) Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72: 455468.Google Scholar
Kleinfeld, D, Sachdev, RNS, Merchant, LM, Jarvis, MR, Ebner, FF (2002) Adaptive filtering of vibrissa input in motor cortex of rat. Neuron 34:10211034.Google Scholar
Knutsen, PM, Pietr, M, Ahissar, E (2006) Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26: 84518464.Google Scholar
Kurnikova, A, Moore, JD, Liao, S-M, Deschênes, M, Kleinfeld, D (2017) Coordination of orofacial motor actions into exploratory behavior by rat. Curr. Biol. 27: 688696.Google Scholar
Kuruppath, P, Gugig, E, Azouz, R (2014) Microvibrissae-based texture discrimination. J. Neurosci. 34: 51155120.Google Scholar
Lavallée, P, Urbain, N, Dufresne, C, Bokor, H, Acsády, L, Deschênes, M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J. Neurosci. 25: 74897498.Google Scholar
Liu, R, Li, Z, Marvin, JS, Kleinfeld, D (2019) Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Meth. 16: 615618.Google Scholar
Liu, R, Yao, P, Deschênes, M, Kleinfeld, D (2019) Deep layer cortical circuits underlying active sensing revealed by two-photon adaptive optical imaging. Society for Neuroscience Annual Meeting (Chicago) poster 057.06.Google Scholar
Lo, F-S, Guigo, W, Erzurumlu, RS (1999) Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats. J. Neurophysiol. 82: 27652775.Google Scholar
Luo, L, Callaway, EM, Svoboda, K (2008) Genetic dissection of neural circuits. Neuron 57: 634660.Google Scholar
Luo, L, Callaway, EM, Svoboda, K (2018) Genetic dissection of neural circuits: a decade of progress. Neuron 98: 256281.Google Scholar
Ma, PM, Woolsey, TA (1984) Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse. Brain Res. 306: 374379.Google Scholar
Masri, R, Quiton, RL, Lucas, JM, Murray, PD, Thompson, SM, Keller, A (2009) Zona incerta: a role in central pain. J. Neurophysiol. 102: 181191.Google Scholar
Metha, SB, Kleinfeld, D (2004) Frisking the whiskers: patterned sensory input in the rat vibrissa system. Neuron 41:181184.Google Scholar
Metha, SB, Whitmer, D, Figueroa, R, Williams, BA, Kleinfeld, D (2007) Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5: 309322.Google Scholar
Minnery, BS, Simons, DJ (2003) Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. J. Neurophysiol. 89: 4056.Google Scholar
Moore, JD, Mercer Lindsay, N, Deschênes, M, Kleinfeld, D (2015) Vibrissa self-motion and touch are reliably encoded along the same somatosensory pathway from brainstem through thalamus. PLoS Biol. 13: e1002253.Google Scholar
O’Connor, DH, Clack, NG, Huber, D, Komiyama, T, Myers, EW, Svoboda, K (2010) Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30: 19471967.Google Scholar
O’Connor, DH, Peron, SP, Huber, D, Svoboda, K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67: 10481061.Google Scholar
Ohno, S, Kuramoto, E, Furuta, T, Hioki, H, Tanaka, Y-R, Fujiyama, F, Sonomura, T, Uemura, M, Sugiyama, K, Kaneko, T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb. Cortex 22: 28402857.Google Scholar
Parmiani, P, Lucchette, C, Franchi, G (2018) Whisker and nose tactile sense guide rat behavior in a skilled reaching task. Front. Behav. Neurosci. 12: 24. doi.org/10.3389/fnbeh.2018.00024.Google Scholar
Pierret, T, Lavallée, P, Deschênes, M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J. Neurosci. 20: 74557462.Google Scholar
Pinault, D, Bourassa, J, Deschênes, M (1995) The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. Eur. J. Neurosci. 7: 3140.Google Scholar
Pouchelon, G, Frangeul, L, Rijli, F-M, Jabaudon, D (2012) Patterning of pre-thalamic somatosensory pathways. Eur. J. Neurosci. 35: 15331539.Google Scholar
Prescott, TJ, Diamond, ME, Wing, AM (2011) Active touch sensing. Phil. Trans. Roy. Soc. Lond. Biol. 366: 29892995.Google Scholar
Ranganathan, GN, Apostolides, PF, Harnett, MT, Xu, N-L, Druckmann, S, Magee, JC (2018) Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nat. Neuro. 21: 15831590.Google Scholar
Renehan, WE, Jacquin, MF, Mooney, RD, Rhoades, RW (1986) Structure-function relationships in rat medullary and cervical dorsal horns. II. Medullary dorsal horn cells. J. Neurophysiol. 55: 11871201.Google Scholar
Severson, KS, Xu, D, Van de Loo, M, Bai, L, Ginty, DD, O’Connor, DH (2017) Active touch and self-motion encoding by Merkel cell-associated afferents. Neuron. 94: e669.Google Scholar
Severson, KS, Xu, D, Van de Loo, M, Bai, L, Ginty, DD, O’Connor, DH (2017) Active touch and self-motion encoding by Merkel cell-associated afferents. Neuron 94: 666676.Google Scholar
Sosnik, R, Haidarliu, S, Ahissar, E (2001) Temporal frequency of whisker movement. I. Representations in brain stem and thalamus. J. Neurophysiol. 86: 339353.Google Scholar
Spácek, J, Lieberman, AR (1974). Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J. Anat. 117: 487516.Google Scholar
Sugitani, M, Yano, J, Sugai, T, Ooyama, H (1990) Somatotopic organization and columnar structure of vibrissae representation in the rat ventrobasal complex. Exp. Brain Res. 81: 346352.Google Scholar
Szwed, M, Bagdasarian, K, Ahissar, E (2003) Coding of vibrissal active touch. Neuron 40: 621630.Google Scholar
Timofeeva, E, Mérette, C, Emond, C, Lavallée, P, Deschênes, M (2003) A map of angular tuning preference in thalamic barreloids. J. Neurosci. 23:1071710723.Google Scholar
Trageser, JC, Keller, A (2004) Reducing the uncertainty: gating of peripheral inputs by zona incerta. J. Neurosci. 24: 89118915.Google Scholar
Urbain, N, Deschênes, M (2007) A new thalamic pathway of vibrissal information modulated by the motor cortex. J. Neurosci. 27, 1240712412.Google Scholar
Urbain, N, Salin, PA, Libourel, P-A, Comte, J-C, Gentet, LJ, Petersen, CCH (2015) Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Rep. 13: 647656.Google Scholar
Van der Loos, H (1976) Barreloids in the mouse somatosensory. Neurosci. Let. 2: 16.Google Scholar
Veinante, P, Deschênes, M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J. Neurosci. 19: 50855095.Google Scholar
Veinante, P, Jacquin, M, Deschênes, M (2000) Thalamic projections from the whisker sensitive regions of the spinal trigeminal complex in the rat. J. Comp. Neurol. 420: 233240.Google Scholar
Whiteley, SJ, Knutsen, PM, Matthews, DM, Kleinfeld, D (2015) Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in the mystacial follicle. J. Neurophysiol. 114: 138145.Google Scholar
Williams, MN, Zahm, DS, Jacquin, MF (1994) Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur. J. Neurosci. 6: 429453.Google Scholar
Wolfe, J, Hill, DN, Pahlavan, S, Drew, PJ, Kleinfeld, D, Feldman, DE (2008) Texture coding in the rat whisker system: Slip-stick versus differential resonance. PLoS Bio. doi.org/10.1371/journal.pbio.0060215.Google Scholar
Woolsey, TA, Van der Loos, H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17: 205242.Google Scholar
Xu, N-L, Harnett, MT, Williams, SR, Huber, D, O’Connor, DH, Svoboda, K, Magee, JC (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492: 247251.Google Scholar
Yu, C, Derdikman, D, Haidarliu, S, Ahissar, E (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol. 4: 819825.Google Scholar

References

Ahissar, E., & Assa, E. (2016). Perception as a closed-loop convergence process. eLife, 5. https://doi.org/10.7554/eLife.12830Google Scholar
Ahissar, E., Golomb, D., Haidarliu, S., Sosnik, R., & Yu, C. (2008). Latency coding in POm: importance of parametric regimes [Review of Latency coding in POm: importance of parametric regimes]. Journal of Neurophysiology, 100(2), 11521154; author reply 1155–1157.Google Scholar
Ahissar, E., Sosnik, R., & Haidarliu, S. (2000). Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature, 406(6793), 302306. https://doi.org/10.1038/35018568Google Scholar
Akintunde, A., & Buxton, D. F. (1992). Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study. Brain Research, 586(2), 208218.Google Scholar
Alloway, K. D., Hoffer, Z. S., & Hoover, J. E. (2003). Quantitative comparisons of corticothalamic topography within the ventrobasal complex and the posterior nucleus of the rodent thalamus. Brain Research, 968(1), 5468.Google Scholar
Ansorge, J., Humanes-Valera, D., Pauzin, F. P., Schwarz, M. K., & Krieger, P. (2020). Cortical layer 6 control of sensory responses in higher-order thalamus. The Journal of Physiology, 598(18), 39734001.Google Scholar
Arcelli, P., Frassoni, C., Regondi, M. C., de Biasi, S., & Spreafico, R. (1997). GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Research Bulletin, 42(1), 2737). https://doi.org/10.1016/s0361-9230(96)00107–4Google Scholar
Audette, N. J., Bernhard, S. M., Ray, A., Stewart, L. T., & Barth, A. L. (2019). Rapid plasticity of higher-order thalamocortical inputs during sensory learning. Neuron, 103(2). 277–291.e4. https://doi.org/10.1016/j.neuron.2019.04.037Google Scholar
Audette, N. J., Urban-Ciecko, J., Matsushita, M., & Barth, A. L. (2018). POm thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cerebral Cortex, 28(4), 13121328.Google Scholar
Ayaz, A., Stäuble, A., Hamada, M., Wulf, M.-A., Saleem, A. B., & Helmchen, F. (2019). Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nature Communications, 10(1), 2585. https://doi.org/10.1038/s41467-019–10564-8Google Scholar
Bartho, P., Slezia, A., Varga, V., Bokor, H., Pinault, D., Buzsaki, G., & Acsady, L. (2007). Cortical control of zona incerta. Journal of Neuroscience, 27(7), 16701681. https://doi.org/10.1523/jneurosci.3768–06.2007Google Scholar
Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C. R., Alonso, J.-M., & Swadlow, H. A. (2006). Thalamic burst mode and inattention in the awake LGNd. Neuron, 49(3), 421432.Google Scholar
Bickford, M. E. (2016). Thalamic circuit diversity: Modulation of the driver/modulator framework. Frontiers in Neural Circuits, 9. https://doi.org/10.3389/fncir.2015.00086Google Scholar
Bokor, H., Frère, S. G. A., Eyre, M. D., Slézia, A., Ulbert, I., Lüthi, A., & Acsády, L. (2005). Selective GABAergic control of higher-order thalamic relays. Neuron, 45(6), 929940.Google Scholar
Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., Harris, A. Z., Gordon, J. A., & Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987996. https://doi.org/10.1038/nn.4568Google Scholar
Bourassa, J., Pinault, D., & Deschênes, M. (1995). Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: A single-fibre study using biocytin as an anterograde tracer. European Journal of Neuroscience, 7(1), 1930.Google Scholar
Bruno, R. M., De Kock, C. P. J., Kuner, T., & Sakmann, B. (2010). Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cerebral Cortex, 20(10), 22652276.Google Scholar
Butts, D. A., Desbordes, G., Weng, C., Jin, J., Alonso, J. M., & Stanley, G. B. (2010). The episodic nature of spike trains in the early visual pathway. Journal of Neurophysiology, 104(6), 33713387.Google Scholar
Butts, D. A., Weng, C., Jin, J., Yeh, C. I., Lesica, N. A., Alonso, J. M., & Stanley, G. B. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 9295.Google Scholar
Cadusseau, J., & Roger, M. (1991). Cortical and subcortical connections of the pars compacta of the anterior pretectal nucleus in the rat. Neuroscience Research, 12(1), 83100.Google Scholar
Cajal, S. R. y. (1906). Santiago Ramón y Cajal—Nobel Lecture. https://www.nobelprize.org/uploads/2018/06/cajal-lecture.pdfGoogle Scholar
Castro-Alamancos, M. A. (2002a). Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. The Journal of Physiology, 539(Pt 2), 567578.Google Scholar
Castro-Alamancos, M. A. (2002b). Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. Journal of Neurophysiology, 87(2), 946953. https://doi.org/10.1152/jn.00426.2001Google Scholar
Castro-Alamancos, M. A., & Calcagnotto, M. E. (1999). Presynaptic long-term potentiation in corticothalamic synapses. Journal of Neuroscience, 19(20), 90909097.Google Scholar
Clascá, F., Porrero, C., Galazo, M. J., Rubio-Garrido, P., & Evangelio, M. (2016). Anatomy and development of multispecific thalamocortical axons: Implications for cortical dynamics and evolution. In Rockland, K. S. (Ed.), Axons and Brain Architecture (pp. 6992). Academic Press.Google Scholar
Coenen, A. M., & Vendrik, A. J. (1972). Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Experimental Brain Research, 14(3), 227242.Google Scholar
Colello, R., Baker, G., Reese, B., Mitrofanis, J., Chan, H., & Joachim, L. (2018). Cortical layer with no known function. European Journal of Neuroscience, 49(7), 957963. https://doi.org/10.1111/ejn.13978Google Scholar
Cox, C. L., & Sherman, S. M. (1999). Glutamate inhibits thalamic reticular neurons. Journal of Neuroscience, 19(15), 66946699.Google Scholar
Crandall, S. R., Cruikshank, S. J., & Connors, B. W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron, 86(3), 768782.Google Scholar
Crandall, S. R., Patrick, S. L., Cruikshank, S. J., & Connors, B. W. (2017). Infrabarrels are layer 6 circuit modules in the barrel cortex that link long-range inputs and outputs. Cell Reports, 21(11), 30653078.Google Scholar
de Kock, C. P. J., Bruno, R. M., Spors, H., & Sakmann, B. (2007). Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. Journal of Physiology, 581(Pt 1), 139154.Google Scholar
de Kock, C. P. J., Pie, J., Pieneman, A. W., Mease, R. A., Bast, A., Guest, J. M., Oberlaender, M., Mansvelder, H. D., & Sakmann, B. (2021). High-frequency burst spiking in layer 5 thick-tufted pyramids of rat primary somatosensory cortex encodes exploratory touch. Communications Biology, 4(1), 114.Google Scholar
de Kock, C. P. J., & Sakmann, B. (2009). Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 1644616450.Google Scholar
