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Ramification theory and perfectoid spaces

Shin Hattori

Abstract

Let K1 and K2 be complete discrete valuation fields of residue characteristic p > 0.
Let πK1 and πK2 be their uniformizers. Let L1/K1 and L2/K2 be finite extensions with
compatible isomorphisms of ringsOK1/(π

m
K1

)'OK2/(π
m
K2

) andOL1/(π
m
K1

)'OL2/(π
m
K2

)
for some positive integer m which is no more than the absolute ramification indices of
K1 and K2. Let j 6 m be a positive rational number. In this paper, we prove that
the ramification of L1/K1 is bounded by j if and only if the ramification of L2/K2

is bounded by j. As an application, we prove that the categories of finite separable
extensions of K1 and K2 whose ramifications are bounded by j are equivalent to
each other, which generalizes a theorem of Deligne to the case of imperfect residue
fields. We also show the compatibility of Scholl’s theory of higher fields of norms with
the ramification theory of Abbes–Saito, and the integrality of small Artin and Swan
conductors of p-adic representations with finite local monodromy.
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1. Introduction

Let K be a complete discrete valuation field of residue characteristic p > 0. Let k be the residue
field, OK be the ring of integers and π = πK be a uniformizer of K. We define e(K) to be the
absolute ramification index of K if char(K) = 0 and an arbitrary positive integer if char(K) = p.

When k is perfect, the classical ramification theory defines a notion of ramification of any
finite separable extension L/K and, for any positive rational number j, a notion of whether the
ramification of L/K is bounded by j (see [Ser68]). We let FE<jK denote the category of finite
separable extensions L/K whose ramification is bounded by j.
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Deligne [Del84] defined a ramification theory of truncated discrete valuation rings with perfect
residue fields. Let m be a positive integer. A truncated discrete valuation ring of length m is
by definition a local ring A with principal maximal ideal which is nilpotent such that A is of
length m as an A-module. The ring OK/(πm) is a truncated discrete valuation ring of length
m, and conversely any truncated discrete valuation ring of length m can be written as such a
quotient of the ring of integers of some complete discrete valuation field. For the case where the
residue field of A is perfect, Deligne defined a notion of finite extension B/A of truncated discrete
valuation rings and a notion of whether its ramification is bounded by j, for any positive rational
number j satisfying j 6 m. Moreover, for any truncated discrete valuation ring A of length m
with perfect residue field and j 6m, he also defined a category (extA)j of finite extensions B/A
whose ramification is bounded by j.

Depending on the choice of a presentation A ' OK/(πm) of A as a quotient of a complete
discrete valuation ring OK , we have a natural functor FE<jK → (extA)j defined by L 7→OL/(πm).
Then Deligne also showed that this is an equivalence of categories. A striking fact is that the
category (extA)j is independent of the choice of a presentation A ' OK/(πm). This implies that,
for any complete discrete valuation fields K1 and K2 with perfect residue fields of characteristic
p, if there exists a ring isomorphism OK1/(π

m
K1

) ' OK2/(π
m
K2

), then the categories FE<jK1
and

FE<jK2
are equivalent, even though the characteristics of K1 and K2 may be different. A key

point of this equivalence is that, since the residue field k is assumed to be perfect, for any finite
separable extension L/K the OK-algebra OL is generated by a single element x, and ramification
of the extension L/K can be read off from the Newton polygon of (a translation of) the minimal
polynomial of x, which is a combinatorial object independent of char(K).

For the case where the residue field k is imperfect, a ramification theory of finite separable
extensions of K was developed satisfactorily by Abbes and Saito [AS02, AS03], and we have a
category FE<jK of finite separable extensions L/K whose (non-log) ramification is bounded by j,
as in the case of a perfect residue field. In their ramification theory, the notion of whether the
(non-log and log) ramification of a finite separable extension L/K is bounded by some positive
rational number j is defined by counting the number of geometric connected components of a
tubular neighborhood of defining equations of the OK-algebra OL in the sense of rigid analytic
geometry. Note that, in this case, the OK-algebra OL is not necessarily generated by a single
element and thus it seems difficult to control its ramification by Newton polygons.

Using their works and the author’s [Hat06], Hiranouchi and Taguchi [HT08] defined, for
any truncated discrete valuation ring A of length m whose residue field may be imperfect and
any positive rational number j 6 m, a category of finite extensions B/A whose ramification
is bounded by j, which we denote by FFP<jA (see Definition 4.15). In fact, they defined the
category by choosing a presentation of A as above. They questioned whether it is independent
of the choice, and whether we can generalize the striking equivalence of Deligne to the case of
an imperfect residue field.

In this paper, we prove the following correspondence result of (non-log and log) ramification
of finite extensions of complete discrete valuation fields which may have different characteristics.

Theorem 1.1. Let L1/K1 and L2/K2 be finite extensions of complete discrete valuation fields
of residue characteristic p > 0. Let πKi be a uniformizer of Ki. Let m be a positive integer
satisfying m 6 mini e(Ki). Suppose that we have compatible isomorphisms of rings OK1/(π

m
K1

) '
OK2/(π

m
K2

) and OL1/(π
m
K1

) ' OL2/(π
m
K2

).

(i) (Corollary 4.11) For any positive rational number j 6 m, the ramification of L1/K1 is
bounded by j if and only if the ramification of L2/K2 is bounded by j.
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(ii) (Corollary 5.6) For any positive rational number j 6m−2, the log ramification of L1/K1

is bounded by j if and only if the log ramification of L2/K2 is bounded by j.

Note that a similar correspondence of ramification is studied by the author for the case of
finite flat group schemes [Hat12a, Hat12b]. As an application of Theorem 1.1, we answer the
above questions of Hiranouchi–Taguchi affirmatively for the case of pA = 0, as follows.

