Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-26T11:42:42.745Z Has data issue: false hasContentIssue false

Sizing up mechanical testing: Comparison of microscale and mesoscale mechanical testing techniques on a FeCrAl welded tube

Published online by Cambridge University Press:  10 August 2020

Jonathan G. Gigax*
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM87545, USA
Avery J. Torrez
MST-8, Los Alamos National Laboratory, Los Alamos, NM87545, USA
Quinn McCulloch
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM87545, USA
Hyosim Kim
MST-8, Los Alamos National Laboratory, Los Alamos, NM87545, USA
Stuart A. Maloy
MST-8, Los Alamos National Laboratory, Los Alamos, NM87545, USA
Nan Li
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM87545, USA
a)Address all correspondence to this author. e-mail:
Get access


FeCrAl alloys are among the best and most mature accident tolerant fuel cladding candidates produced to date, due to their superior combination of mechanical properties and stability at elevated temperatures. For fuel cladding applications, these materials are drawn into tubes with plugs welded to the ends. The mechanical properties of such welds and the impact on cladding performance have not been fully investigated. A novel mesoscale mechanical test and a variety of microscale tests were performed to evaluate a range of properties including nanoindentation hardness, compression and shear yield strengths, and tensile strengths and elongations. Micromechanical testing generally matched the trends of the larger mesoscale testing, with nanoindentation reproducing the trend the best, although some discrepancies existed in regions with low dislocation content. Mesoscale tensile testing showed good correlation with macroscale tests and revealed that the plug heat-affected zone possessed the lowest strength and ductility. This indicated that failure would occur first in or near this region.

Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Rebak, R.B., Terrani, K.A., Gassmann, W.P., Williams, J.B., and Ledford, K.L.: Improving nuclear power plant safety with FeCrAl alloy fuel cladding. MRS Adv. 2(21–22), 1 (2017).CrossRefGoogle Scholar
Yamamoto, Y., Pint, B.A., Terrani, K.A., Field, K.G., Yang, Y., and Snead, L.L.: Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater. 467(Pt 2), 703716 (2015).CrossRefGoogle Scholar
Field, K.G., Gussev, M.N., Yamamoto, Y., and Snead, L.L.: Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications. J. Nucl. Mater. 454, 352 (2014).CrossRefGoogle Scholar
Zinkle, S.J., Terrani, K.A., and Snead, L.L.: Motivation for utilizing new high-performance advanced materials in nuclear energy systems. Curr. Opin. Solid State Mater. Sci. 20, 401 (2016).CrossRefGoogle Scholar
Yamamoto, Y., Sun, Z., Pint, B.A., and Terrani, K.A.: Optimized Gen-II FeCrAl Cladding Production in Large Quantity for Campaign Testing (Oak Ridge National Laboratory, Oak Ridge, 2016).CrossRefGoogle Scholar
Field, K.G., Snead, M., Yamamoto, Y., Pint, B.A., and Terrani, K.A.: Handbookonthe Material Properties of FeCrAl Alloys for Nuclear Power Production Applications, ORNL/TM-2017/186, 2017.Google Scholar
Wei, C., Zhang, J., Yang, S., Tao, W., Wu, F., and Xia, W.: Experiment-based regional characterization of HAZ mechanical properties for laser welding. Int. J. Adv. Manuf. Technol. 78, 1629 (2015).CrossRefGoogle Scholar
Wang, X., Mao, S., Chen, P., Liu, Y., Ning, J., Li, H., Zang, K., Zhang, Z., and Han, X.: Evolution of microstructure and mechanical properties of a dissimilar aluminium alloy weldment. Mater. Des. 90, 230 (2016).CrossRefGoogle Scholar
Gussev, M.N., Field, K.G., and Yamamoto, Y.: Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater. Des. 129, 227 (2017).CrossRefGoogle Scholar
Barabash, O.M., Horton, J.A., Babu, S.S., Vitek, J.M., David, S.A., Park, J.W., Ice, G.E., and Barabash, R.I.: Evolution of dislocation structure in the heat affected zone of a nickel-based single crystal. J. Appl. Physiol. 96, 3673 (2004).CrossRefGoogle Scholar
McCulloch, Q., Gigax, J., and Hosemann, P.: Femtosecond laser ablation for mesoscale specimen evaluation. JOM 72(4), 1694 (2020).CrossRefGoogle Scholar
Smith, N.S., Skoczylas, W.P., Kellogg, S.M., Kinion, D.E., Tesch, P.P., Sutherland, O., Aanesland, A., and Boswell, R.W.: High brightness inductively coupled plasma source for high current focused ion beam applications. J. Vac. Sci. Technol. B 24, 2902 (2006).CrossRefGoogle Scholar
Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 400–401, 268 (2005).CrossRefGoogle Scholar
Kawakami, T. and Kunieda, M.: Study on factors determining limits of minimum machinable size in micro EDM. CIRP Ann. Manuf. Technol. 54(1), 167 (2005).CrossRefGoogle Scholar
Pfeifenberger, M.J., Mangang, M., Wurster, S., Reiser, J., Hohenwarter, A., Pfleging, W., Kiener, D., and Pippan, R.: The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Mater. Des. 121, 109 (2017).CrossRefGoogle Scholar
Echlin, M.P., Titus, M.S., Straw, M., Gumbsch, P., and Pollock, T.M.: Materials response to glancing incidence femtosecond laser ablation. Acta Mater. 124, 37 (2017).CrossRefGoogle Scholar
Gigax, J.G., Vo, H., McCulloch, Q., Chancey, M., Wang, Y., Maloy, S.A., Li, N., and Hosemann, P.: Micropillar compression response of femtosecond laser-cut single crystal Cu and proton irradiated Cu. Scr. Mater. 170, 145 (2019).CrossRefGoogle Scholar
Gigax, J., El-Atwani, O., McCulloch, Q., Aytuna, B., Efe, M., Fensin, S., Maloy, S.A., and Li, N.: Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining. Scr. Mater. 178, 508 (2020).CrossRefGoogle Scholar
Gigax, J., Torrez, A., and Li, N.: Microstructural and Micromechanical Characterization of FeCrAl C26M tubes (Los Alamos National Laboratory, Los Alamos, NM, 2019).CrossRefGoogle Scholar
Maier, P., Richter, A., Faulkner, R.G., and Ries, R.: Application of nanoindentation technique for structural characterisation of weld materials. Mater. Charact. 48(4), 329 (2002).CrossRefGoogle Scholar
Baltazar Hernandez, V.H., Panda, S.K., Kuntz, M.L., and Zhou, Y.: Nanoindentation and microstructure analysis of resistance spot welded dual phase steel. Mater. Lett. 65(2), 207 (2010).CrossRefGoogle Scholar
Charitidis, C.A., Dragatogiannis, D.A., Koumoulos, E.P., and Kartsonakis, I.A.: Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Mater. Sci. Eng. A 540, 226 (2012).CrossRefGoogle Scholar
Legendre, F., Poissonnet, S., Bonnaillie, P., Boulanger, L., and Forest, L.: Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy. J. Nucl. Mater. 386–388, 537 (2009).CrossRefGoogle Scholar
Cabibbo, M., Forcellese, A., El Mehtedi, M., and Simoncini, M.: Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization. Mater. Sci. Eng. A 590, 209 (2014).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity – I. Theory. J. Mech. Phys. Solids 47, 1239 (1999).CrossRefGoogle Scholar
Huang, Y., Xue, Z., Gao, H., Nix, W.D., and Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15(8), 1786 (2000).CrossRefGoogle Scholar
Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).CrossRefGoogle Scholar
Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Y.V.: Microindentations on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41(10), 2855 (1993).CrossRefGoogle Scholar
Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., and Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(11), 1990 (2008).CrossRefGoogle Scholar
Pathak, S. and Kalidindi, S.R.: Spherical nanoindentation stress-strain curves. Mater. Sci. Eng. R 91, 1 (2015).CrossRefGoogle Scholar
Patel, D.K. and Kalidindi, S.R.: Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater. 112, 295 (2016).CrossRefGoogle Scholar
Wang, Z., Bei, H., George, E.P., and Pharr, G.M.: Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scr. Mater. 65, 469 (2011).CrossRefGoogle Scholar
Weaver, J.S., Priddy, M.W., McDowell, D.L., and Kalidindi, S.R.: On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater. 117, 23 (2016).CrossRefGoogle Scholar
Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng. A 505, 79 (2009).CrossRefGoogle Scholar
Kim, J.Y. and Greer, J.: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).CrossRefGoogle Scholar
Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect on strength and strain hardening small-scale [1 1 1] nickel compression pillars. Mater. Sci. Eng. A 489(1–2), 319 (2008).CrossRefGoogle Scholar
Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., and Nix, W.D.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56, 602 (2008).CrossRefGoogle Scholar
Kim, J.Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
Korunsky, A.M., Sebastini, M., and Bemporad, E.: Focused ion beam ring drilling for residual stress evaluation. Mater. Lett. 63(22), 1961 (2009).CrossRefGoogle Scholar
Gigax, J.G., Baldwin, J.K., Sheehan, C.J., Maloy, S.A., and Li, N.: Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu-Si interfaces. J. Mater. Res. 34(9), 1574 (2019).CrossRefGoogle Scholar
Heyer, J.K., Brinckmann, S., Pfetzing-Micklich, J., and Eggeler, G.: Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).CrossRefGoogle Scholar
Wierczorek, N., Laplanche, G., Heyer, J.-K., Parsa, A.B., Pfetzing-Micklich, J., and Eggeler, G.: Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments. Acta Mater. 113, 320 (2016).CrossRefGoogle Scholar
Milot, T.S.: Establishing Correlations for Predicting Tensile Properties Based on the Shear Punch Test and Vickers Microhardness Data (University of California, Santa Barbara, 2012).Google Scholar
Zhang, P., Li, S.X., and Zhang, Z.F.: General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62 (2011).CrossRefGoogle Scholar
El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).CrossRefGoogle ScholarPubMed
Kunz, A., Pathak, S., and Greer, J.R.: Size effects in Al nanopillars: Single crystalline vs. bicrystalline. Acta Mater. 59, 4416 (2011).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Motz, C., and Dehm, G.: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater. 73, 240 (2014).CrossRefGoogle Scholar
Was, G.: Irradiation hardening and deformation. In Fundamentals of Radiation Materials Science – Metals and Alloys (Springer-Verlag, Berlin, Heidelberg, 2007), pp. 669733.Google Scholar
Hosemann, P.: Small-scale mechanical testing on nuclear materials: Bridging the experimental length-scale gap. Scr. Mater. 143, 161 (2018).CrossRefGoogle Scholar
Vo, H.T., Reichardt, A., Frazer, D., Bailey, N., Chou, P., and Hosemann, P.: In situ micro-tensile testing on proton beam-irradiated stainless steel. J. Nucl. Mater. 493, 336 (2017).CrossRefGoogle Scholar
Weaver, J.S., Pathak, S., Reichardt, A., Vo, H.T., Maloy, S.A., Hosemann, P., and Mara, N.A.: Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening. J. Nucl. Mater. 493, 368 (2017).CrossRefGoogle Scholar
Krumwiede, D.L., Yamamoto, T., Saleh, T.A., Maloy, S.A., Odette, G.R., and Hosemann, P.: Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials. J. Nucl. Mater. 504, 135 (2018).CrossRefGoogle Scholar
Aydogan, E., Weaver, J.S., Maloy, S.A., El-Atwani, O., Wang, Y.Q., and Mara, N.A.: Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations. J. Nucl. Mater. 503, 250 (2018).CrossRefGoogle Scholar
Chen, T., Gigax, J.G., Price, L., Chen, D., Ukai, S., Aydogan, E., Maloy, S.A., Garner, F.A., and Shao, L.: Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces. Acta Mater. 116, 29 (2016).CrossRefGoogle Scholar
Gigax, J.G., Chen, T., Kim, H., Wang, J., Price, L.M., Aydogan, E., Maloy, S.A., Schreiber, D.K., Toloczko, M.B., Garner, F.A., and Shao, L.: Radiation response of alloy T91 at damage levels up to 1000 peak dpa. J. Nucl. Mater. 482, 257 (2016).CrossRefGoogle Scholar
Gigax, J.G., Kim, H., Chen, T., Garner, F.A., and Shao, L.: Radiation instability of equal channel angular extruded T91 at ultra-high damage levels. Acta Mater. 132, 10 (2017).CrossRefGoogle Scholar
Aydogan, E., Maloy, S.A., Anderoglu, O., Sun, C., Gigax, J.G., Shao, L., Garner, F.A., Anderson, I.E., and Lewandowski, J.J.: Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys. Acta Mater. 134, 116 (2017).CrossRefGoogle Scholar
Kim, H., Gigax, J.G., Chen, T., Ukai, S., Garner, F.A., and Shao, L.: Dispersoid stability in ion irradiated oxide-dispersion-strengthened alloy. J. Nucl. Mater. 509, 504 (2018).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).CrossRefGoogle Scholar
Supplementary material: Image

Gigax et al. supplementary material

Gigax et al. supplementary material

Download Gigax et al. supplementary material(Image)
Image 2.9 MB