Deleuze, C., David, F., Béhuret, S., Sadoc, G., Shin, H.-S., Uebele, V. N., Renger, J. J., Lambert, R. C., Leresche, N., & Bal, T. (2012). T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. Journal of Neuroscience, 32(35), 1222812236.Google Scholar
Deschênes, M., Veinante, P., & Zhang, Z.-W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research Reviews, 28(3), 286308. https://doi.org/10.1016/s0165-0173(98)00017–4Google Scholar
Diamond, M. E., Armstrong-James, M., Budway, M. J., & Ebner, F. F. (1992). Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex. Journal of Comparative Neurology, 319(1), 6684. https://doi.org/10.1002/cne.903190108Google Scholar
El-Boustani, S., Sermet, B. S., Foustoukos, G., Oram, T. B., Yizhar, O., & Petersen, C. C. H. (2020). Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices. Nature Communications, 11(1), 3342.Google Scholar
Endo, K., Araki, T., & Yagi, N. (1973). The distribution and pattern of axon branching of pyramidal tract cells. Brain Research, 57(2), 484491.Google Scholar
Fernandez, L. M. J., Pellegrini, C., Vantomme, G., Béard, E., Lüthi, A., & Astori, S. (2017). Cortical afferents onto the nucleus Reticularis thalami promote plasticity of low-threshold excitability through GluN2C-NMDARs. Scientific Reports, 7(1), 12271.Google Scholar
Foster, G. A., Sizer, A. R., Rees, H., & Roberts, M. H. (1989). Afferent projections to the rostral anterior pretectal nucleus of the rat: a possible role in the processing of noxious stimuli. Neuroscience, 29(3), 685694.Google Scholar
Frandolig, J. E., Matney, C. J., Lee, K., Kim, J., Chevée, M., Kim, S.-J., Bickert, A. A., & Brown, S. P. (2019). The synaptic organization of layer 6 circuits reveals inhibition as a major output of a neocortical sublamina. Cell Reports, 28(12), 3131–3143.e5.Google Scholar
Frangeul, L., Pouchelon, G., Telley, L., Lefort, S., Luscher, C., & Jabaudon, D. (2016). A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature, 538(7623), 9698.Google Scholar
Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., & Holtmaat, A. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature, 515(7525), 116119. https://doi.org/10.1038/nature13664Google Scholar
Giber, K., Slézia, A., Bokor, H., Bodor, A. L., Ludányi, A., Katona, I., & Acsády, L. (2008). Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat. Journal of Comparative Neurology, 506(1), 122140.Google Scholar
Golshani, P., Liu, X. B., & Jones, E. G. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 41724177.Google Scholar
Gordon, G., Fonio, E., & Ahissar, E. (2014). Learning and control of exploration primitives. Journal of Computational Neuroscience, 37(2), 259280. https://doi.org/10.1007/s10827-014–0500-1Google Scholar
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., Deschênes, M., & Acsády, L. (2014). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24(12), 31673179.Google Scholar
Groh, A., de Kock, C. P. J., Wimmer, V. C., Sakmann, B., & Kuner, T. (2008). Driver or coincidence detector: Modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(39), 96529663.Google Scholar
Groh, A., Meyer, H. S., Schmidt, E. F., Heintz, N., Sakmann, B., & Krieger, P. (2010). Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cerebral Cortex, 20(4), 826836.Google Scholar
Guido, W., Lu, S. M., & Sherman, S. M. (1992). Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. Journal of Neurophysiology, 68(6), 21992211.Google Scholar
Guillery, R. W. (1995). Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. Journal of Anatomy, 187 (Pt 3), 583592.Google Scholar
Guo, C., Peng, J., Zhang, Y., Li, A., Li, Y., Yuan, J., Xu, X., Ren, M., Gong, H., & Chen, S. (2017). Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Scientific Reports, 7(1), 2846.Google Scholar
Guo, K., Yamawaki, N., Barrett, J. M., Tapies, M., & Shepherd, G. M. G. (2020). Cortico-thalamo-cortical circuits of mouse forelimb s1 are organized primarily as recurrent loops. Journal of Neuroscience, 40(14), 28492858.Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186. https://doi.org/10.1038/nature22324Google Scholar
Halassa, M. M., & Acsády, L. (2016). Thalamic inhibition: Diverse sources, diverse scales. Trends in Neurosciences, 39(10), 680693.Google Scholar
Halassa, M. M., & Sherman, S. M. (2019). Thalamocortical circuit motifs: A general framework. Neuron, 103(5), 762770.Google Scholar
Hanbery, J., & Jasper, H. (1953). Independence of diffuse thalamo-cortical projection system shown by specific nuclear destructions. Journal of Neurophysiology, 16(3), 252271.Google Scholar
Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., Bohn, P., Caldejon, S., Casal, L., Cho, A., Feiner, A., Feng, D., Gaudreault, N., Gerfen, C. R., Graddis, N., Groblewski, P. A., Henry, A. M., Ho, A., Howard, R., … Zeng, H. (2019). Hierarchical organization of cortical and thalamic connectivity. Nature, 575(7781), 195202.Google Scholar
Harris, K. D., & Shepherd, G. M. G. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170181.Google Scholar
Harris, R. M., & Hendrickson, A. E. (1987). Local circuit neurons in the rat ventrobasal thalamus—a GABA immunocytochemical study. Neuroscience, 21(1), 229236.Google Scholar
Hasse, J. M., & Briggs, F. (2017). Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proceedings of the National Academy of Sciences of the United States of America, 114(30), E6222E6230.Google Scholar
Hayashi, S., Hoerder-Suabedissen, A., Kiyokage, E., Maclachlan, C., Toida, K., Knott, G., & Molnár, Z. (2021). Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25. Cerebral Cortex, 31(5), 26252638.Google Scholar
Hirai, D., Nakamura, K. C., Shibata, K.-I., Tanaka, T., Hioki, H., Kaneko, T., & Furuta, T. (2018). Shaping somatosensory responses in awake rats: Cortical modulation of thalamic neurons. Brain Structure & Function, 223(2), 851872.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y., & Molnár, Z. (2018). Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cerebral Cortex, 28(5), 1882–1897.Google Scholar
Hoogland, P. V., Welker, E., & Van der Loos, H. (1987). Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Experimental Brain Research, 68(1), 7387.Google Scholar
Hoogland, P. V., Wouterlood, F. G., Welker, E., & Van der Loos, H. (1991). Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Experimental Brain Research, 87(1), 159172.Google Scholar
Hsu, C.-L., Yang, H.-W., Yen, C.-T., & Min, M.-Y. (2010). Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus. Journal of Physiology, 588(Pt 22), 43474363.Google Scholar
Jones, E. G. (1998). Viewpoint: The core and matrix of thalamic organization. Neuroscience, 85(2), 331345.Google Scholar
Jurgens, C. W. D., Bell, K. A., McQuiston, A. R., & Guido, W. (2012). Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PloS One, 7(9), e45717.Google Scholar
Killackey, H. P., & Sherman, S. M. (2003). Corticothalamic projections from the rat primary somatosensory cortex. Journal of Neuroscience, 23(19), 73817384.Google Scholar
Kirchgessner, M. A., Franklin, A. D., & Callaway, E. M. (2020). Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 1306613077.Google Scholar
Kita, T., & Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. Journal of Neuroscience, 32(17), 59905999.Google Scholar
Krieger, P., & Groh, A. (2015). Sensorimotor Integration in the Whisker System. Springer.Google Scholar
Lam, Y.-W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20(1), 1324.Google Scholar
Larkum, M. E., Julius Zhu, J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338341. https://doi.org/10.1038/18686Google Scholar
La Terra, D., Bjerre, A.-S., Rosier, M., Masuda, R., Ryan, T. J., and Palmer, L. M. (2022). The role of higher-order thalamus during learning and correct performance in goal-directed behavior. Elife 11, e77177.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005). Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience, 25(33), 74897498.Google Scholar
Lesica, N. A., Weng, C., Jin, J., Yeh, C. I., Alonso, J. M., & Stanley, G. B. (2006). Dynamic encoding of natural luminance sequences by LGN bursts. PLoS Biology, 4(7), e209.Google Scholar
Li, J., Wang, S., & Bickford, M. E. (2003). Comparison of the ultrastructure of cortical and retinal terminals in the rat dorsal lateral geniculate and lateral posterior nuclei. Journal of Comparative Neurology, 460(3), 394409.Google Scholar
Li, Y., Lopez-Huerta, V. G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S. K., Arias-Garcia, M. A., Guo, B., Yao, A. Y., Blosser, T. R., Wimmer, R. D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C. C., Shema, R., … Feng, G. (2020). Distinct subnetworks of the thalamic reticular nucleus. Nature, 583(7818), 819824.Google Scholar
Livingstone, M. S., & Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291(5816), 554561.Google Scholar
Lu, S.-M., Guido, W., & Sherman, S. M. (1993). The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat’s lateral geniculate nucleus. Visual Neuroscience, 10(4), 631642. https://doi.org/10.1017/s0952523800005332Google Scholar
Martinez-Garcia, R. I., Voelcker, B., Zaltsman, J. B., Patrick, S. L., Stevens, T. R., Connors, B. W., & Cruikshank, S. J. (2020). Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature, 583(7818), 813818.Google Scholar
Masri, R., Quiton, R. L., Lucas, J. M., Murray, P. D., Thompson, S. M., & Keller, A. (2009). Zona incerta: A role in central pain. Journal of Neurophysiology, 102(1), 181191.Google Scholar
Mease, R. A., & Gonzalez, A. J. (2021). Corticothalamic pathways from layer 5: Emerging roles in computation and pathology. Frontiers in Neural Circuits, 15, 88.Google Scholar
Mease, R. A., Krieger, P., & Groh, A. (2014). Cortical control of adaptation and sensory relay mode in the thalamus. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 67986803.Google Scholar
Mease, R. A., Kuner, T., Fairhall, A. L., & Groh, A. (2017). Multiplexed spike coding and adaptation in the thalamus. Cell Reports, 19(6), 11301140.Google Scholar
Mease, R. A., Metz, M., & Groh, A. (2016). Cortical sensory responses are enhanced by the higher-order thalamus. Cell Reports, 14(2), 208215. https://doi.org/10.1016/j.celrep.2015.12.026Google Scholar
Mease, R. A., Sumser, A., Sakmann, B., & Groh, A. (2016a). Cortical dependence of whisker responses in posterior medial thalamus in vivo. Cerebral Cortex, 26(8), 35343543. https://doi.org/10.1093/cercor/bhw144Google Scholar
Mease, R. A., Sumser, A., Sakmann, B., & Groh, A. (2016b). Corticothalamic spike transfer via the L5B-POm pathway in vivo. Cerebral Cortex, 26(8), 34613475.Google Scholar
Meyer, H. S., Wimmer, V. C., Oberlaender, M., de Kock, C. P. J., Sakmann, B., & Helmstaedter, M. (2010). Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cerebral Cortex, 20(10), 22772286.Google Scholar
Mo, C., & Sherman, S. M. (2019). A sensorimotor pathway via higher-order thalamus. Journal of Neuroscience, 39(4), 692704.Google Scholar
Moore, J. D., Lindsay, N. M., Deschênes, M., & Kleinfeld, D. (2015). Vibrissa self-motion and touch are reliably encoded along the same somatosensory pathway from brainstem through thalamus. PLOS Biology, 13(9), e1002253. https://doi.org/10.1371/journal.pbio.1002253Google Scholar
Narayanan, R. T., Egger, R., Johnson, A. S., Mansvelder, H. D., Sakmann, B., de Kock, C. P. J., & Oberlaender, M. (2015). Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cerebral Cortex, 25(11), 44504468.Google Scholar
Naud, R., & Sprekeler, H. (2018). Sparse bursts optimize information transmission in a multiplexed neural code. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6329E6338. https://doi.org/10.1073/pnas.1720995115Google Scholar
Ohno, S., Kuramoto, E., Furuta, T., Hioki, H., Tanaka, Y. R., Fujiyama, F., Sonomura, T., Uemura, M., Sugiyama, K., & Kaneko, T. (2012). A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: A single neuron tracing study with viral vectors. Cerebral Cortex, 22(12), 28402857.Google Scholar
Pauzin, F. P., Schwarz, N., & Krieger, P. (2019). Activation of corticothalamic layer 6 cells decreases angular tuning in mouse barrel cortex. Frontiers in Neural Circuits, 13, 67.Google Scholar
Phillips, J. W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B. C., Korff, W., Chandrashekar, J., Lemire, A. L., Mensh, B., Dudman, J. T., Nelson, S. B., & Hantman, A. W. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. https://doi.org/10.1038/s41593-019–0483-3Google Scholar
Pigeat, R., Chausson, P., & Dreyfus, F. M. (2015). Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: Involvement of T-type Ca2+ channels and metabotropic glutamate. Journal of Neuroscience, 35(1), 6473. https://www.jneurosci.org/content/35/1/64.shortGoogle Scholar
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research. Brain Research Reviews, 46(1), 131.Google Scholar
Prasad, J. A., Carroll, B. J., & Sherman, S. M. (2020). Layer 5 corticofugal projections from diverse cortical areas: Variations on a pattern of thalamic and extrathalamic targets. Journal of Neuroscience, 40(30), 57855796.Google Scholar
Reichova, I. (2004). Somatosensory corticothalamic projections: Distinguishing Drivers from modulators. Journal of Neurophysiology, 92(4), 21852197.Google Scholar
Rockland, K. S. (2019). Corticothalamic axon morphologies and network architecture. European Journal of Neuroscience, 49(8), 969977.Google Scholar
Rojas-Piloni, G., Guest, J. M., Egger, R., Johnson, A. S., Sakmann, B., & Oberlaender, M. (2017). Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons. Nature Communications, 8(1), 870.Google Scholar