Theorem 1.2. (i) (Theorem 4.16) The category FFP<jA is independent of the choice of a
presentation A ' OK/(πm).

(ii)(Corollary 4.18) Let K1 and K2 be complete discrete valuation fields with residue fields
k1 and k2 of characteristic p > 0, respectively. Let j be a positive rational number satisfying
j 6 mini e(Ki). Suppose that the fields k1 and k2 are isomorphic to each other. Then there exists
an equivalence of categories

FE<jK1
' FE<jK2

.

In particular, there exists an isomorphism of topological groups

GK1/G
j
K1
' GK2/G

j
K2
,

where GjKi
is the jth (non-log) upper ramification subgroup of the absolute Galois group GKi

(see [AS02, § 3]).

We also give the following applications of Theorem 1.1 to Scholl’s theory of higher fields of
norms [Sch06] and the integrality of the Artin and the Swan conductors. Note that Theorem 1.3
was proved by Ohkubo using a totally different method [Ohk13, Theorem 3.42].

Theorem 1.3 (Theorem 6.2). The functor of higher fields of norms is compatible with (non-log
and log) ramification.

Theorem 1.4 (Theorem 7.2). Suppose char(K) = 0. Let V be a p-adic representation of GK
with finite local monodromy. Let Art(V ) (respectively Sw(V )) be the Artin conductor (respectively
Swan conductor) of V .

(i) If Art(V ) < e(K), then Art(V ) is an integer.

(ii) If Sw(V ) < e(K)− 2, then Sw(V ) is an integer.

The key idea of the proof of Theorem 1.1 is to compare the sets of geometric connected
components of affinoid varieties of different characteristics using the theory of perfectoid spaces
due to Scholze [Sch12]. By a base change, we reduce ourselves to such a comparison of the
case where the residue field k is perfect. Namely, we consider the following situation: we have a
diagram of surjections

k[[u]]→ A← OK ,
where the images of π and u in A coincide, and we also have a set of polynomials f̄ = {f̄1, . . . , f̄r}
in A[X]. Here we put X = (X1, . . . , Xn). Let f ⊆ OK [X] and f ⊆ k[[u]][X] be lifts of f̄ . Let C
be the completion of an algebraic closure of K. Let C[ be its tilt [Sch12, § 3], which is defined as
the fraction field of the inverse limit ring

OC[ = lim
←−
Φ

OC/(π
m)

along the pth power Frobenius map. The field k((u)) is considered as a subfield of C[ by u 7→ π,
where we define π = (πl)l>0 by choosing a system of p-power roots of π in C satisfying π0 = π
and πpl+1 = πl. Consider the adic spaces over C

Xad
C,0 = Spa(C〈X〉,OC〈X〉), Xad

C,∞ = Spa(C〈X1/p∞〉,OC〈X1/p∞〉)
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and also similar adic spaces Xad
C[,0

and Xad
C[,∞ over C[. Then we have a diagram

Xad
C,∞

τ
∼
//

��

Xad
C[,∞

��
Xad

C,0 Xad
C[,0

where the map τ is the homeomorphism of [Sch12, Theorem 6.3]. The equations f and f define
the rational subsets Xj,ad

C ⊆ Xad
C,0 and Xj,ad

C[ ⊆ Xad
C[,0

given by the inequalities

|fi(x)| 6 |π(x)|j and |fi(x)| 6 |u(x)|j ,

respectively. Here | · (x)| denotes the associated continuous valuation for any point x of these
adic spaces. The inverse image of Xj,ad

C[ in Xad
C,∞ by the composite in the above diagram is the

rational subset given by the inequality

|f ]i (x)| 6 |π(x)|j ,

where (·)] : OC[〈X1/p∞〉 → OC〈X1/p∞〉 is a natural multiplicative map [Sch12, Theorem 6.3].
From the choice of f and f , we can prove the congruence

f ]i ≡ fi mod πm.

Thus the assumption on j implies that the inverse image coincides with the inverse image of Xj,ad
C

in Xad
C,∞. Then Theorem 1.1 follows by showing that the vertical arrows of the above diagram

induce bijections between the sets of connected components of the rational subsets Xj,ad
C , Xj,ad

C[

and their inverse images in Xad
C,∞, Xad

C[,∞.

2. Lemmas on connected components of analytic spaces

Let K be a complete valuation field of rank one. Let Ksep be a separable closure of K, which we
consider as a valuation field by extending the valuation of K naturally. Let C be the completion
of Ksep. In this section, we show lemmas which compare the sets of connected components in
various settings of analytic geometry over K. First we show the following lemma comparing
the sets of connected components between K-affinoid varieties and their associated adic spaces
[Hub94].

Lemma 2.1. Let A be a K-affinoid algebra in the sense of [BGR84, Definition 6.1.1/1] and A◦

be the subring of power-bounded elements of A. Let X = Sp(A) be its associated K-affinoid
variety and Xad = Spa(A,A◦) be its associated adic space. Then we have a natural bijection
π0(Xad)→ π0(X).

Proof. The set X is naturally considered as a subset of Xad. Since X is quasi-separated, the
association U 7→ U ∩X gives a bijection from the set of quasi-compact open subsets of Xad to
the set of quasi-compact admissible open subsets of X. Moreover, the notions of open covering
and admissible open covering correspond to each other by this bijection [Hub96, (1.1.11)].

