We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As the simplest case of Langlands functoriality, one expects the existence of the symmetric power $S^n(\pi )$, where $\pi $ is an automorphic representation of ${\rm GL}(2,{\mathbb{A}})$ and ${\mathbb{A}}$ denotes the adeles of a number field $F$. This should be an automorphic representation of ${\rm GL}(N,{\mathbb{A}})$ ($N=n+1)$. This is known for $n=2,3$ and $4$. In this paper we show how to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur representations’, combined with expected results on level-raising, as well as another case (a particular tensor product) of Langlands functoriality. Our methods assume $F$ totally real, and the initial representation $\pi $ of classical type.
While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms $f_D$ which are naturally defined in terms of binary quadratic forms of discriminant $D$. It was later determined by Kohnen and Zagier that the generating function for the function $f_D$ is a half-integral weight cusp form. A natural preimage of $f_D$ under a differential operator at the heart of the theory of harmonic weak Maass forms was determined by the first two authors and Kohnen. In this paper, we consider the modularity properties of the generating function of these preimages. We prove that although the generating function is not itself modular, it can be naturally completed to obtain a half-integral weight modular object.
Let $\nu _{f}(n)$ be the $n\mathrm{th}$ normalized Fourier coefficient of a Hecke–Maass cusp form $f$ for ${\rm SL }(2,\mathbb{Z})$ and let $\alpha $ be a real number. We prove strong oscillations of the argument of $\nu _{f}(n)\mu (n) \exp (2\pi i n \alpha )$ as $n$ takes consecutive integral values.
Let $K_1$ and $K_2$ be complete discrete valuation fields of residue characteristic $p>0$. Let $\pi _{K_1}$ and $\pi _{K_2}$ be their uniformizers. Let $L_1/K_1$ and $L_2/K_2$ be finite extensions with compatible isomorphisms of rings $\mathcal{O}_{K_1}/(\pi _{K_1}^m)\, {\simeq }\, \mathcal{O}_{K_2}/(\pi _{K_2}^m)$ and $\mathcal{O}_{L_1}/(\pi _{K_1}^m)\, {\simeq }\, \mathcal{O}_{L_2}/(\pi _{K_2}^m)$ for some positive integer $m$ which is no more than the absolute ramification indices of $K_1$ and $K_2$. Let $j\leq m$ be a positive rational number. In this paper, we prove that the ramification of $L_1/K_1$ is bounded by $j$ if and only if the ramification of $L_2/K_2$ is bounded by $j$. As an application, we prove that the categories of finite separable extensions of $K_1$ and $K_2$ whose ramifications are bounded by $j$ are equivalent to each other, which generalizes a theorem of Deligne to the case of imperfect residue fields. We also show the compatibility of Scholl’s theory of higher fields of norms with the ramification theory of Abbes–Saito, and the integrality of small Artin and Swan conductors of $p$-adic representations with finite local monodromy.
Let $X$ be an algebraic curve. We study the problem of parametrizing geometric structures over $X$ which are only generically defined. For example, parametrizing generically defined maps (rational maps) from $X$ to a fixed target scheme $Y$. There are three methods for constructing functors of points for such moduli problems (all originally due to Drinfeld), and we show that the resulting functors are equivalent in the fppf Grothendieck topology. As an application, we obtain three presentations for the category of $D$-modules ‘on’ $B(K)\backslash G(\mathbb{A})/G(\mathbb{O})$, and we combine results about this category coming from the different presentations.
In this article, we study the homomorphisms between scalar generalized Verma modules. We conjecture that any homomorphism between scalar generalized Verma modules is a composition of elementary homomorphisms. The purpose of this article is to confirm the conjecture for some parabolic subalgebras under the assumption that the infinitesimal characters are regular.
A theorem due to Ohkawa states that the collection of Bousfield equivalence classes of spectra is a set. We extend this result to arbitrary combinatorial model categories.