Rouiller, E. M., & Welker, E. (2000). A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Research Bulletin, 53(6), 727741.Google Scholar
Sampathkumar, V., Miller-Hansen, A., Sherman, S. M., & Kasthuri, N. (2021). Integration of signals from different cortical areas in higher order thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2104137118. https://doi.org/10.1073/pnas.2104137118Google Scholar
Schmitt, L. I., Ian Schmitt, L., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219223. https://doi.org/10.1038/nature22073Google Scholar
Seol, M., & Kuner, T. (2015). Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse. European Journal of Neuroscience, 42(12), 30333044.Google Scholar
Shepherd, G. M. G. (2013). Corticostriatal connectivity and its role in disease. Nature Reviews Neuroscience, 14(4), 278291.Google Scholar
Shepherd, G. M. G., & Yamawaki, N. (2021). Untangling the cortico-thalamo-cortical loop: Cellular pieces of a knotty circuit puzzle. Nature Reviews Neuroscience, 22(7), 389–406. https://doi.org/10.1038/s41583-021–00459-3Google Scholar
Sherman, S. M. (2001a). Thalamic relay functions. Progress in Brain Research, 134, 5169.Google Scholar
Sherman, S. M. (2001b). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122126.Google Scholar
Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17(4), 417422.Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19(4), 533541.Google Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America, 95(12), 71217126.Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the Thalamus and Its Role in Cortical Function (2nd ed.). MIT Press.Google Scholar
Smith, Y., Wichmann, T., & DeLong, M. R. (2014). Corticostriatal and mesocortical dopamine systems: do species differences matter? [Review of Corticostriatal and mesocortical dopamine systems: Do species differences matter?]. Nature Reviews. Neuroscience, 15(1), 63.Google Scholar
Spacek, M. A., Born, G., Crombie, D., Bauer, Y., & Liu, X. (2021). Robust effects of corticothalamic feedback during naturalistic visual stimulation. BioRxiv. https://www.biorxiv.org/content/10.1101/776237v5.abstractGoogle Scholar
Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., & Konnerth, A. (2013). Making waves: Initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron, 77(6), 11361150.Google Scholar
Sumser, A., Mease, R. A., Sakmann, B., & Groh, A. (2017). Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex. Proceedings of the National Academy of Sciences, 114(33), 88538858. https://doi.org/10.1073/pnas.1704302114Google Scholar
Suzuki, M., & Larkum, M. E. (2020). General anesthesia decouples cortical pyramidal neurons. Cell, 180(4), 666–676.e13. https://doi.org/10.1016/j.cell.2020.01.024Google Scholar
Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4(4), 402408.Google Scholar
Takahashi, N., Oertner, T. G., Hegemann, P., & Larkum, M. E. (2016). Active cortical dendrites modulate perception. Science, 354(6319), 15871590. https://doi.org/10.1126/science.aah6066Google Scholar
Temereanca, S., & Simons, D. J. (2004). Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron, 41(4), 639651.Google Scholar
Theyel, B. B., Llano, D. A., & Sherman, S. M. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience, 13(1), 8488.Google Scholar
Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in Neuroanatomy, 4, 13.Google Scholar
Trageser, J. C. (2004). Reducing the uncertainty: Gating of peripheral inputs by zona incerta. Journal of Neuroscience, 24(40), 89118915. https://doi.org/10.1523/jneurosci.3218–04.2004Google Scholar
Tscherter, A., David, F., Ivanova, T., Deleuze, C., Renger, J. J., Uebele, V. N., Shin, H.-S., Bal, T., Leresche, N., & Lambert, R. C. (2011). Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. Journal of Physiology, 589(Pt 7), 17071724.Google Scholar
Urbain, N., & Deschênes, M. (2007). Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron, 56(4), 714725. https://doi.org/10.1016/j.neuron.2007.10.023Google Scholar
Urbain, N., Salin, P. A., Libourel, P.-A., Comte, J.-C., Gentet, L. J., & Petersen, C. C. H. (2015). Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Reports, 13(4), 647656. https://doi.org/10.1016/j.celrep.2015.09.029Google Scholar
Veinante, P., Lavallée, P., & Deschênes, M. (2000). Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. Journal of Comparative Neurology, 424(2), 197204.Google Scholar
Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current Opinion in Neurobiology, 17(4), 423429.Google Scholar
Williams, L. E., & Holtmaat, A. (2019). Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron, 101(1), 91–102.e4.Google Scholar
Wolff, M., Morceau, S., Folkard, R., Martin-Cortecero, J., & Groh, A. (2020). A thalamic bridge from sensory perception to cognition. Neuroscience and Biobehavioral Reviews, 120, 222235.Google Scholar
Zhang, W., & Bruno, R. M. (2019). High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. eLife, 8. https://doi.org/10.7554/elife.44158Google Scholar
Zhang, Z. W., & Deschênes, M. (1997). Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: A single-cell labeling study. Journal of Neuroscience, 17(16), 63656379.Google Scholar
Zolnik, T. A., Ledderose, J., Toumazou, M., Trimbuch, T., Oram, T., Rosenmund, C., Eickholt, B. J., Sachdev, R. N. S., & Larkum, M. E. (2020). Layer 6b is driven by intracortical long-range projection neurons. Cell Reports, 30(10), 3492–3505.e5.Google Scholar

References

Abs, E., Poorthuis, R. B., Apelblat, D., Muhammad, K., Pardi, M. B., Enke, L., Kushinsky, D., Pu, D. L., Eizinger, M. F., Conzelmann, K. K., Spiegel, I., & Letzkus, J. J. (2018). Learning-related plasticity in dendrite-targeting layer 1 interneurons. Neuron, 100(3), 684–699.e6. https://doi.org/10.1016/j.neuron.2018.09.001Google Scholar
Aitkin, L. M., & Webster, W. R. (1972). Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. Journal of Neurophysiology, 35(3), 365380. https://doi.org/10.1152/JN.1972.35.3.365Google Scholar
Aizenberg, M., Rolón-Martínez, S., Pham, T., Rao, W., Haas, J. S., & Geffen, M. N. (2019). Projection from the amygdala to the thalamic reticular nucleus amplifies cortical sound responses. Cell Reports, 28(3), 605–615.e4. https://doi.org/10.1016/j.celrep.2019.06.050Google Scholar
Akbik, F. v., Bhagat, S. M., Patel, P. R., Cafferty, W. B. J., & Strittmatter, S. M. (2013). Anatomical plasticity of adult brain is titrated by NoGo receptor 1. Neuron, 77(5), 859866. https://doi.org/10.1016/J.NEURON.2012.12.027Google Scholar
Alford, B. R., & Ruben, R. J. (1963). Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Annals of Otology, Rhinology & Laryngology, 72(1), 237247. https://doi.org/10.1177/000348946307200119Google Scholar
Andersen, R. A., Knight, P. L., & Merzenich, M. M. (1980). The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AFF) in the cat: evidence of two largely segregated systems of connections. Journal of Comparative Neurology, 194(3), 663701.Google Scholar
Anderson, L. A., Christianson, G. B., & Linden, J. F. (2009). Stimulus-specific adaptation occurs in the auditory thalamus. Journal of Neuroscience, 29(22), 73597363. https://doi.org/10.1523/JNEUROSCI.0793-09.2009Google Scholar
Anderson, L. A., Malmierca, M. S., Wallace, M. N., & Palmer, A. R. (2006). Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. European Journal of Neuroscience, 24(2), 491498. https://doi.org/10.1111/j.1460-9568.2006.04930.xGoogle Scholar
Anomal, R., de Villers-Sidani, E., Merzenich, M. M., & Panizzutti, R. (2013). Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. PLoS ONE, 8(5). https://doi.org/10.1371/JOURNAL.PONE.0064208Google Scholar
Asokan, M. M., Williamson, R. S., Hancock, K. E., & Polley, D. B. (2021). Inverted central auditory hierarchies for encoding local intervals and global temporal patterns. Current Biology, 31(8), 1762–1770.e4. https://doi.org/10.1016/J.CUB.2021.01.076Google Scholar
Atiani, S., David, S. V., Elgueda, D., Locastro, M., Radtke-Schuller, S., Shamma, S. A., & Fritz, J. B. (2014). Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron, 82(2), 486499. https://doi.org/10.1016/J.NEURON.2014.02.029Google Scholar
Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253260. https://doi.org/10.1038/NN.2466Google Scholar
Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271286.Google Scholar
Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 1121911224. https://doi.org/10.1073/PNAS.93.20.11219Google Scholar
Balmer, T. S. (2016). Perineuronal nets enhance the excitability of fast-spiking neurons. ENeuro, 3(4), 745751. https://doi.org/10.1523/ENEURO.0112-16.2016Google Scholar
Barbour, D. L., & Callaway, E. M. (2008). Excitatory local connections of superficial neurons in rat auditory cortex. Journal of Neuroscience, 28(44), 1117411185. https://doi.org/10.1523/JNEUROSCI.2093-08.2008Google Scholar
Barkat, T. R., Polley, D. B., & Hensch, T. K. (2011). A critical period for auditory thalamocortical connectivity. Nature Neuroscience, 14(9), 11891194. https://doi.org/10.1038/nn.2882Google Scholar
Bartlett, E. L. (2013). The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain and Language, 126(1), 2948. https://doi.org/10.1016/j.bandl.2013.03.003Google Scholar
Bartlett, E. L., & Smith, P. H. (1999). Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Journal of Neurophysiology, 81(5), 19992016. https://doi.org/10.1152/JN.1999.81.5.1999Google Scholar
Bartlett, E. L., & Wang, X. (2007). Neural representations of temporally modulated signals in the auditory thalamus of awake primates. Journal of Neurophysiology, 97(2), 10051017. https://doi.org/10.1152/JN.00593.2006Google Scholar
Bartlett, E. L., & Wang, X. (2011). Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset. Journal of Neurophysiology, 105(6), 26472667. https://doi.org/10.1152/JN.00238.2010Google Scholar
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695711. https://doi.org/10.1016/J.NEURON.2012.10.038Google Scholar
Batra, R., Kuwada, S., & Stanford, T. R. (1989). Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. Journal of Neurophysiology, 61(2), 257268. https://doi.org/10.1152/JN.1989.61.2.257Google Scholar
Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 29873000. https://doi.org/10.1152/JN.00283.2003Google Scholar
Belén Pardi, M., Vogenstahl, J., Dalmay, T., Spanò, T., Pu, D. L., Naumann, L. B., Kretschmer, F., Sprekeler, H., & Letzkus, J. J. (2020). A thalamocortical top-down circuit for associative memory. Science, 370(6518), 844848. https://doi.org/10.1126/SCIENCE.ABC2399Google Scholar
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nature Reviews Neuroscience, 3(9), 728739. https://doi.org/10.1038/NRN920Google Scholar
Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., & Gaiarsa, J. (1997). GABAA, NMDA and AMPA receptors: a developmentally regulated “ménage à trois.Trends in Neurosciences, 20(11), 523529. https://doi.org/10.1016/S0166-2236(97)01147-8Google Scholar
Bieszczad, K. M., & Weinberger, N. M. (2010). Representational gain in cortical area underlies increase of memory strength. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 37933798. https://doi.org/10.1073/PNAS.1000159107Google Scholar
Blundon, J. A., Bayazitov, I. T., & Zakharenko, S. S. (2011). Presynaptic gating of postsynaptically expressed plasticity at mature thalamocortical synapses. Journal of Neuroscience, 31(44), 1601216025. https://doi.org/10.1523/jneurosci.3281-11.2011Google Scholar
Blundon, J. A., Roy, N. C., Teubner, B. J. W., Yu, J., Eom, T. Y., Sample, K. J., Pani, A., Smeyne, R. J., Han, S. B., Kerekes, R. A., Rose, D. C., Hackett, T. A., Vuppala, P. K., Freeman3rd, B. B., & Zakharenko, S. S. (2017). Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science, 356(6345), 13521356. https://doi.org/10.1126/science.aaf4612Google Scholar
Blundon, J. A., & Zakharenko, S. S. (2013). Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist, 19(5), 465478. https://doi.org/10.1177/1073858413482983Google Scholar
Bonham, B. H., Cheung, S. W., Godey, B., & Schreiner, C. E. (2004). Spatial organization of frequency response areas and rate/level functions in the developing AI. Journal of Neurophysiology, 91(2), 841854. https://doi.org/10.1152/JN.00017.2003Google Scholar
Bordi, F., & LeDoux, J. E. (1994). Response properties of single units in areas of rat auditory thalamus that project to the amygdala—I. Acoustic discharge patterns and frequency receptive fields. Experimental Brain Research, 98(2), 261274. https://doi.org/10.1007/BF00228414Google Scholar
Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474485. https://doi.org/10.1016/J.NEURON.2014.02.021Google Scholar
Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 67976806. https://doi.org/10.1523/JNEUROSCI.1571-05.2005Google Scholar
Buran, B. N., von Trapp, G., & Sanes, D. H. (2014). Behaviorally gated reduction of spontaneous discharge can improve detection thresholds in auditory cortex. Journal of Neuroscience, 34(11), 40764081. https://doi.org/10.1523/JNEUROSCI.4825-13.2014Google Scholar
Cai, R., & Caspary, D. M. (2015). GABAergic inhibition shapes SAM responses in rat auditory thalamus. Neuroscience, 299, 146155. https://doi.org/10.1016/J.NEUROSCIENCE.2015.04.062Google Scholar
Cai, R., Richardson, B. D., & Caspary, D. M. (2016). Responses to predictable versus random temporally complex stimuli from single units in auditory thalamus: Impact of aging and anesthesia. Journal of Neuroscience, 36(41), 1069610706. https://doi.org/10.1523/JNEUROSCI.1454-16.2016Google Scholar