Let U be a quasi-compact admissible open subset of X and Uad be the associated quasi-
compact open subset of Xad via the above bijection. We first prove that if U is connected, then
Uad is also connected. Indeed, suppose that we have a decomposition Uad = V ad

1

∐
V ad

2 of Uad
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into the disjoint union of open subsets V ad
i . Since Uad is quasi-compact, the open subsets V ad

i

are also quasi-compact. Put Vi = V ad
i ∩X, which is a quasi-compact admissible open subset of

X. We have U = V1
∐
V2 and this is an admissible open covering by the above bijection. Since

U is connected, we may assume U = V1 and thus we obtain Uad = V ad
1 . This implies that Uad is

connected.
Let U1, . . . , Un be the connected components of X. Each Ui is a rational subdomain of X

and thus quasi-compact. Let Uad
i be the associated quasi-compact open subset of Xad. Since the

covering X =
∐n
i=1 Ui is an admissible open covering, the above bijection shows Xad =

⋃n
i=1 U

ad
i .

Since Uad
i ∩ Uad

j is constructible and X ∩ (Uad
i ∩ Uad

j ) = Ui ∩ Uj , [Hub93, Corollary 4.2] implies
Uad
i ∩ Uad

j = ∅ for any i 6= j. Thus each Uad
i is a connected component of Xad and the lemma

follows. 2

Let A be a K-affinoid algebra which is geometrically reduced. We define the set of geometric
connected components of Sp(A) as

πgeom
0 (Sp(A)) = lim

←−
L/K

π0(Sp(A⊗K L)),

where the limit on the right-hand side runs over the category of finite separable extensions of
K in Ksep. This set is a finite set and the inverse system is constant for any sufficiently large
L, by the reduced fiber theorem [BLR95, Theorem 1.3] (see also [AS02, Theorem 4.2]). It has a
natural continuous action of the absolute Galois group GK = Gal(Ksep/K).

Lemma 2.2. Let A be a geometrically reduced K-affinoid algebra. Then there exists a natural
isomorphism of finite GK-sets

π0(Spa(A ⊗̂K C, (A ⊗̂K C)◦))→ πgeom
0 (Sp(A)).

Proof. For any extension L/K of complete valuation fields of rank one, the ring A ⊗̂K L is an
L-affinoid algebra and we put

Xad
L = Spa(A ⊗̂K L, (A ⊗̂K L)◦).

By Lemma 2.1, it suffices to show that the natural map of finite GK-sets

π0(Xad
C )→ lim

←−
L/K

π0(Xad
L )

is a bijection, where the limit runs over the category of finite separable extensions of K in Ksep.
Let k̄ be the residue field of Ksep, which is an algebraic closure of k. By the reduced fiber

theorem and replacing K with a sufficiently large finite separable extension, we may assume that
A◦ is topologically of finite type over OK and A◦ ⊗OK

k̄ is reduced. Then we have (A⊗K L)◦ =
A◦⊗OK

OL for any finite separable extension L/K. We may also assume that the inverse system
{π0(Xad

L )}L/K is constant. This implies that for any connected component C of Xad
K , its inverse

image p−1
L,K(C) by the natural projection pL,K : Xad

L → Xad
K is a connected component of Xad

L .
We claim the equality (A ⊗̂K C)◦ = A◦ ⊗̂OK

OC. Indeed, let $ be any non-zero element of
the maximal ideal of OK and consider the exact sequence

0→ A◦ ⊗OK
OC

×$l

−−→ A◦ ⊗OK
OC → A◦ ⊗OK

(OC/$
lOC)→ 0

for any positive integer l. Since the OC-algebra A◦⊗OK
OC is $-torsion free, the $-adic topology

on the ring A◦ ⊗OK
OC of the middle term of the sequence induces the $-adic topology on the
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ring of its left term. Taking the $-adic completion, we have an exact sequence

0→ A◦ ⊗̂OK
OC

×$l

−−→ A◦ ⊗̂OK
OC → A◦ ⊗OK

(OC/$
lOC)→ 0

and thus the ring A◦ ⊗̂OK
OC is torsion free. Moreover, since A◦ is topologically of finite type,

we can choose an OK-algebra surjection OK〈X1, . . . , Xn〉 → A◦. Via the natural surjection

OK〈X1, . . . , Xn〉 ⊗OK
OC → A◦ ⊗OK

OC,

the $-adic topology on the right-hand side coincides with the quotient topology of the $-adic
topology on the left-hand side. Thus we obtain a surjection

OC〈X1, . . . , Xn〉 ' OK〈X1, . . . , Xn〉 ⊗̂OK
OC → A◦ ⊗̂OK

OC.

By the above exact sequence, the special fiber of A◦ ⊗̂OK
OC is isomorphic to the k̄-algebra

A◦ ⊗OK
k̄, which is reduced by assumption. Then [BLR95, Proposition 1.1] implies the equality

(A ⊗̂K C)◦ = A◦ ⊗̂OK
OC and the claim follows.

By this claim, we have

Xad
C = Xad

L ×Spa(L,OL) Spa(C,OC)

for any finite separable extension L/K and [Hub94, Lemma 3.9(i)] implies that the projection
pC,L : Xad

C → Xad
L is a surjection.

Note that for any affinoid ring (R,S), there exists a natural homeomorphism

Spa(R̂, Ŝ)→ Spa(R,S)

preserving rational subsets, where R̂ and Ŝ are the completions of R and S, respectively [Hub93,
Proposition 3.9]. Thus we have a homeomorphism

Xad
C → Spa(A⊗K Ksep, A◦ ⊗OK

OKsep)

preserving rational subsets, where the topology of the ring A ⊗K Ksep is given by the $-adic
topology of the subring A◦ ⊗OK

OKsep for any non-zero element $ in the maximal ideal of OK .
From this homeomorphism, we see that any rational subset of Xad

C is the inverse image of a
rational subset of Xad

L for some finite separable extension L of K.
Let C be any connected component of Xad

K . To prove the lemma, it is enough to show that
the inverse image p−1

C,K(C) is connected. Note that C is a rational subset. Suppose that we have
a decomposition p−1

C,K(C) = V1
∐
V2 into the disjoint union of non-trivial open subsets. Since

p−1
C,K(C) is also a rational subset, the open subsets Vi are quasi-compact and thus are finite

unions of rational subsets. This implies that the open subsets Vi are the inverse images of some
open subsets of Xad