Calarco, C. A., & Robertson, R. T. (1995). Development of basal forebrain projections to visual cortex: Dil studies in rat. Journal of Comparative Neurology, 354(4), 608626. https://doi.org/10.1002/CNE.903540409Google Scholar
Calford, M. B. (1983). The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. Journal of Neuroscience, 3(11), 23502364.Google Scholar
Calford, M. B., Rajan, R., & Irvine, D. R. F. (1993). Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience, 55(4), 953964. https://doi.org/10.1016/0306-4522(93)90310-CGoogle Scholar
Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., Sacco, T., Gordon, J. A., & Sacchetti, B. (2016). Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. Journal of Neuroscience, 36(5), 16471659. https://doi.org/10.1523/JNEUROSCI.2351-15.2016Google Scholar
Caras, M. L., & Sanes, D. H. (2015). Sustained perceptual deficits from transient sensory deprivation. Journal of Neuroscience, 35(30), 1083110842. https://doi.org/10.1523/JNEUROSCI.0837-15.2015Google Scholar
Carbajal, G. v., & Malmierca, M. S. (2018). The neuronal basis of predictive coding along the auditory pathway: from the subcortical roots to cortical deviance detection. Trends in Hearing, 22. https://doi.org/10.1177/2331216518784822Google Scholar
Carcea, I., & Froemke, R. C. (2013). Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Progress in Brain Research, 207, 6590. https://doi.org/10.1016/B978-0-444-63327-9.00003-5Google Scholar
Carcea, I., Insanally, M. N., & Froemke, R. C. (2017). Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nature Communications, 8. https://doi.org/10.1038/NCOMMS14412Google Scholar
Carceller, H., Guirado, R., Ripolles-Campos, E., Teruel-Marti, V., & Nacher, J. (2020). Perineuronal nets regulate the inhibitory perisomatic input onto parvalbumin interneurons and c activity in the prefrontal cortex. Journal of Neuroscience, 40(26), 50085018. https://doi.org/10.1523/JNEUROSCI.0291-20.2020Google Scholar
Carmel, P. W., & Starr, A. (1963). Acoustic and nonacoustic factors modifying middle-ear muscle activity in waking cats. Journal of Neurophysiology, 26, 598616. https://doi.org/10.1152/JN.1963.26.4.598Google Scholar
Chambers, A. R., Resnik, J., Yuan, Y., Whitton, J. P., Edge, A. S., Liberman, M. C., & Polley, D. B. (2016). Central gain restores auditory processing following near-complete cochlear denervation. Neuron, 89(4), 867879. https://doi.org/10.1016/j.neuron.2015.12.041Google Scholar
Chambers, A. R., Salazar, J. J., & Polley, D. B. (2016). Persistent thalamic sound processing despite profound cochlear denervation. Frontiers in Neural Circuits, 10, 72. https://doi.org/10.3389/fncir.2016.00072Google Scholar
Chang, E. F., Bao, S., Imaizumi, K., Schreiner, C. E., & Merzenich, M. M. (2005). Development of spectral and temporal response selectivity in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 1646016465. https://doi.org/10.1073/PNAS.0508239102Google Scholar
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498502. https://doi.org/10.1126/SCIENCE.1082163Google Scholar
Chattopadhyaya, B., di Cristo, G., Higashiyama, H., Knott, G. W., Kuhlman, S. J., Welker, E., & Huang, Z. J. (2004). Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. Journal of Neuroscience, 24(43), 95989611. https://doi.org/10.1523/JNEUROSCI.1851-04.2004Google Scholar
Chavez, C., & Zaborszky, L. (2017). Basal forebrain cholinergic-auditory cortical network: Primary versus nonprimary auditory cortical areas. Cerebral Cortex, 27(3), 23352347. https://doi.org/10.1093/CERCOR/BHW091Google Scholar
Chen, M. S., Huber, A. B., van der Haar, M. E. D., Frank, M., Schnell, L., Spillmann, A. A., Christ, F., & Schwab, M. E. (2000). NoGo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403(6768), 434439. https://doi.org/10.1038/35000219Google Scholar
Chen, R., Puzerey, P. A., Roeser, A. C., Riccelli, T. E., Podury, A., Maher, K., Farhang, A. R., & Goldberg, J. H. (2019). Songbird ventral pallidum sends diverse performance error signals to dopaminergic midbrain. Neuron, 103(2), 266–276.e4. https://doi.org/10.1016/J.NEURON.2019.04.038Google Scholar
Chen, X., Sun, Y. C., Zhan, H., Kebschull, J. M., Fischer, S., Matho, K., Huang, Z. J., Gillis, J., & Zador, A. M. (2019). High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell, 179(3), 772–786.e19. https://doi.org/10.1016/J.CELL.2019.09.023Google Scholar
Cho, J. H., Bayazitov, I. T., Meloni, E. G., Myers, K. M., Carlezon, W. A., Zakharenko, S. S., & Bolshakov, V. Y. (2012). Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nature Neuroscience, 15(1), 113122. https://doi.org/10.1038/NN.2993Google Scholar
Cho, J. H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 14911507. https://doi.org/10.1016/J.NEURON.2013.09.025Google Scholar
Chorghay, Z., Káradóttir, R. T., & Ruthazer, E. S. (2018). White matter plasticity keeps the brain in tune: axons conduct while glia wrap. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/FNCEL.2018.00428Google Scholar
Chun, S., Bayazitov, I. T., Blundon, J. A., & Zakharenko, S. S. (2013). Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. Journal of Neuroscience, 33(17), 73457357. https://doi.org/10.1523/jneurosci.4500-12.2013Google Scholar
Cisneros-Franco, J. M., & de Villers-Sidani, É. (2019). Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 2632926331. https://doi.org/10.1073/PNAS.1913227117Google Scholar
Clancy, B., & Cauller, L. J. (1999). Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. Journal of Comparative Neurology, 407(2), 275286.Google Scholar
Clancy, B., Silva-Filho, M., & Friedlander, M. J. (2001). Structure and projections of white matter neurons in the postnatal rat visual cortex. Journal of Comparative Neurology, 434(2), 233252. https://doi.org/10.1002/CNE.1174Google Scholar
Clayton, K. K., Williamson, R. S., Hancock, K. E., Tasaka, G. I., Mizrahi, A., Hackett, T. A., & Polley, D. B. (2021). Auditory corticothalamic neurons are recruited by motor preparatory inputs. Current Biology, 31(2), 310–321.e5. https://doi.org/10.1016/j.cub.2020.10.027Google Scholar
Cohen-Kashi Malina, K., Tsivourakis, E., Kushinsky, D., Apelblat, D., Shtiglitz, S., Zohar, E., Sokoletsky, M., Tasaka, G., Mizrahi, A., Lampl, I., & Spiegel, I. (2021). NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal’s behavioral state. Neuron, 109(13), 2150–2164.e5. https://doi.org/10.1016/J.NEURON.2021.05.001Google Scholar
Crandall, S. R., Cruikshank, S. J., & Connors, B. W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron, 86(3), 768782. https://doi.org/10.1016/J.NEURON.2015.03.040Google Scholar
Cruikshank, S. J., Urabe, H., Nurmikko, A. v., & Connors, B. W. (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2), 230245. https://doi.org/10.1016/J.NEURON.2009.12.025Google Scholar
de La Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. Journal of Comparative Neurology, 496(1), 7296. https://doi.org/10.1002/CNE.20924Google Scholar
de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2012). Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anatomical Record, 295(5), 822836. https://doi.org/10.1002/AR.22454Google Scholar
de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27(1), 180189. https://doi.org/10.1523/jneurosci.3227-06.2007Google Scholar
de Villers-Sidani, E., & Merzenich, M. M. (2011). Lifelong plasticity in the rat auditory cortex. Basic mechanisms and role of sensory experience. Progress in Brain Research, 191, 119131. https://doi.org/10.1016/B978-0-444-53752-2.00009-6Google Scholar
del Río, J. A., Martínez, A., Auladell, C., & Soriano, E. (2000). Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cerebral Cortex, 10(8), 784801.Google Scholar
Deng, R., Kao, J. P. Y., & Kanold, P. O. (2017). Distinct translaminar glutamatergic circuits to GABAergic interneurons in the neonatal auditory cortex. Cell Reports, 19(6), 11411150. https://doi.org/10.1016/J.CELREP.2017.04.044Google Scholar
Diamond, I. T., Jones, E. G., & Powell, T. P. S. (1969). The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Research, 15(2), 305340. https://doi.org/10.1016/0006-8993(69)90160-7Google Scholar
Dityatev, A., Brückner, G., Dityateva, G., Grosche, J., Kleene, R., & Schachner, M. (2007). Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Developmental Neurobiology, 67(5), 570588. https://doi.org/10.1002/DNEU.20361Google Scholar
Doron, N. N., & LeDoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. Journal of Comparative Neurology, 412(3), 383409.Google Scholar
Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E., & Froemke, R. C. (2010). Developmental sensory experience balances cortical excitation and inhibition. Nature, 465(7300), 932936. https://doi.org/10.1038/NATURE09119Google Scholar
Downer, J. D., Niwa, M., & Sutter, M. L. (2017). Hierarchical differences in population coding within auditory cortex. Journal of Neurophysiology, 118(2), 717731. https://doi.org/10.1152/JN.00899.2016Google Scholar
Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107(4), 539551.Google Scholar
Edeline, J.-M., & Weinberger, N. M. (1991a). Subcortical adaptive filtering in the auditory system: Associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience, 105(1), 154175. https://doi.org/10.1037//0735-7044.105.1.154Google Scholar
Edeline, J.-M., & Weinberger, N. M. (1991b). Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body. Behavioral Neuroscience, 105(5), 618639. https://doi.org/10.1037//0735-7044.105.5.618Google Scholar
Edeline, J.-M., & Weinberger, N. M. (1992). Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behavioral Neuroscience, 106(1), 81105. https://doi.org/10.1037//0735-7044.106.1.81Google Scholar
Eggermont, J. J., & Komiya, H. (2000). Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hearing Research, 142(1–2), 89101. https://doi.org/10.1016/S0378-5955(00)00024-1Google Scholar
Ehret, G. (1976). Development of absolute auditory thresholds in the house mouse (Mus musculus). Journal of the American Audiology Society, 1(5), 179184. https://pubmed.ncbi.nlm.nih.gov/956003/Google Scholar
Ehret, G., & Romand, R. (1992). Development of tone response thresholds, latencies and tuning in the mouse inferior colliculus. Brain Research Developmental Brain Research, 67(2), 317326. https://doi.org/10.1016/0165-3806(92)90233-MGoogle Scholar
Elgueda, D., Duque, D., Radtke-Schuller, S., Yin, P., David, S. V., Shamma, S. A., & Fritz, J. B. (2019). State-dependent encoding of sound and behavioral meaning in a tertiary region of the ferret auditory cortex. Nature Neuroscience, 22(3), 447459. https://doi.org/10.1038/S41593-018-0317-8Google Scholar
Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453(7198), 11021106. https://doi.org/10.1038/NATURE06910Google Scholar
Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., Borland, M. S., & Kilgard, M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101104. https://doi.org/10.1038/nature09656Google Scholar
Fagiolini, M., Fritschy, J. M., Löw, K., Möhler, H., Rudolph, U., & Hensch, T. K. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 16811683. https://doi.org/10.1126/SCIENCE.1091032Google Scholar
Fagiolini, M., & Hensch, T. K. (2000). Inhibitory threshold for critical-period activation in primary visual cortex. Nature, 404(6774), 183186. https://doi.org/10.1038/35004582Google Scholar
Fan, L. Z., Kheifets, S., Böhm, U. L., Wu, H., Piatkevich, K. D., Xie, M. E., Parot, V., Ha, Y., Evans, K. E., Boyden, E. S., Takesian, A. E., & Cohen, A. E. (2020). All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1. Cell, 180(3), 521–535.e18. https://doi.org/10.1016/J.CELL.2020.01.001Google Scholar
Favuzzi, E., Marques-Smith, A., Deogracias, R., Winterflood, C. M., Sánchez-Aguilera, A., Mantoan, L., Maeso, P., Fernandes, C., Ewers, H., & Rico, B. (2017). Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron, 95(3), 639–655.e10. https://doi.org/10.1016/J.NEURON.2017.06.028Google Scholar
Feliciano, M., & Potashner, S. J. (1995). Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. Journal of Neurochemistry, 65(3), 13481357. https://doi.org/10.1046/J.1471-4159.1995.65031348.XGoogle Scholar
Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience, 16(12), 756767. https://doi.org/10.1038/NRN4023Google Scholar
Finney, E. M., Stone, J. R., & Shatz, C. J. (1998). Major glutamatergic projection from subplate into visual cortex during development. Journal of Comparative Neurology, 398(1), 105118.Google Scholar
Firth, S. I., Wang, C. T., & Feller, M. B. (2005). Retinal waves: mechanisms and function in visual system development. Cell Calcium, 37(5 Spec. Iss.), 425432. https://doi.org/10.1016/J.CECA.2005.01.010Google Scholar
Friauf, E. (2000). Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties. Audiology and Neuro-Otology, 5(5), 251262. https://doi.org/10.1159/000013889Google Scholar
Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25(33), 76237635.Google Scholar
Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 12161223. https://doi.org/10.1038/NN1141Google Scholar
Froemke, R. C., Carcea, I., Barker, A. J., Yuan, K., Seybold, B. A., Martins, A. R., Zaika, N., Bernstein, H., Wachs, M., Levis, P. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2013). Long-term modification of cortical synapses improves sensory perception. Nature Neuroscience, 16(1), 7988. https://doi.org/10.1038/nn.3274Google Scholar
Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425429. https://doi.org/10.1038/nature06289Google Scholar
Fu, Y., Tucciarone, J. M., Espinosa, J. S., Sheng, N., Darcy, D. P., Nicoll, R. A., Huang, Z. J., & Stryker, M. P. (2014). A cortical circuit for gain control by behavioral state. Cell, 156(6), 11391152. https://doi.org/10.1016/j.cell.2014.01.050Google Scholar
Fünfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Saab, A. S., Edgar, J., Brinkmann, B. G., Kassmann, C. M., Tzvetanova, I. D., Möbius, W., Diaz, F., Meijer, D., Suter, U., Hamprecht, B., Sereda, M. W., Moraes, C. T., Frahm, J., Goebbels, S., & Nave, K. A. (2012). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 485(7399), 517521. https://doi.org/10.1038/NATURE11007Google Scholar
Gao, L., Kostlan, K., Wang, Y., & Wang, X. (2016). Distinct subthreshold mechanisms underlying rate-coding principles in primate auditory cortex. Neuron, 91(4), 905919. https://doi.org/10.1016/J.NEURON.2016.07.004Google Scholar
Gao, X., & Wehr, M. (2015). A coding transformation for temporally structured sounds within auditory cortical neurons. Neuron, 86(1), 292303. https://doi.org/10.1016/J.NEURON.2015.03.004Google Scholar
Ghimire, M., Cai, R., Ling, L., Hackett, T. A., & Caspary, D. M. (2020). Nicotinic receptor subunit distribution in auditory cortex: impact of aging on receptor number and function. Journal of Neuroscience, 40(30), 57245739. https://doi.org/10.1523/JNEUROSCI.0093-20.2020Google Scholar
Ghosh, A., Antonini, A., McConnell, S. K., & Shatz, C. J. (1990). Requirement for subplate neurons in the formation of thalamocortical connections. Nature, 347(6289), 179181. https://doi.org/10.1038/347179A0Google Scholar
Gianfranceschi, L., Siciliano, R., Walls, J., Morales, B., Kirkwood, A., Huang, Z. J., Tonegawa, S., & Maffei, L. (2003). Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 1248612491. https://doi.org/10.1073/PNAS.1934836100Google Scholar
Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 7579. https://doi.org/10.1038/47035Google Scholar
Goyer, D., Silveira, M. A., George, A. P., Beebe, N. L., Edelbrock, R. M., Malinski, P. T., Schofield, B. R., & Roberts, M. T. (2019). A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-cre mice. eLife, 8. https://doi.org/10.7554/ELIFE.43770Google Scholar
Grant, E., Hoerder-Suabedissen, A., & Molnár, Z. (2012). Development of the corticothalamic projections. Frontiers in Neuroscience, 6, 114. https://doi.org/10.3389/FNINS.2012.00053Google Scholar
Guo, W., Clause, A. R., Barth-Maron, A., & Polley, D. B. (2017). A corticothalamic circuit for dynamic switching between feature detection and discrimination. Neuron, 95(1), 180–194.e5. https://doi.org/10.1016/j.neuron.2017.05.019Google Scholar
Guo, W., Robert, B., & Polley, D. B. (2019). The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron, 103(6), 1164–1177.e6. https://doi.org/10.1016/j.neuron.2019.06.024Google Scholar
Gurung, B., & Fritzsch, B. (2004). Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. Journal of Comparative Neurology, 479, 309327. https://doi.org/10.1002/cne.20328Google Scholar
Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1–2), 133146. https://doi.org/10.1016/j.heares.2010.01.011Google Scholar
Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook of Clinical Neurology, 129, 2753. https://doi.org/10.1016/B978-0-444-62630-1.00002-0Google Scholar
Hackett, T. A., Barkat, T. R., O’Brien, B. M., Hensch, T. K., & Polley, D. B. (2011). Linking topography to tonotopy in the mouse auditory thalamocortical circuit. Journal of Neuroscience, 31(8), 29832995. https://doi.org/10.1523/jneurosci.5333-10.2011Google Scholar
Hackett, T. A., Clause, A. R., Takahata, T., Hackett, N. J., & Polley, D. B. (2016). Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Structure & Function, 221(5), 26192673. https://doi.org/10.1007/S00429-015-1062-3Google Scholar
Hackett, T. A., Guo, Y., Clause, A., Hackett, N. J., Garbett, K., Zhang, P., Polley, D. B., & Mirnics, K. (2015). Transcriptional maturation of the mouse auditory forebrain. BMC Genomics, 16(1), 606. https://doi.org/10.1186/s12864-015-1709-8Google Scholar
Halassa, M. M., & Sherman, S. M. (2019). Thalamocortical circuit motifs: a general framework. Neuron, 103(5), 762770. https://doi.org/10.1016/J.NEURON.2019.06.005Google Scholar
Hamilton, L. S., Oganian, Y., Hall, J., & Chang, E. F. (2021). Parallel and distributed encoding of speech across human auditory cortex. Cell, 184(18), 4626–4639.e13. https://doi.org/10.1016/J.CELL.2021.07.019Google Scholar
Han, Y. K., Köver, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 11911197. https://doi.org/10.1038/NN1941Google Scholar
Hanover, J. L., Huang, Z. J., Tonegawa, S., & Stryker, M. P. (1999). Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. Journal of Neuroscience, 19(22). https://doi.org/10.1523/JNEUROSCI.19-22-J0003.1999Google Scholar
Hanse, E., Seth, H., & Riebe, I. (2013). AMPA-silent synapses in brain development and pathology. Nature Reviews Neuroscience, 14(12), 839850. https://doi.org/10.1038/NRN3642Google Scholar
Harpaz, M., Jankowski, M. M., Khouri, L., & Nelken, I. (2021). Emergence of abstract sound representations in the ascending auditory system. Progress in Neurobiology, 202. https://doi.org/10.1016/J.PNEUROBIO.2021.102049Google Scholar
Härtig, W., Brauer, K., & Brückner, G. (1992). Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport, 3(10), 869872. https://doi.org/10.1097/00001756-199210000-00012Google Scholar
Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549579. https://doi.org/10.1146/ANNUREV.NEURO.27.070203.144327Google Scholar
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6(11), 877888. https://doi.org/10.1038/NRN1787Google Scholar
Hensch, T. K., Fagiolini, M., Mataga, N., Stryker, M. P., Baekkeskov, S., & Kash, S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282(5393), 15041508. https://doi.org/10.1126/SCIENCE.282.5393.1504Google Scholar
Heuer, H., Christ, S., Friedrichsen, S., Brauer, D., Winckler, M., Bauer, K., & Raivich, G. (2003). Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience, 119(1), 4352.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y., & Molnár, Z. (2018). Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cerebral Cortex, 28(5), 1882–1897. https://doi.org/10.1093/CERCOR/BHY036Google Scholar
Hoerder-Suabedissen, A., & Molnár, Z. (2013). Molecular diversity of early-born subplate neurons. Cerebral Cortex, 23(6), 14731483. https://doi.org/10.1093/CERCOR/BHS137Google Scholar
Hogan, S. C., Meyer, S. E., & Moore, D. R. (1996). Binaural unmasking returns to normal in teenagers who had otitis media in infancy. Audiology and Neuro-Otology, 1(2), 104111. https://doi.org/10.1159/000259189Google Scholar
Hooks, B. M., & Chen, C. (2007). Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, 56(2), 312326. https://doi.org/10.1016/J.NEURON.2007.10.003Google Scholar
Horng, S., Kreiman, G., Ellsworth, C., Page, D., Blank, M., Millen, K., & Sur, M. (2009). Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. Journal of Neuroscience, 29(43), 1367213683. https://doi.org/10.1523/JNEUROSCI.2127-09.2009Google Scholar
Huang, C. L., & Winer, J. A. (2000). Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology, 427(2), 302331.Google Scholar
Huang, X. (2019). Silent synapse: a new player in visual cortex critical period plasticity. Pharmacological Research, 141, 586590. https://doi.org/10.1016/J.PHRS.2019.01.031Google Scholar
Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L., & Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98(6), 739755. https://doi.org/10.1016/S0092-8674(00)81509-3Google Scholar
Huganir, R. L., & Nicoll, R. A. (2013). Perspective AMPARs and synaptic plasticity: the last 25 years. Neuron, 80(3), 704717. https://doi.org/10.1016/j.neuron.2013.10.025Google Scholar
Ibrahim, B. A., Murphy, C. A., Yudintsev, G., Shinagawa, Y., Banks, M. I., & Llano, D. A. (2021). Corticothalamic gating of population auditory thalamocortical transmission in mouse. eLife, 10. https://doi.org/10.7554/eLife.56645Google Scholar
Insanally, M. N., Kover, H., Kim, H., & Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29(17), 54565462. https://doi.org/10.1523/jneurosci.5311-08.2009Google Scholar
Isaac, J. T. R. (2003). Mini-review postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology, 45, 450460. https://doi.org/10.1016/S0028-3908(03)00229-6Google Scholar
Isaac, J. T. R., Crair, M. C., Nicoll, R. A., & Malenka, R. C. (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18(2), 269280. https://doi.org/10.1016/S0896-6273(00)80267-6Google Scholar
Isaac, J. T. R., Nicoll, R. A., & Malenka, R. C. (1995). Evidence for silent synapses: Implications for the expression of LTP. Neuron, 15(2), 427434. https://doi.org/10.1016/0896-6273(95)90046-2Google Scholar
Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231243. https://doi.org/10.1016/J.NEURON.2011.09.027Google Scholar
Itami, C., Kimura, F., & Nakamura, S. (2007). Brain-derived neurotrophic factor regulates the maturation of layer 4 fast-spiking cells after the second postnatal week in the developing barrel cortex. Journal of Neuroscience, 27(9), 22412252. https://doi.org/10.1523/JNEUROSCI.3345-06.2007Google Scholar
Ito, T., & Oliver, D. L. (2012). The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Frontiers in Neural Circuits, 6, 19. https://doi.org/10.3389/fncir.2012.00048Google Scholar
Jaramillo, S., Borges, K., & Zador, A. M. (2014). Auditory thalamus and auditory cortex are equally modulated by context during flexible categorization of sounds. Journal of Neuroscience, 34(15), 52915301. https://doi.org/10.1523/JNEUROSCI.4888-13.2014Google Scholar
Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14(2), 246253. https://doi.org/10.1038/NN.2688Google Scholar
Ji, W., & Suga, N. (2007). Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. Journal of Neuroscience, 27(18), 49104918. https://doi.org/10.1523/JNEUROSCI.5528-06.2007Google Scholar
Ji, X. Y., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., & Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cerebral Cortex, 26(6), 26122625. https://doi.org/10.1093/cercor/bhv099Google Scholar
Jiao, Y., Zhang, C., Yanagawa, Y., & Sun, Q. Q. (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. Journal of Neuroscience, 26(34), 86918701. https://doi.org/10.1523/JNEUROSCI.2478-06.2006Google Scholar
Jones, E. G., & Burton, H. (1976). Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology, 168(2), 197247. https://doi.org/10.1002/CNE.901680203Google Scholar
Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541577. https://doi.org/10.1152/PHYSREV.00029.2003Google Scholar
Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 1179311799. https://doi.org/10.1073/PNAS.97.22.11793Google Scholar
Kalish, B. T., Barkat, T. R., Diel, E. E., Zhang, E. J., Greenberg, M. E., & Hensch, T. K. (2020). Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proceedings of the National Academy of Sciences of the United States of America, 117(21). https://doi.org/10.1073/PNAS.1920433117Google Scholar
Kamal, B., Holman, C., & de Villers-Sidani, E. (2013). Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/FNSYS.2013.00052Google Scholar
Kamke, M. R., Brown, M., & Irvine, D. R. F. (2003). Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology, 459(4), 355367. https://doi.org/10.1002/CNE.10586Google Scholar
Kandler, K. (2004). Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Current Opinion in Neurobiology, 14(1), 96104. https://doi.org/10.1016/J.CONB.2004.01.017Google Scholar
Kanold, P. O. (2009). Subplate neurons: crucial regulators of cortical development and plasticity. Frontiers in Neuroanatomy, 3. https://doi.org/10.3389/NEURO.05.016.2009Google Scholar
Kanold, P. O., Kara, P., Reid, R. C., & Shatz, C. J. (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632), 521525. https://doi.org/10.1126/SCIENCE.1084152Google Scholar
Kanold, P. O., & Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual Review of Neuroscience, 33, 2348. https://doi.org/10.1146/ANNUREV-NEURO-060909-153244Google Scholar
Kanold, P. O., & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51(5), 627638. https://doi.org/10.1016/J.NEURON.2006.07.008Google Scholar
Katagiri, H., Fagiolini, M., & Hensch, T. K. (2007). Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron, 53(6), 805812. https://doi.org/10.1016/J.NEURON.2007.02.026Google Scholar
Kato, H. K., Gillet, S. N., & Isaacson, J. S. (2015). Flexible sensory representations in auditory cortex driven by behavioral relevance. Neuron, 88(5), 10271039. https://doi.org/10.1016/J.NEURON.2015.10.024Google Scholar
Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 17141718.Google Scholar
Kim, H., & Bao, S. (2009). Selective increase in representations of sounds repeated at an ethological rate. Journal of Neuroscience, 29(16), 51635169. https://doi.org/10.1523/JNEUROSCI.0365-09.2009Google Scholar
Kim, J., Matney, C. J., Blankenship, A., Hestrin, S., & Brown, S. P. (2014). Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. Journal of Neuroscience, 34(29), 96569664. https://doi.org/10.1523/JNEUROSCI.1325-14.2014Google Scholar
King, A. J. (2010). Auditory neuroscience: balancing excitation and inhibition during development. Current Biology, 20(18), R808. https://doi.org/10.1016/J.CUB.2010.07.034Google Scholar
Knudsen, E. I., Esterly, S. D., & Knudsen, P. F. (1984). Monaural occlusion alters sound localization during a sensitive period in the barn owl. Journal of Neuroscience, 4(4), 10011011. https://doi.org/10.1523/JNEUROSCI.04-04-01001.1984Google Scholar