L for a sufficiently large finite separable extension L of K. Since the projection
pC,L is a surjection and p−1

L,K(C) is connected, the lemma follows. 2

3. Comparison of geometric connected components for affinoids of
different characteristics

3.1 Lifts of truncated discrete valuation rings
Let A be a truncated discrete valuation ring of length m (see [Del84, § 1.1], [HT08, § 2]) with
residue field k of characteristic p > 0. We fix a uniformizer π̄ of A.
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Let us consider a complete discrete valuation field K and a surjective local homomorphism
ι : OK → A. We refer to such a pair (K, ι) as a lift of the truncated discrete valuation ring
A. Note that a lift of A always exists [Del84, § 1.1]. Let us fix a uniformizer π of K satisfying
ι(π) = π̄. The map ι induces an isomorphism OK/(πm) ' A. We identify the residue field of K
with k using this isomorphism. Let e = e(K) be as in § 1. We also fix an algebraic closure K̄ of
K and extend the valuation | · | of K to K̄. The residue field of K̄ is denoted by k̄. Let C be
the completion of K̄ and mC be the maximal ideal of the valuation ring OC. The field C is a
perfectoid field in the sense of [Sch12, Definition 3.1]. We let C[ denote its tilt.

Suppose pA = 0. Then we have m 6 e (for the case of char(K) = p, this means that we take
an arbitrarily large e so that this inequality holds) and the field C[ can be constructed using m
as follows. Let OC[ be the inverse limit ring

OC[ = lim
←−
Φ

(OK̄/(πm)← OK̄/(πm)← · · · ),

where Φ means that the transition maps are given by x 7→ xp. We have a natural multiplicative
map

OC[ → OC, x 7→ x]

sending x = (x0, x1, . . .) ∈ OC[ to the limit x] = liml→∞ x̂
pl

l in the ring OC, where x̂l ∈ OC is a
lift of xl. Note that the element x] is independent of the choice of lifts x̂l and the equality

x] mod πm = pr0(x)

holds. The ringOC[ is a complete valuation ring of rank one and characteristic p with algebraically
closed fraction field C[ whose valuation is defined by |x| = |x]|, and the map (·)] extends to a
natural multiplicative map (·)] : C[ → C. If K is of characteristic p, then the map (·)] gives an
isomorphism of valuation fields C[ → C. The maximal ideal of the valuation ring OC[ is denoted
by mC[ .

We fix a system (πl)l>0 of p-power roots of π in K̄ such that π0 = π and πpl+1 = πl. The
system defines an element π = (π0, π1, . . .) of the ring OC[ satisfying π] = π.

Suppose also that A is endowed with a k-algebra structure such that the diagram

k //

id ��

A

��
k

commutes, where the vertical arrow is the reduction map. Then the ring A also lifts to a complete
discrete valuation ring of equal characteristic p. Namely, the map ι : k[[u]]→ A sending u to π̄
gives an isomorphism of k-algebras k[[u]]/(um) ' A. We put F = k((u)). Then the pair (F, ι)
defines a lift of A. For any algebraic closure F̄ of F , we extend the u-adic valuation | · | of F to
F̄ naturally. We normalize it as |u| = |π|.

3.2 Tubular neighborhoods of equations over A
Let A be a truncated discrete valuation ring of length m and (K, ι) be a lift of A. Let n be a
positive integer and f̄ = {f̄1, . . . , f̄r} be a finite subset of the polynomial ring A[X1, . . . , Xn]. Let
fi be a lift of f̄i by the surjection

OK [X1, . . . , Xn]→ A[X1, . . . , Xn]
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induced by ι : OK → A. For any j = (j1, . . . , jr) ∈ (Q ∩ (0,m])r, let us write ji = ki/li with

positive integers ki and li. Put

Bj
K(f̄ , n) = K〈X1, . . . , Xn〉

〈
f l11

πk1
, . . . ,

f lrr
πkr

〉
.

This ring is a K-affinoid algebra independent of the choices of presentations ji = ki/li and lifts
fi. Then we define the jth tubular neighborhood Xj

K(f̄ , n) of f̄ with respect to n along the lift
(K, ι) to be the following rational subdomain of the n-dimensional rigid analytic unit polydisc

Xj
K(f̄ , n) = Sp(Bj

K(f̄ , n))

= {x ∈ Sp(K〈X1, . . . , Xn〉) | |fi(x)| 6 |π|ji for any i}.

Suppose that pA = 0 and A is endowed with a k-algebra structure which gives a section of

the reduction map. Let (F, ι) be the lift of A as above. Then we can construct a similar tubular

neighborhood of f̄ on the side of F : choose a lift fi of f̄i by the surjection

k[[u]][X1, . . . , Xn]→ A[X1, . . . , Xn]

induced by ι : k[[u]] → A. We define the jth tubular neighborhood Xj
F (f̄ , n) of f̄ with respect

to n along the lift (F, ι) by

Bj
F (f̄ , n) = F 〈X1, . . . , Xn〉

〈
f l11

uk1
, . . . ,

f lrr
ukr

〉
,

Xj
F (f̄ , n) = Sp(Bj

F (f̄ , n))

= {x ∈ Sp(F 〈X1, . . . , Xn〉) | |fi(x)| 6 |u|ji for any i}.

These are also independent of the choices of presentations ji = ki/li and lifts fi. Note that the

numbers of geometric connected components of these affinoid varieties are finite.