Kotak, V. C., Breithaupt, A. D., & Sanes, D. H. (2007). Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 35503555. https://doi.org/10.1073/PNAS.0607177104Google Scholar
Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 39083918. https://doi.org/10.1523/JNEUROSCI.5169-04.2005Google Scholar
Kreeger, L. J., Connelly, C. J., Mehta, P., Zemelman, B. v., & Golding, N. L. (2021). Excitatory cholecystokinin neurons of the midbrain integrate diverse temporal responses and drive auditory thalamic subdomains. Proceedings of the National Academy of Sciences of the United States of America, 118(10). https://doi.org/10.1073/pnas.2007724118Google Scholar
Kuchibhotla, K. v, Gill, J. v, Lindsay, G. W., Papadoyannis, E. S., Field, R. E., Sten, T. A., Miller, K. D., & Froemke, R. C. (2017). Parallel processing by cortical inhibition enables context-dependent behavior. Nature Neuroscience, 20(1), 6271. https://doi.org/10.1038/nn.4436Google Scholar
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713727. https://doi.org/10.1016/J.NEURON.2010.08.038Google Scholar
Lakatos, P., O’Connell, M. N., Barczak, A., McGinnis, T., Neymotin, S., Schroeder, C. E., Smiley, J. F., & Javitt, D. C. (2020). The thalamocortical circuit of auditory mismatch negativity. Biological Psychiatry, 87(8), 770780. https://doi.org/10.1016/J.BIOPSYCH.2019.10.029Google Scholar
Lazarus, M. S., & Josh Huang, Z. (2011). Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. Journal of Neurophysiology, 106(2), 775787. https://doi.org/10.1152/JN.00729.2010Google Scholar
LeDoux, J. E., Farb, C. R., & Romanski, L. M. (1991). Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neuroscience Letters, 134(1), 139144. https://doi.org/10.1016/0304-3940(91)90526-YGoogle Scholar
LeDoux, J. E., Ruggiero, D. A., Forest, R., Stornetta, R., & Reis, D. J. (1987). Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. Journal of Comparative Neurology, 264(1), 123146. https://doi.org/10.1002/CNE.902640110Google Scholar
Lee, C. C. (2015). Exploring functions for the non-lemniscal auditory thalamus. Front Neural Circuits, 9, 69. https://doi.org/10.3389/fncir.2015.00069Google Scholar
Lee, C. C., & Winer, J. A. (2011). Convergence of thalamic and cortical pathways in cat auditory cortex. Hearing Research, 274(1–2), 8594. https://doi.org/10.1016/j.heares.2010.05.008Google Scholar
Lee, S. H., Hjerling-Leffler, J., Zagha, E., Fishell, G., & Rudy, B. (2010). The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. Journal of Neuroscience, 30(50), 1679616808. https://doi.org/10.1523/JNEUROSCI.1869-10.2010Google Scholar
Lensjø, K. K., Lepperød, M. E., Dick, G., Hafting, T., & Fyhn, M. (2017). Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. Journal of Neuroscience, 37(5), 12691283. https://doi.org/10.1523/JNEUROSCI.2504-16.2016Google Scholar
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 29062915. https://doi.org/10.1523/JNEUROSCI.3684-10.2011Google Scholar
Lesicko, A. M. H., Hristova, T. S., Maigler, K. C., & Llano, D. A. (2016). Connectional modularity of top-down and bottom-up multimodal inputs to the lateral cortex of the mouse inferior colliculus. Journal of Neuroscience, 36(43), 1103711050. https://doi.org/10.1523/JNEUROSCI.4134-15.2016Google Scholar
Lesicko, A. M. H., Sons, S. K., & Llano, D. A. (2020). Circuit mechanisms underlying the segregation and integration of parallel processing streams in the inferior colliculus. Journal of Neuroscience, 40(33), 63286344. https://doi.org/10.1523/JNEUROSCI.064620.2020Google Scholar
Letzkus, J. J., Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., & Luthi, A. (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480(7377), 331335. https://doi.org/10.1038/nature10674Google Scholar
Levelt, C. N., & Ḧubener, M. (2012). Critical-period plasticity in the visual cortex. Annual Review of Neuroscience, 35, 309330. https://doi.org/10.1146/ANNUREV-NEURO-061010-113813Google Scholar
Levy, R. B., & Aoki, C. (2002). α7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. Journal of Neuroscience, 22(12), 50015015. https://doi.org/10.1523/JNEUROSCI.22-12-05001.2002Google Scholar
Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400404. https://doi.org/10.1038/375400A0Google Scholar
Liu, Y., Xin, Y., & Xu, N. long. (2021). A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making. Neuron, 109(12), 2009–2024.e6. https://doi.org/10.1016/J.NEURON.2021.04.014Google Scholar
Llano, D. A., & Sherman, S. M. (2008). Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. Journal of Comparative Neurology, 507(2), 12091227. https://doi.org/10.1002/cne.21602Google Scholar
Lohse, M., Dahmen, J. C., Bajo, V. M., & King, A. J. (2021). Subcortical circuits mediate communication between primary sensory cortical areas in mice. Nature Communications, 12(1), 114. https://doi.org/10.1038/s41467-021-24200-xGoogle Scholar
Long, P., Wan, G., Roberts, M. T., & Corfas, G. (2018). Myelin development, plasticity, and pathology in the auditory system. Developmental Neurobiology, 78(2), 8092. https://doi.org/10.1002/DNEU.22538Google Scholar
López-Bendito, G., & Molnár, Z. (2003). Thalamocortical development: how are we going to get there? Nature Reviews Neuroscience, 4(4), 276289. https://doi.org/10.1038/NRN1075Google Scholar
Lu, T, Liang, L, Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4, 11311138.Google Scholar
Lu, E., Llano, D. A., & Sherman, S. M. (2009). Different distributions of calbindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body. Hearing Research, 257(1–2), 1623. https://doi.org/10.1016/J.HEARES.2009.07.009Google Scholar
Lund, J. S., Henry, G. H., Macqueen, C. L., & Harvey, A. R. (1979). Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. Journal of Comparative Neurology, 184(4), 599618. https://doi.org/10.1002/CNE.901840402Google Scholar
Luskin, M. B., & Shatz, C. J. (1985). Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. Journal of Neuroscience, 5(4), 10621075.Google Scholar
Maffei, A., Nelson, S. B., & Turrigiano, G. G. (2004). Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neuroscience, 7(12), 13531359. https://doi.org/10.1038/NN1351Google Scholar
Maggi, L., le Magueresse, C., Changeux, J. P., & Cherubini, E. (2003). Nicotine activates immature “silent” connections in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 20592064. https://doi.org/10.1073/PNAS.0437947100Google Scholar
Malmierca, M. S., Merchán, M. A., Henkel, C. K., & Oliver, D. L. (2002). Direct projections from cochlear nuclear complex to auditory thalamus in the rat. Journal of Neuroscience, 22(24), 1089110897. https://doi.org/10.1523/jneurosci.22-24-10891.2002Google Scholar
Marie, R. L. S., & Peters, A. (1985). The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a golgi‐electron microscopic study. Journal of Comparative Neurology, 233(2), 213235. https://doi.org/10.1002/CNE.902330205Google Scholar
Martins, A. R., & Froemke, R. C. (2015). Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nature Neuroscience, 18(10), 14831492. https://doi.org/10.1038/nn.4090Google Scholar
Marx, M., Qi, G., Hanganu-Opatz, I. L., Kilb, W., Luhmann, H. J., & Feldmeyer, D. (2017). Neocortical layer 6B as a remnant of the subplate—a morphological comparison. Cerebral Cortex, 27(2), 10111026. https://doi.org/10.1093/CERCOR/BHV279Google Scholar
McConnell, S. K., Ghosh, A., and Shatz, C. J. (1994). Subplate pioneers and the formation of descending connections from cerebral cortex. Journal of Neuroscience, 14(4), 18921907.Google Scholar
McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., & Strittmatter, S. H. (2005). Neuroscience: Experience-driven plasticity of visual cortex limited by myelin and NoGo receptor. Science, 309(5744), 22222226. https://doi.org/10.1126/SCIENCE.1114362Google Scholar
McGinley, M. J., David, S. v., & McCormick, D. A. (2015). Cortical membrane potential signature of optimal states for sensory signal detection. Neuron, 87(1), 179192. https://doi.org/10.1016/J.NEURON.2015.05.038Google Scholar
Mechawar, N., & Descarries, L. (2001). The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience, 108(4), 555567. https://doi.org/10.1016/S0306-4522(01)00389-XGoogle Scholar
Meng, X., Kao, J. P. Y., & Kanold, P. O. (2014). Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex. Journal of Neuroscience, 34(26), 88558864. https://doi.org/10.1523/JNEUROSCI.0233-14.2014Google Scholar
Meng, X., Xu, Y., Kao, J. P. Y., & Kanold, P. O. (2020). Transient coupling between subplate and subgranular layers to L1 neurons before and during the critical period. BioRxiv, 2020.05.05.077784. https://doi.org/10.1101/2020.05.05.077784Google Scholar
Meyer, G., González-Hernández, T. H., & Ferres-Torres, R. (1989). The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Neuroscience, 33(3), 489498. https://doi.org/10.1016/0306-4522(89)90401-6Google Scholar
Miller, G. L., & Knudsen, E. I. (2003). Adaptive plasticity in the auditory thalamus of juvenile barn owls. Journal of Neuroscience, 23(3), 1059. https://doi.org/10.1523/JNEUROSCI.23-03-01059.2003Google Scholar
Miwa, J. M., Ibaňez-Tallon, I., Crabtree, G. W., Sánchez, R., Šali, A., Role, L. W., & Heintz, N. (1999). lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron, 23(1), 105114. https://doi.org/10.1016/S0896-6273(00)80757-6Google Scholar
Moore, D. R. (2007). Auditory processing disorders: acquisition and treatment. Journal of Communication Disorders, 40(4), 295304. https://doi.org/10.1016/J.JCOMDIS.2007.03.005Google Scholar
Moore, D. R., Hine, J. E., Jiang, Z. D., Matsuda, H., Parsons, C. H., & King, A. J. (1999). Conductive hearing loss produces a reversible binaural hearing impairment. Journal of Neuroscience, 19(19), 87048711. https://doi.org/10.1523/JNEUROSCI.19-19-08704.1999Google Scholar
Moore, S., Meschkat, M., Ruhwedel, T., Trevisiol, A., Tzvetanova, I. D., Battefeld, A., Kusch, K., Kole, M. H. P., Strenzke, N., Möbius, W., de Hoz, L., & Nave, K. A. (2020). A role of oligodendrocytes in information processing. Nature Communications, 11(1). https://doi.org/10.1038/S41467-020-19152-7Google Scholar
Morales, B., Choi, S. Y., & Kirkwood, A. (2002). Dark rearing alters the development of GABAergic transmission in visual cortex. Journal of Neuroscience, 22(18), 80848090. https://doi.org/10.1523/JNEUROSCI.22-18-08084.2002Google Scholar
Morishita, H., & Hensch, T. K. (2008). Critical period revisited: impact on vision. Current Opinion in Neurobiology, 18(1), 101107. https://doi.org/10.1016/J.CONB.2008.05.009Google Scholar
Morishita, H., Miwa, J. M., Heintz, N., & Hensch, T. K. (2010). Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science, 330(6008), 12381240. https://doi.org/10.1126/SCIENCE.1195320Google Scholar
Mowery, T. M., Caras, M. L., Hassan, S. I., Wang, D. J., Dimidschstein, J., Fishell, G., & Sanes, D. H. (2019). Preserving inhibition during developmental hearing loss rescues auditory learning and perception. Journal of Neuroscience, 39(42), 83478361. https://doi.org/10.1523/jneurosci.0749-19.2019Google Scholar
Mowery, T. M., Kotak, V. C., & Sanes, D. H. (2015). Transient hearing loss within a critical period causes persistent changes to cellular properties in adult auditory cortex. Cerebral Cortex, 25(8), 20832094. https://doi.org/10.1093/CERCOR/BHU013Google Scholar
Müller-Preuss, P., Flachskamm, C., & Bieser, A. (1994). Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hearing Research, 80(2), 197208. https://doi.org/10.1016/0378-5955(94)90111-2Google Scholar
Myakhar, O., Unichenko, P., & Kirischuk, S. (2011). GABAergic projections from the subplate to Cajal-Retzius cells in the neocortex. NeuroReport, 22(11), 525529. https://doi.org/10.1097/WNR.0B013E32834888A4Google Scholar
Nakahara, H., Zhang, L. I., & Merzenich, M. M. (2004). Specialization of primary auditory cortex processing by sound exposure in the “critical period.Proceedings of the National Academy of Sciences of the United States of America, 101(18), 71707174. https://doi.org/10.1073/PNAS.0401196101Google Scholar
Natan, R. G., Briguglio, J. J., Mwilambwe-Tshilobo, L., Jones, S. I., Aizenberg, M., Goldberg, E. M., & Geffen, M. N. (2015). Complementary control of sensory adaptation by two types of cortical interneurons. eLife, 4. https://doi.org/10.7554/eLife.09868Google Scholar
Nelson, A., Schneider, D. M., Takatoh, J., Sakurai, K., Wang, F., & Mooney, R. (2013). A circuit for motor cortical modulation of auditory cortical activity. Journal of Neuroscience, 33(36), 1434214353. https://doi.org/10.1523/JNEUROSCI.2275-13.2013Google Scholar
Noreña, A. J., Tomita, M., & Eggermont, J. J. (2003). Neural changes in cat auditory cortex after a transient pure-tone trauma. Journal of Neurophysiology, 90(4), 23872401. https://doi.org/10.1152/JN.00139.2003Google Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6), 12811296. https://doi.org/10.1016/J.NEURON.2015.11.035Google Scholar
Novák, O., Zelenka, O., Hromádka, T., & Syka, J. (2016). Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. Journal of Neurophysiology, 115(4), 18601874. https://doi.org/10.1152/JN.00810.2015Google Scholar
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307(5950), 462465. https://doi.org/10.1038/307462A0Google Scholar
Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12(5), 646654. https://doi.org/10.1038/NN.2306Google Scholar
Overath, T., McDermott, J. H., Zarate, J. M., & Poeppel, D. (2015). The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nature Neuroscience, 18(6), 903911. https://doi.org/10.1038/NN.4021Google Scholar