3.3 The case of perfect residue field

Now we assume pA = 0 until the end of § 3. We also assume that the residue field k of A is

perfect until the end of § 3.4. Since k is perfect, we have the unique inclusions k → A and

k→OK/(πm) which are sections of the reduction maps by [Ser68, ch. II, § 4, Proposition 8], and

the isomorphism OK/(πm) → A induced by ι is k-linear. Let Knr be the maximal unramified

extension of K in K̄. Since the residue field of Knr is k̄ in this case, we also have the unique

section k̄ → OKnr/(πm) of the reduction map. This gives an inclusion [·] : k̄ → OK̄/(πm) which

is compatible with the map k → OK/(πm), and a natural inclusion

k̄ → OC[ , x 7→ ([x], [x1/p], [x1/p2
], . . .).

Then the map (·)] induces an isomorphism of k̄-algebras

OC[/(πm) ' OK̄/(πm).

Consider the lift (F, ι) of A. The map u 7→ π and the natural inclusion k → OC[ define

an inclusion F → C[, by which we consider F as a subfield of C[. By our normalization, the

valuation | · | of F coincides with the restriction of the valuation | · | of C[ to the subfield F .
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We have a commutative diagram of k-algebras

OF //

ι
��

OC[

pr0

��

A

ι−1

��
OK/(πm) // OK̄/(πm)

(1)

since the left vertical composite sends u to π.
We choose an algebraic closure F̄ of F as the algebraic closure of F in C[, and let F sep be the

separable closure of F in C[. The subfield F sep is dense in C[ and the absolute Galois group GF =
Gal(F sep/F ) acts naturally on C[. Put K∞ = Ksep ∩ (

⋃
nK(πn)) and GK∞ = Gal(Ksep/K∞).

By the classical theory of fields of norms of Fontaine–Wintenberger (see [Win83]), the inclusion
F → C[ gives an isomorphism of groups

GK∞ ' GF

which is compatible with the map (·)] : C[ → C.

3.4 A comparison theorem
In this subsection, we prove the following main theorem of this section.

Theorem 3.1. There exists an isomorphism of finite GK∞-sets

ρK,F
f̄,n

: πgeom
0 (Xj

K(f̄ , n))→ πgeom
0 (Xj

F (f̄ , n))

via the isomorphism GK∞ ' GF .

Proof. Put X = (X1, . . . , Xn). Let us consider the rings

OC[X1/pl ] = OC[X
1/pl

1 , . . . , X1/pl

n ], OC[X1/p∞ ] = OC[X
1/p∞

1 , . . . , X1/p∞
n ]

for any non-negative integer l and their π-adic completions

OC〈X1/pl〉 = OC[X1/pl ]∧, OC〈X1/p∞〉 = OC[X1/p∞ ]∧.

We also put
C〈X1/pl〉 = OC〈X1/pl〉[1/π], C〈X1/p∞〉 = OC〈X1/p∞〉[1/π].

On the side of F , we write as

OC[ [X1/pl ] = OC[ [X
1/pl

1 , . . . , X1/pl

n ], OC[ [X1/p∞ ] = OC[ [X
1/p∞

1 , . . . , X1/p∞
n ]

and their π-adic completions as

OC[〈X1/pl〉 = OC[ [X1/pl ]∧, OC[〈X1/p∞〉 = OC[ [X1/p∞ ]∧.

Similarly, we put

C[〈X1/pl〉 = OC[〈X1/pl〉[1/π], C[〈X1/p∞〉 = OC[〈X1/p∞〉[1/π].

By [Sch12, Proposition 5.20], the ring C〈X1/p∞〉 is a perfectoid C-algebra with ring of power-
bounded elements

C〈X1/p∞〉◦ = OC〈X1/p∞〉
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and its tilt given by

C〈X1/p∞〉[ = C[〈X1/p∞〉, C〈X1/p∞〉[◦ = OC[〈X1/p∞〉.

Moreover, we also have a continuous multiplicative map

(·)] : C[〈X1/p∞〉 → C〈X1/p∞〉, g 7→ g]

which is compatible with (·)] : C[ → C and induces an isomorphism

OC[〈X1/p∞〉/(πm)→ OC〈X1/p∞〉/(πm)

[Sch12, Proposition 5.17 and Lemma 6.2].

Lemma 3.2. The map (·)] induces the natural isomorphism

OC[〈X1/p∞〉/(πm)→ OC〈X1/p∞〉/(πm)

defined by X
1/pl

i 7→ X
1/pl

i over the isomorphism pr0 : OC[/(πm)→ OC/(π
m).

Proof. We basically follow the notation of [Sch12, Proposition 5.17]. Put R = C〈X1/p∞〉 and
R′ = C[〈X1/p∞〉. Let σ : R′◦ → R◦/(πm) be the composite of the natural surjection and the
isomorphism in the lemma. Consider the localization functor M 7→ Ma from the category
of OC-modules (respectively OC[-modules) to that of almost OC-modules (respectively almost
OC[-modules) and its right adjoint N 7→ N∗. The inverse limit ring lim

←−Φ
R◦/(πm) along the

Frobenius homomorphism is endowed with a natural OC[-algebra structure. Put A = R◦a and
A[
′
= (lim
←−Φ

R◦/(πm))a. Then, from the proof of [Sch12, Propositions 5.17 and 5.20], there exists
a unique isomorphism of almost OC[-algebras Ψ : R′◦a → A[

′
which makes the following diagram

commutative.
R′◦a

Ψ //

σa
%%

A[
′

pr0

��
(R◦/(πm))a

The map g 7→ g] mod πm is the composite of Ψ∗ : R′◦ = (R′◦a)∗ → (A[
′
)∗ and the natural map

(A[
′
)∗ = HomOa

C[
(OaC[ , (lim

←−
Φ

R◦/(πm))a) ' lim
←−
Φ

HomOa
C
(OaC, (R◦/(πm))a)

pr0−−→ HomOa
C
(OaC, (R◦/(πm))a) = (A/(πm))∗

whose image is contained in the subring A∗/(π
m) ' R◦/(πm). Note that the isomorphism

R′◦ → (R′◦a)∗ = HomOa

C[
(OaC[ , R

′◦a) = HomOC[
(mC[ , R′◦)

is given by g 7→ (δ 7→ δg). Applying the functor (·)∗ to the above diagram, we see that the element
g] mod πm is the unique element of the ring R◦/(πm) whose image in (A/(πm))∗ = HomOC(mC,
R◦/(πm)) is the map (ε 7→ εσ(g)). Since the element σ(g) ∈ R◦/(πm) satisfies this property, we
conclude the equality g] mod πm = σ(g). 2

Then the commutative diagram (1) and Lemma 3.2 give the following corollary.

Corollary 3.3. The congruence
f ]i ≡ fi mod πm

holds in the ring OC〈X1/p∞〉.
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Consider the adic spaces

Xad
C,l = Spa(C〈X1/pl〉,OC〈X1/pl〉), Xad

C,∞ = Spa(C〈X1/p∞〉,OC〈X1/p∞〉),

Xad
C[,l

= Spa(C[〈X1/pl〉,OC[〈X1/pl〉), Xad
C[,∞ = Spa(C[〈X1/p∞〉,OC[〈X1/p∞〉).

By [Sch12, Theorem 6.3], there exists a homeomorphism τ : Xad
C,∞ → Xad

C[,∞ preserving rational

subsets of both sides and satisfying |g(τ(x))| = |g](x)| for any x ∈ Xad
C,∞ and g ∈ C[〈X1/p∞〉.

Here | · (x)| denotes the continuous valuation associated to the point x. We have a diagram

Xad
C,∞

τ
∼
//

p∞,l

��

Xad
C[,∞

p[∞,l

��
Xad

C,l

pl,0

��

Xad
C[,l

p[l,0
��

Xad
C,0 Xad

C[,0

(2)

where the vertical arrows are the natural projections.

Lemma 3.4. The projection pl,l′ : Xad
C,l → Xad

C,l′ is a continuous open surjection for any l, l′ ∈
Z>0 ∪ {∞} satisfying l > l′. Moreover, if K is of characteristic p, then pl,l′ is a homeomorphism.

Proof. We may assume l′ = 0. Let l be a non-negative integer. The maps

C〈X〉 → C〈X1/pl〉, OC〈X〉 → OC〈X1/pl〉

are flat and finitely presented, and also radicial if char(K) = p. We also see that the integral

domain OC〈X1/pl〉 is integrally closed. By [Hub96, Lemma 1.7.9], the continuous map pl,0 is

open. Furthermore, the map

Spec(C〈X1/pl〉)→ Spec(C〈X〉)

is a surjection, and also a homeomorphism if char(K) = p. Take x ∈ Xad
C,0. Let px be the prime

ideal of C〈X〉 defined by

px = {f ∈ C〈X〉 | |f(x)| = 0}

and κ(x) be its residue field. Let q be a prime ideal of C〈X1/pl〉 above the prime ideal px, which

is unique if char(K) = p. Then there exists a valuation on the residue field κ(q) of q whose

restriction to κ(x) is equivalent to the valuation | · (x)|, and it is unique up to equivalence if

char(K) = p, since in the latter case the residue field κ(q) is a purely inseparable extension of

κ(x). We can show that this valuation defines a point of Xad
C,l above x and also that such a

point is unique if char(K) = p. Hence the map pl,0 is a continuous open surjection, and also a

homeomorphism if char(K) = p.

Next we treat the case of p∞,0. By the equality

C[X1/p∞ ] = lim−→
l

C[X1/pl ]
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and [Hub93, Proposition 3.9], we have the commutative diagram

Xad
C,∞

//

��

Spa(C[X1/p∞ ],OC[X1/p∞ ])

��

Xad
C,l

//

��

Spa(C[X1/pl ],OC[X1/pl ])

��
Xad

C,0
// Spa(C[X],OC[X])

whose horizontal arrows are homeomorphisms preserving rational subsets. Hence, by extending

valuations as above, we see that the continuous map p∞,l is a surjection for any l and any rational

subset of Xad
C,∞ is the inverse image of a rational subset of Xad

C,l for some non-negative integer l.

This proves the first assertion. If char(K) = p, we also see that the map p∞,l is a bijection and

the second assertion follows. 2

Now we put

Bj
C(f̄ , n) = Bj

K(f̄ , n) ⊗̂K C, Xj,ad
C (f̄ , n) = Spa(Bj

C(f̄ , n),Bj
C(f̄ , n)◦),

Bj

C[(f̄ , n) = Bj
F (f̄ , n) ⊗̂F C[, Xj,ad

C[ (f̄ , n) = Spa(Bj

C[(f̄ , n),Bj

C[(f̄ , n)◦).

Then we have the equalities

Xj,ad
C (f̄ , n) = {x ∈ Xad

C,0 | |fi(x)| 6 |π(x)|ji for any i},
Xj,ad

C[ (f̄ , n) = {x ∈ Xad
C[,0
| |fi(x)| 6 |u(x)|ji for any i},

where fi and fi are the lifts of f̄i as before. By Lemma 2.2, we have natural bijections

π0(Xj,ad
C (f̄ , n))

∼−→ πgeom
0 (Xj

K(f̄ , n)),

π0(Xj,ad

C[ (f̄ , n))
∼−→ πgeom

0 (Xj
F (f̄ , n))

which are compatible with the natural Galois action. Hence we are reduced to constructing a

natural isomorphism of GK∞-sets

π0(Xj,ad
C (f̄ , n))→ π0(Xj,ad

C[ (f̄ , n)).