Parras, G. G., Nieto-Diego, J., Carbajal, G. v., Valdés-Baizabal, C., Escera, C., & Malmierca, M. S. (2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 8(1). https://doi.org/10.1038/S41467-017-02038-6Google Scholar
Parsons, C. H., Lanyon, R. G., Schnupp, J. W. H., & King, A. J. (1999). Effects of altering spectral cues in infancy on horizontal and vertical sound localization by adult ferrets. Journal of Neurophysiology, 82(5), 22942309. https://doi.org/10.1152/JN.1999.82.5.2294Google Scholar
Patton, M. H., Blundon, J. A., & Zakharenko, S. S. (2019). Rejuvenation of plasticity in the brain: opening the critical period. Current Opinion in Neurobiology, 54, 8389. https://doi.org/10.1016/J.CONB.2018.09.003Google Scholar
Pereira, A. G., Farias, M., & Moita, M. A. (2020). Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger. PLoS Biology, 18(5). https://doi.org/10.1371/JOURNAL.PBIO.3000674Google Scholar
Persic, D., Thomas, M. E., Pelekanos, V., Ryugo, D. K., Takesian, A. E., Krumbholz, K., & Pyott, S. J. (2020). Regulation of auditory plasticity during critical periods and following hearing loss. Hearing Research, 397, 107976. https://doi.org/10.1016/j.heares.2020.107976Google Scholar
Peruzzi, D., Bartlett, E., Smith, P. H., & Oliver, D. L. (1997). A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. Journal of Neuroscience, 17(10), 37663777. https://doi.org/10.1523/JNEUROSCI.17-10-03766.1997Google Scholar
Peters, A., & Kara, D. A. (1985). The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. Journal of Comparative Neurology, 234(2), 218241. https://doi.org/10.1002/CNE.902340208Google Scholar
Petratos, S., Theotokis, P., Kim, M. J., Azari, M. F., & Lee, J. Y. (2020). That’s a wrap! Molecular drivers governing neuronal NoGo receptor-dependent myelin plasticity and integrity. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00227Google Scholar
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J., & Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience, 16(8), 10681076. https://doi.org/10.1038/nn.3446Google Scholar
Pienkowski, M., & Eggermont, J. J. (2011). Cortical tonotopic map plasticity and behavior. Neuroscience and Biobehavioral Reviews, 35(10), 21172128. https://doi.org/10.1016/J.NEUBIOREV.2011.02.002Google Scholar
Pienkowski, M., Munguia, R., & Eggermont, J. J. (2011). Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex. Hearing Research, 277(1–2), 117126. https://doi.org/10.1016/J.HEARES.2011.02.002Google Scholar
Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 49704982. https://doi.org/10.1523/jneurosci.3771-05.2006Google Scholar
Polley, D. B., Thompson, J. H., & Guo, W. (2013). Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nature Communications, 4, 2547. https://doi.org/10.1038/ncomms3547Google Scholar
Popescu, M. v, & Polley, D. B. (2010). Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 65(5), 718731. https://doi.org/10.1016/j.neuron.2010.02.019Google Scholar
Price, D. J., Aslam, S., Tasker, L., & Gillies, K. (1997). Fates of the earliest generated cells in the developing murine neocortex. Journal of Comparative Neurology, 377, 414422.Google Scholar
Qiu, C. X., Salvi, R., Ding, D., & Burkard, R. (2000). Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hearing Research, 139(1–2), 153171. https://doi.org/10.1016/S0378-5955(99)00171-9Google Scholar
Quirk, G. J., Repa, J. C., & LeDoux, J. E. (1995). Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron, 15(5), 10291039. https://doi.org/10.1016/0896-6273(95)90092-6Google Scholar
Rabang, C. F., & Bartlett, E. L. (2011). A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB). PLoS ONE, 6(12). https://doi.org/10.1371/JOURNAL.PONE.0029375Google Scholar
Raggio, M. W., & Schreiner, C. E. (1999). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. Journal of Neurophysiology, 82(6), 35063526. https://doi.org/10.1152/JN.1999.82.6.3506Google Scholar
Razak, K. A., & Fuzessery, Z. M. (2010). Development of parallel auditory thalamocortical pathways for two different behaviors. Frontiers in Neuroanatomy, 4. https://doi.org/10.3389/fnana.2010.00134Google Scholar
Razak, K. A., & Fuzessery, Z. M. (2015). Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat. Developmental Neurobiology, 75(10), 11251139. https://doi.org/10.1002/DNEU.22226Google Scholar
Razak, K. A., Richardson, M. D., & Fuzessery, Z. M. (2008). Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 44654470. https://doi.org/10.1073/PNAS.0709504105Google Scholar
Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87103. https://doi.org/10.1523/JNEUROSCI.13-01-00087.1993Google Scholar
Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., & Kilgard, M. P. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70(1), 121131. https://doi.org/10.1016/J.NEURON.2011.02.038Google Scholar
Reep, R. L. (2000). Cortical layer VII and persistent subplate cells in mammalian brains. Brain, Behavior and Evolution, 56(4), 212234. https://doi.org/10.1159/000047206Google Scholar
Reinhold, K., Lien, A. D., & Scanziani, M. (2015). Distinct recurrent versus afferent dynamics in cortical visual processing. Nature Neuroscience, 18(12), 17891797. https://doi.org/10.1038/NN.4153Google Scholar
Resnik, J., & Polley, D. B. (2017). Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. eLife, 6. https://doi.org/10.7554/eLife.21452Google Scholar
Richardson, B. D., Sottile, S. Y., & Caspary, D. M. (2021). Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: impact of aging. Hearing Research, 402, 108003. https://doi.org/10.1016/j.heares.2020.108003Google Scholar
Richardson, R. J., Blundon, J. A., Bayazitov, I. T., & Zakharenko, S. S. (2009). Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. Journal of Neuroscience, 29(20), 64066417. https://doi.org/10.1523/JNEUROSCI.0258-09.2009Google Scholar
Robert, B., Kimchi, E. Y., Watanabe, Y., Chakoma, T., Jing, M., Li, Y., & Polley, D. B. (2021). A functional topography within the cholinergic basal forebrain for processing sensory cues associated with reward and punishment. BioRxiv, 2021.04.16.439895. https://doi.org/10.1101/2021.04.16.439895Google Scholar
Robertson, D., & Irvine, D. R. F. (1989). Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. Journal of Comparative Neurology, 282(3), 456471. https://doi.org/10.1002/CNE.902820311Google Scholar
Romand, R., & Ehret, G. (1990). development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Developmental Brain Research, 54(2), 221234.Google Scholar
Rose, H. J., & Metherate, R. (2005). Auditory thalamocortical transmission is reliable and temporally precise. Journal of Neurophysiology, 94(3), 20192030. https://doi.org/10.1152/JN.00860.2004Google Scholar
Rose, J. E., & Woolsey, C. N. (1949a). Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalography and Clinical Neurophysiology, 1(1–4), 391404. https://doi.org/10.1016/0013-4694(49)90212-6Google Scholar
Rose, J. E., & Woolsey, C. N. (1949b). The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. Journal of Comparative Neurology, 91(3), 441466.Google Scholar
Rosen, M. J., Sarro, E. C., Kelly, J. B., & Sanes, D. H. (2012). Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss. PLoS ONE, 7(7). https://doi.org/10.1371/JOURNAL.PONE.0041514Google Scholar
Rosen, M. J., Semple, M. N., & Sanes, D. H. (2010). Exploiting development to evaluate auditory encoding of amplitude modulation. Journal of Neuroscience, 30(46), 1550915520. https://doi.org/10.1523/JNEUROSCI.3340-10.2010Google Scholar
Rummell, B. P., Klee, J. L., & Sigurdsson, T. (2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. Journal of Neuroscience, 36(47), 1201012026. https://doi.org/10.1523/JNEUROSCI.1564-16.2016Google Scholar
Rumpel, S., Hatt, H., & Gottmann, K. (1998). Silent synapses in the developing rat visual cortex: Evidence for postsynaptic expression of synaptic plasticity. Journal of Neuroscience, 18(21), 88638874. https://doi.org/10.1523/JNEUROSCI.18-21-08863.1998Google Scholar
Runyan, C. A., Piasini, E., Panzeri, S., & Harvey, C. D. (2017). Distinct timescales of population coding across cortex. Nature, 548(7665), 9296. https://doi.org/10.1038/NATURE23020Google Scholar
Ryan, A. F., Miller, J. M., Pfingst, B. E., & Martin, G. K. (1984). Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. Journal of Neuroscience, 4(1), 298308. https://doi.org/10.1523/JNEUROSCI.04-01-00298.1984Google Scholar
Saab, A. S., Tzvetavona, I. D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., Möbius, W., Goetze, B., Jahn, H. M., Huang, W., Steffens, H., Schomburg, E. D., Pérez-Samartín, A., Pérez-Cerdá, F., Bakhtiari, D., Matute, C., Löwel, S., Griesinger, C., Hirrlinger, J., … Nave, K. A. (2016). Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 91(1), 119132. https://doi.org/10.1016/J.NEURON.2016.05.016Google Scholar
Sadaka, Y., Weinfeld, E., Lev, D. L., & White, E. L. (2003). Changes in mouse barrel synapses consequent to sensory deprivation from birth. Journal of Comparative Neurology, 457(1), 7586. https://doi.org/10.1002/CNE.10518Google Scholar
Saderi, D., Schwartz, Z. P., Heller, C. R., Pennington, J. R., & David, S. v. (2021). Dissociation of task engagement and arousal effects in auditory cortex and midbrain. eLife, 10, 125. https://doi.org/10.7554/ELIFE.60153Google Scholar
Salami, M., Itami, C., Tsumoto, T., & Kimura, F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 61746179. https://doi.org/10.1073/PNAS.0937380100Google Scholar
Sametsky, E. A., Turner, J. G., Larsen, D., Ling, L., & Caspary, D. M. (2015). Enhanced GABAA-Mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. Journal of Neuroscience, 35(25), 93699380. https://doi.org/10.1523/JNEUROSCI.5054-14.2015Google Scholar
Sanes, D. H., & Bao, S. (2009). Tuning up the developing auditory CNS. Current Opinion in Neurobiology, 19(2), 188199. https://doi.org/10.1016/J.CONB.2009.05.014Google Scholar
Sanes, D. H., Merickel, M., & Rubel, E. W. (1989). Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. Journal of Comparative Neurology, 279(3), 436444. https://doi.org/10.1002/CNE.902790308Google Scholar
Sanes, D. H., & Woolley, S. M. N. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912929. https://doi.org/10.1016/J.NEURON.2011.12.005Google Scholar
Sarro, E. C., & Sanes, D. H. (2010). Prolonged maturation of auditory perception and learning in gerbils. Developmental Neurobiology, 70(9), 636648. https://doi.org/10.1002/DNEU.20801Google Scholar
Sarro, E. C., von Trapp, G., Mowery, T. M., Kotak, V. C., & Sanes, D. H. (2015). Cortical synaptic inhibition declines during auditory learning. Journal of Neuroscience, 35(16), 63186325. https://doi.org/10.1523/JNEUROSCI.4051-14.2015Google Scholar
Scala, F., Kobak, D., Shan, S., Bernaerts, Y., Laturnus, S., Cadwell, C. R., Hartmanis, L., Froudarakis, E., Castro, J. R., Tan, Z. H., Papadopoulos, S., Patel, S. S., Sandberg, R., Berens, P., Jiang, X., & Tolias, A. S. (2019). Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nature Communications, 10(1). https://doi.org/10.1038/S41467-019-12058-ZGoogle Scholar
Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219223. https://doi.org/10.1038/NATURE22073Google Scholar
Schneider, D. M., & Mooney, R. (2018). How movement modulates hearing. Annual Review of Neuroscience, 41, 553572. https://doi.org/10.1146/ANNUREV-NEURO-072116-031215Google Scholar
Schneider, D. M., Nelson, A., & Mooney, R. (2014). A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature, 513(7517), 189194. https://doi.org/10.1038/nature13724Google Scholar
Schneider, D. M., Sundararajan, J., & Mooney, R. (2018). A cortical filter that learns to suppress the acoustic consequences of movement. Nature, 561(7723), 391395. https://doi.org/10.1038/S41586-018-0520-5Google Scholar
Schreiner, C. E., & Polley, D. B. (2014). Auditory map plasticity: diversity in causes and consequences. Current Opinion in Neurobiology, 24(1), 143156. https://doi.org/10.1016/j.conb.2013.11.009Google Scholar
Schwartz, Z. P., & David, S. v. (2018). Focal suppression of distractor sounds by selective attention in auditory cortex. Cerebral Cortex, 28(1), 323339. https://doi.org/10.1093/CERCOR/BHX288Google Scholar
Seidl, A. H., & Grothe, B. (2005). Development of sound localization mechanisms in the Mongolian gerbil is shaped by early acoustic experience. Journal of Neurophysiology, 94(2), 10281036. https://doi.org/10.1152/JN.01143.2004Google Scholar
Seki, S., & Eggermont, J. J. (2003). Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research, 180(1–2), 2838. https://doi.org/10.1016/S0378-5955(03)00074-1Google Scholar
Shaheen, L. A., Slee, S. J., & David, S. V. (2021). Task engagement improves neural discriminability in the auditory midbrain of the marmoset monkey. Journal of Neuroscience, 41(2), 284297. https://doi.org/10.1523/JNEUROSCI.1112-20.2020Google Scholar
Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear and Hearing, 23(6), 532539. https://doi.org/10.1097/00003446-200212000-00004Google Scholar
Shepard, K. N., Liles, L. C., Weinshenker, D., & Liu, R. C. (2015). Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. Journal of Neuroscience, 35(6), 24322437. https://doi.org/10.1523/JNEUROSCI.0532-14.2015Google Scholar
Sinclair, J. L., Fischl, M. J., Alexandrova, O., Heβ, M., Grothe, B., Leibold, C., & Kopp-Scheinpflug, C. (2017). Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. Journal of Neuroscience, 37(34), 82398255. https://doi.org/10.1523/JNEUROSCI.3728-16.2017Google Scholar