For any l ∈ Z>0∪{∞}, set Xj,ad
C,l (f̄ , n) to be the inverse image of the rational subset Xj,ad

C (f̄ ,

n) ⊆ Xad
C,0 by the natural projection pl,0 : Xad

C,l → Xad
C,0. This is the rational subset of Xad

C,l defined

by

{x ∈ Xad
C,l | |fi(x)| 6 |π(x)|ji for any i}.

Lemma 3.5. The rational subset Xj,ad
C,∞(f̄ , n) of Xad

C,∞ is the inverse image of the rational subset

Xj,ad

C[,∞(f̄ , n) of Xad
C[,∞ by the homeomorphism τ .

Proof. By the relation |g(τ(x))| = |g](x)|, the inverse image in the lemma is the rational subset

{x ∈ Xad
C,∞ | |f

]
i (x)| 6 |u](x)|ji for any i}
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of the adic space Xad
C,∞. Note the equality u] = π. By Corollary 3.3 and the assumption ji 6 m,

we obtain the equivalence

|f ]i (x)| 6 |π(x)|ji ⇔ |fi(x)| 6 |π(x)|ji

and the lemma follows. 2

Therefore, the diagram (2) induces a diagram

Xj,ad
C,∞(f̄ , n)

τ
∼
//

p∞,l

��

Xj,ad

C[,∞(f̄ , n)

p[∞,l

��

Xj,ad
C,l (f̄ , n)

pl,0

��

Xj,ad

C[,l
(f̄ , n)

p[l,0
��

Xj,ad
C (f̄ , n) Xj,ad

C[ (f̄ , n)

(3)

where τ is a homeomorphism.

Lemma 3.6. The natural projections induce isomorphisms

π0(Xj,ad
C,∞(f̄ , n))→ π0(Xj,ad

C,l (f̄ , n))→ π0(Xj,ad
C (f̄ , n)),

π0(Xj,ad

C[,∞(f̄ , n))→ π0(Xj,ad

C[,l
(f̄ , n))→ π0(Xj,ad

C[ (f̄ , n))

of GK-sets (respectively GF -sets) for any l.

Proof. We may only consider the case over C. Since the projections are continuous and
compatible with the natural GK-action, the maps are well defined. It is enough to show the
bijectivity. If K is of characteristic p, then this follows from Lemma 3.4.

Suppose that K is of mixed characteristic. Note that the ring Bj
C(f̄ , n) is Noetherian and

[Hub94, Theorem 2.2] (or Lemma 2.1) implies that the number of connected components of
Xj,ad

C (f̄ , n) is finite. Moreover, each of its connected components is a rational subset. Since pl,0
is a surjection for any l ∈ Z>0 ∪ {∞}, it suffices to show that, for any connected component C
of Xj,ad

C (f̄ , n), the inverse image p−1
l,0 (C) is connected.

Suppose that we have a decomposition p−1
l,0 (C) = V1

∐
V2 into the disjoint union of non-trivial

open subsets. Since p−1
l,0 (C) is also a rational subset, the open subsets Vi are quasi-compact and

thus are finite unions of rational subsets. For the case of l =∞, this implies that the open subsets
Vi are the inverse images of some open subsets of Xj,ad

C,l′ (f̄ , n) for a sufficiently large non-negative
integer l′. Since the projection p∞,l′ is a surjection, this shows that we may assume l ∈ Z>0.

Let l be a non-negative integer. Since the map pl,0 is a continuous open surjection, the images
pl,0(Vi) are non-trivial quasi-compact open subsets covering the connected component C and thus
they would meet each other. By [Hub93, Corollary 4.2], the intersection of these images has a
point defined by the map Xi 7→ xi with some xi ∈ OC. Thus we reduce ourselves to showing
that, for any such classical point x = (x1, . . . , xn) ∈ Xj,ad

C (f̄ , n), any two points y, y′ ∈ p−1
l,0 (x)

are contained in the same connected component of Xj,ad
C,l (f̄ , n).

Consider the rational subset

U =Xad
C,0

(
X1 − x1, . . . , Xn − xn

πm

)
= {z ∈ Xad

C,0 | |(Xi − xi)(z)| 6 |π(z)|m for any i}
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of Xad
C,0 containing x. Since x satisfies the inequality

|fi(x)| 6 |π|ji

for any i, our assumption ji 6 m implies that any point z ∈ U also satisfies the inequality and
U is contained in Xj,ad

C (f̄ , n). Then the inverse image p−1
l,0 (U) is the rational subset

{z ∈ Xad
C,l | |(Xi − xi)(z)| 6 |π(z)|m for any i}

of Xad
C,l containing y and y′ which is contained in Xj,ad

C,l (f̄ , n).

Lemma 3.7. For any z ∈ Xad
C,l, any a ∈ OC and any positive rational number j′ satisfying

|π|ple/(pl−1(p−1))|a|pl 6 |π|j′ ,

we have the equivalence

|(Xi − ap
l
)(z)| 6 |π(z)|j′ ⇔ |(X1/pl

i − a)(z)| 6 |π(z)|j′/pl .

Proof. We let ζpl denote a primitive plth root of unity in C. Then we have

|(Xi − ap
l
)(z)| =

pl−1∏
s=0

|(X1/pl

i − aζspl)(z)|.

Suppose that the inequality
|(X1/pl

i − aζspl)(z)| 6 |π(z)|j′/pl

holds for some s. Then the assumption on j′ implies

|(X1/pl

i − aζs′pl)(z)| = |(X
1/pl

i − aζspl + a(ζspl − ζ
s′

pl))(z)| 6 |π(z)|j′/pl

for any other s′. This shows the implication of one direction. Conversely, if |(Xi − ap
l
)(z)| 6

|π(z)|j′ , then
min
s
|(X1/pl

i − aζspl)(z)| 6 |π(z)|j′/pl

and the other direction also follows from the above claim. 2

Since m 6 e, Lemma 3.7 shows that p−1
l,0 (U) is equal to the rational subset

{z ∈ Xad
C,l | |(X

1/pl

i − x1/pl

i )(z)| 6 |π(z)|m/pl for any i},

which is a polydisc and thus it is connected by [Hub94, Theorem 2.2] (or Lemma 2.1). Hence
the two points y, y′ are contained in the same connected component of Xj,ad

C,l (f̄ , n). 2

Lemma 3.8. The homeomorphism τ induces an isomorphism of finite GK∞-sets

π0(Xj,ad
C,∞(f̄ , n))→ π0(Xj,ad

C[,∞(f̄ , n))

via the isomorphism GK∞ ' GF .