Singla, S., Dempsey, C., Warren, R., Enikolopov, A. G., & Sawtell, N. B. (2017). A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nature Neuroscience, 20(7), 943950. https://doi.org/10.1038/NN.4567Google Scholar
Smith, P. H., & Populin, L. C. (2001). Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology, 436(4), 508519. https://doi.org/10.1002/CNE.1084Google Scholar
Smith, P. H., Uhlrich, D. J., Manning, K. A., & Banks, M. I. (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. Journal of Comparative Neurology, 520(1), 3451. https://doi.org/10.1002/cne.22682Google Scholar
Sottile, S. Y., Hackett, T. A., Cai, R., Ling, L., Llano, D. A., & Caspary, D. M. (2017). Presynaptic neuronal nicotinic receptors differentially shape select inputs to auditory thalamus and are negatively impacted by aging. Journal of Neuroscience, 37(47), 1137711389. https://doi.org/10.1523/JNEUROSCI.1795-17.2017Google Scholar
Sottile, S. Y., Ling, L., Cox, B. C., & Caspary, D. M. (2017). Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. Journal of Physiology, 595(15), 53755385. https://doi.org/10.1113/JP274467Google Scholar
Stoilova, V. v., Knauer, B., Berg, S., Rieber, E., Jäkel, F., & Stüttgen, M. C. (2020). Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. Journal of Neurophysiology, 124(4), 10561071. https://doi.org/10.1152/JN.00736.2019Google Scholar
Sun, H., Takesian, A. E., Wang, T. T., Lippman-Bell, J. J., Hensch, T. K., & Jensen, F. E. (2018). Early seizures prematurely unsilence auditory synapses to disrupt thalamocortical critical period plasticity. Cell Reports, 23(9), 25332540. https://doi.org/10.1016/j.celrep.2018.04.108Google Scholar
Sun, Y. J., Liu, B. H., Tao, H. W., & Zhang, L. I. (2019). Selective strengthening of intracortical excitatory input leads to receptive field refinement during auditory cortical development. Journal of Neuroscience, 39(7), 11951205. https://doi.org/10.1523/JNEUROSCI.2492-18.2018Google Scholar
Sun, Y. J., Wu, G. K., Liu, B. H., Li, P., Zhou, M., Xiao, Z., Tao, H. W., & Zhang, L. I. (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature, 465(7300), 927931.Google Scholar
Takesian, A. E., Bogart, L. J., Lichtman, J. W., & Hensch, T. K. (2018). Inhibitory circuit gating of auditory critical-period plasticity. Nature Neuroscience, 21(2), 218227. https://doi.org/10.1038/s41593-017-0064-2Google Scholar
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334. https://doi.org/10.1016/B978-0-444-63327-9.00001-1Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2009). Developmental hearing loss disrupts synaptic inhibition: Implications for auditory processing. Future Neurology, 4(3), 331349. https://doi.org/10.2217/FNL.09.5Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2010). Presynaptic GABA(B) receptors regulate experience-dependent development of inhibitory short-term plasticity. Journal of Neuroscience, 30(7), 27162727. https://doi.org/10.1523/jneurosci.3903-09.2010Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2012). Age-dependent effect of hearing loss on cortical inhibitory synapse function. Journal of Neurophysiology, 107(3), 937947. https://doi.org/10.1152/jn.00515.2011Google Scholar
Takesian, A. E., Kotak, V. C., Sharma, N., & Sanes, D. H. (2013). Hearing loss differentially affects thalamic drive to two cortical interneuron subtypes. Journal of Neurophysiology, 110(4), 9991008. https://doi.org/10.1152/jn.00182.2013Google Scholar
Tan, A. Y. Y., & Wehr, M. (2009). Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience, 163(4), 13021315. https://doi.org/10.1016/J.NEUROSCIENCE.2009.07.032Google Scholar
Tan, A. Y. Y., Zhang, L. I., Merzenich, M. M., & Schreiner, C. E. (2004). Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology, 92(1), 630643. https://doi.org/10.1152/JN.01020.2003Google Scholar
Tan, Z., Hu, H., Huang, Z. J., & Agmon, A. (2008). Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons. Proceedings of the National Academy of Sciences of the United States of America, 105(6). www.pnas.orgcgidoi10.1073pnas.0710628105Google Scholar
Tasaka, G. ichi, Feigin, L., Maor, I., Groysman, M., DeNardo, L. A., Schiavo, J. K., Froemke, R. C., Luo, L., & Mizrahi, A. (2020). The temporal association cortex plays a key role in auditory-driven maternal plasticity. Neuron, 107(3), 566–579.e7. https://doi.org/10.1016/J.NEURON.2020.05.004Google Scholar
Taylor, J. A., Hasegawa, M., Benoit, C. M., Freire, J. A., Theodore, M., Ganea, D. A., Innocenti, S. M., Lu, T., & Gründemann, J. (2021). Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 12(1). https://doi.org/10.1038/S41467-021-22421-8Google Scholar
Tennigkeit, F., Schwarz, D. W. F., & Puil, E. (1998a). Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Neuroscience, 83(4), 10631073. https://doi.org/10.1016/S0306-4522(97)00458-2Google Scholar
Tennigkeit, F., Schwarz, D. W. F., & Puil, E. (1998b). Postnatal development of signal generation in auditory thalamic neurons. Developmental Brain Research, 109(2), 255263. https://doi.org/10.1016/S0165-3806(98)00056-XGoogle Scholar
Thomas, M. E., Friedman, N. H. M., Cisneros-Franco, J. M., Ouellet, L., & de Villers-Sidani, É. (2019). The prolonged masking of temporal acoustic inputs with noise drives plasticity in the adult rat auditory cortex. Cerebral Cortex, 29(3), 10321046. https://doi.org/10.1093/CERCOR/BHY009Google Scholar
Tomassy, G. S., Berger, D. R., Chen, H. H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., & Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181), 319324. https://doi.org/10.1126/SCIENCE.1249766Google Scholar
Torii, M., Hackett, T. A., Rakic, P., Levitt, P., & Polley, D. B. (2013). EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. Cerebral Cortex, 23(4), 775785. https://doi.org/10.1093/cercor/bhs066Google Scholar
Torres-Reveron, J., & Friedlander, M. (2007). Properties of persistent postnatal cortical subplate neurons. Journal of Neuroscience, 27(37), 99629974. https://doi.org/10.1523/JNEUROSCI.1536-07.2007Google Scholar
Toyoizumi, T., Miyamoto, H., Yazaki-Sugiyama, Y., Atapour, N., Hensch, T. K., & Miller, K. D. (2013). A Theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron, 80(1), 5163. https://doi.org/10.1016/J.NEURON.2013.07.022Google Scholar
Tsunada, J., Liu, A. S. K., Gold, J. I., & Cohen, Y. E. (2016). Causal contribution of primate auditory cortex to auditory perceptual decision-making. Nature Neuroscience, 19(1), 135142. https://doi.org/10.1038/nn.4195Google Scholar
Valverde, F., Facal‐valverde, M. V., Santacana, M., & Heredia, M. (1989). Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study. Journal of Comparative Neurology, 290(1), 118140.Google Scholar
Vandevelde, I. L., Duckworth, E., & Reep, R. L. (1996). Layer VII and the gray matter trajectories of corticocortical axons in rats. Anatomy and Embryology, 194(6), 581593. https://doi.org/10.1007/BF00187471Google Scholar
Venkataraman, Y., & Bartlett, E. L. (2013). Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. Journal of Neurophysiology, 109(12), 28662882.Google Scholar
Venkataraman, Y., & Bartlett, E. L. (2014). Postnatal development of auditory central evoked responses and thalamic cellular properties. Developmental Neurobiology, 74(5), 541555. https://doi.org/10.1002/DNEU.22148Google Scholar
Viswanathan, S., Bandyopadhyay, S., Kao, J. P. Y., & Kanold, P. O. (2012). Changing microcircuits in the subplate of the developing cortex. Journal of Neuroscience, 32(5), 15891601. https://doi.org/10.1523/JNEUROSCI.4748-11.2012Google Scholar
Viswanathan, S., Sheikh, A., Looger, L. L., & Kanold, P. O. (2017). Molecularly defined subplate neurons project both to thalamocortical recipient layers and thalamus. Cerebral Cortex, 27(10), 47594768. https://doi.org/10.1093/CERCOR/BHW271Google Scholar
Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic brains and the changing rules of neuroplasticity: implications for learning and recovery. Frontiers in Psychology, 8. https://doi.org/10.3389/FPSYG.2017.01657Google Scholar
Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. Journal of Physiology, 587(9), 18731879. https://doi.org/10.1113/JPHYSIOL.2008.167635Google Scholar
Wang, H. C., & Bergles, D. E. (2015). Spontaneous activity in the developing auditory system. Cell and Tissue Research, 361(1), 6575. https://doi.org/10.1007/S00441-014-2007-5Google Scholar
Wang, X., Lu, T., Bendor, D., & Bartlett, E. (2008). Neural coding of temporal information in auditory thalamus and cortex. Neuroscience, 157(2), 484493. https://doi.org/10.1016/J.NEUROSCIENCE.2008.07.050Google Scholar
Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442446. https://doi.org/10.1038/NATURE02116Google Scholar
Wess, J. M., Isaiah, A., Watkins, P. v., & Kanold, P. O. (2017). Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 1260212607. https://doi.org/10.1073/PNAS.1710793114Google Scholar
Whitton, J. P., & Polley, D. B. (2011). Evaluating the perceptual and pathophysiological consequences of auditory deprivation in early postnatal life: a comparison of basic and clinical studies. Journal of the Association for Research in Otolaryngology, 12(5), 535547. https://doi.org/10.1007/s10162-011-0271-6Google Scholar
Williamson, R. S., Hancock, K. E., Shinn-Cunningham, B. G., & Polley, D. B. (2015). Locomotion and task demands differentially modulate thalamic audiovisual processing during active search. Current Biology, 25(14), 18851891. https://doi.org/10.1016/j.cub.2015.05.045Google Scholar
Williamson, R. S., & Polley, D. B. (2019). Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons. eLife, 8. https://doi.org/10.7554/eLife.42974Google Scholar
Wilmington, D., Gray, L., & Jahrsdoerfer, R. (1994). Binaural processing after corrected congenital unilateral conductive hearing loss. Hearing Research, 74(1–2), 99114. https://doi.org/10.1016/0378-5955(94)90179-1Google Scholar
Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1–2), 18. https://doi.org/10.1016/J.HEARES.2005.06.014Google Scholar
Winer, J. A., Diehl, J. J., & Larue, D. T. (2001). Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology, 430, 2755.Google Scholar
Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 313. https://doi.org/10.1016/j.heares.2007.01.017Google Scholar
Winer, J. A., Miller, L. M., Lee, C. C., & Schreiner, C. E. (2005). Auditory thalamocortical transformation: structure and function. Trends in Neuroscience, 28(5), 255263. https://doi.org/10.1016/j.tins.2005.03.009Google Scholar
Xin, Y., Zhong, L., Zhang, Y., Zhou, T., Pan, J., & Xu, N. long. (2019). Sensory-to-Category transformation via dynamic reorganization of ensemble structures in mouse auditory cortex. Neuron, 103(5), 909–921.e6. https://doi.org/10.1016/J.NEURON.2019.06.004Google Scholar
Xiong, X. R., Liang, F., Zingg, B., Ji, X. Y., Ibrahim, L. A., Tao, H. W., & Zhang, L. I. (2015). Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nature Communications, 6. https://doi.org/10.1038/NCOMMS8224Google Scholar
Xu, H., Kotak, V. C., & Sanes, D. H. (2010). Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex. Journal of Neuroscience, 30(1), 331341. https://doi.org/10.1523/JNEUROSCI.4554-09.2010Google Scholar
Xue, M., Atallah, B. v., & Scanziani, M. (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. Nature, 511(7511), 596600. https://doi.org/10.1038/NATURE13321Google Scholar
Yang, E. J., Lin, E. W., & Hensch, T. K. (2012). Critical period for acoustic preference in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(2), 1721317220. https://doi.org/10.1073/PNAS.1200705109Google Scholar
Yang, Y., Lee, J., & Kim, G. (2020). Integration of locomotion and auditory signals in the mouse inferior colliculus. eLife, 9. https://doi.org/10.7554/ELIFE.52228Google Scholar
Yin, T. C. T., Smith, P. H., & Joris, P. X. (2019). Neural mechanisms of binaural processing in the auditory brainstem. Comprehensive Physiology, 9(4), 15031575. https://doi.org/10.1002/CPHY.C180036Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 11231130. https://doi.org/10.1038/nn745Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 23092314. https://doi.org/10.1073/PNAS.261707398Google Scholar
Zhang, L. I., Tan, A. Y. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424(6945), 201205. https://doi.org/10.1038/NATURE01796Google Scholar
Zhao, C., Kao, J. P. Y., & Kanold, P. O. (2009). Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. Journal of Neuroscience, 29(49), 1547915488. https://doi.org/10.1523/JNEUROSCI.4471-09.2009Google Scholar
Zheng, W. (2012). Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise. Frontiers in Systems Neuroscience, 114. https://doi.org/10.3389/FNSYS.2012.00065Google Scholar
Zhou, X., & Merzenich, M. M. (2012). Environmental noise exposure degrades normal listening processes. Nature Communications, 3, 843. https://doi.org/10.1038/ncomms1849Google Scholar
Zhou, X., Panizzutti, R., de Villers-Sidani, É., Madeira, C., & Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. Journal of Neuroscience, 31(15), 56255634. https://doi.org/10.1523/JNEUROSCI.6470-10.2011Google Scholar
Zhou, Y., Liu, B. hua, Wu, G. K., Kim, Y. J., Xiao, Z., Tao, H. W., & Zhang, L. I. (2010). Preceding inhibition silences layer 6 neurons in auditory cortex. Neuron, 65(5), 706717. https://doi.org/10.1016/J.NEURON.2010.02.021Google Scholar
Zljak, L., Uylings, H. B. M., Kostovic, I., & van Eden, C. G. (1992). Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. Journal of Comparative Neurology, 316(4), 485496. https://doi.org/10.1002/CNE.903160408Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×