Proof. By Lemma 3.5, the homeomorphism τ induces a bijection of the sets in the lemma. It
is enough to show that this is compatible with the GK∞-action. Note that the action σ∗ of any

element σ ∈ GK∞ on the adic space Xj,ad
C,∞(f̄ , n) is defined by the action of σ−1 on the coefficients

of the ring C〈X1/p∞〉 and similarly for Xj,ad

C[,∞(f̄ , n). Every connected component C of the adic

space Xj,ad
C,∞(f̄ , n) is a rational subset which is the inverse image of a rational subset of Xad

C,0, as
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is shown in the proof of Lemma 3.6. Thus C contains a point x defined by the map

C〈X1/p∞〉 → C, X
1/pl

i 7→ xi,l

with some xi,l ∈ OC satisfying xpi,l+1 = xi,l for any l. It suffices to show for this x that for any
σ ∈ GK∞ , the points σ∗(τ(x)) and τ(σ∗(x)) are contained in the same connected component of
Xj,ad

C[,∞(f̄ , n). Note that we have

|g(σ∗(τ(x)))|= |σ−1(g)(τ(x))| = |(σ−1(g))](x)|,
|g(τ(σ∗(x)))|= |g](σ∗(x))| = |σ−1(g])(x)|

for any g ∈ C[〈X1/p∞〉.
The system (xi,l)l∈Z>0

defines an element xi ∈ OC[ for any i. Put x = (x1, . . . , xn) and
x] = (x]1, . . . , x

]
n). By the definition of the map (·)], we have x] = (x1,0, . . . , xn,0). Consider the

rational subset
U = {z ∈ Xad

C[,∞ | |(Xi − σ(xi))(z)| 6 |u(z)|m for any i}
of the adic space Xad

C[,∞. This is the inverse image of a polydisc in Xad
C[,0

by the projection p[∞,0
and thus connected by Lemma 3.4. By Lemma 3.2, we have congruences

(σ−1(Xi − σ(xi)))
] ≡ σ−1(Xi − σ(xi,0)) ≡ σ−1((Xi − σ(xi))

]) mod πm

in the ring OC〈X1/p∞〉. Hence we have equivalences

|(σ−1(Xi − σ(xi)))
](x)| 6 |(σ−1(u))](x)|m

⇔ |(Xi − xi,0)(x)| 6 |π(x)|m

⇔ |σ−1((Xi − σ(xi))
])(x)| 6 |σ−1(u])(x)|m,

which implies that the points σ∗(τ(x)) and τ(σ∗(x)) lie in U .
On the other hand, let x

1/pl

i be the unique plth root of xi in the perfect integral domain OC[ .
Then the map X

1/pl

i 7→ x
1/pl

i defines a point of the adic space Xad
C[,∞, which is also denoted by

x. The commutative diagram (1) yields the congruence

(fi(x))] ≡ fi(x1,0, . . . , xn,0) mod πm

in the ring OC. Since x ∈ Xj,ad
C,∞(f̄ , n), we have the inequality

|fi(x1,0, . . . , xn,0)| 6 |π|ji for any i

and the above congruence implies that the points x and σ∗(x) are contained in the rational

subset Xj,ad

C[,∞(f̄ , n). Note that the latter point is defined by the map X
1/pl

i 7→ σ(x
1/pl

i ). Thus we

see that U is contained in Xj,ad

C[,∞(f̄ , n). This shows that the points σ∗(τ(x)) and τ(σ∗(x)) are
contained in the same connected component of Xj,ad

C[,∞(f̄ , n) and the lemma follows. 2

By Lemmas 3.6 and 3.8, we have a diagram of bijections

π0(Xj,ad
C,∞(f̄ , n))

τ
∼
//

p∞,0 o
��

π0(Xj,ad

C[,∞(f̄ , n))

p[∞,0o
��

π0(Xj,ad
C (f̄ , n)) π0(Xj,ad

C[ (f̄ , n))

(4)

where all arrows are compatible with the natural Galois action. This concludes the proof of
Theorem 3.1. 2
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Remark 3.9. The isomorphism ρK,F
f̄,n

of Theorem 3.1 depends on the choices of a uniformizer of
A, an algebraic closure K̄, a uniformizer π and a system of its p-power roots (πl)l∈Z>0

.

3.5 The case of imperfect residue field
Now we return to the situation of § 3.2. Namely, we consider a truncated discrete valuation ring
A of length m with uniformizer π̄ and residue field k, which may be imperfect. We also assume
pA = 0. We fix a k-algebra structure k → A which gives a section of the reduction map A→ k.
Note that we can always find such a map by [Gro64, Théorème (19.6.1)], since the extension
k/Fp is separable. Let (K, ι), (F, ι), f̄ , f and f be as before.

We fix a Cohen ring C(k) of k. Using [Gro64, Théorème (19.8.6)(i)], we also fix a local
homomorphism C(k)→ OK which makes the following diagram commutative.

C(k) //

��

OK

��
k // A

Suppose that K is of characteristic zero. Then this local homomorphism is an injection and
the C(k)-algebra OK is finite. By this fixed map, we consider K0 = Frac(C(k)) as a subfield of
K. The extension K/K0 is a finite totally ramified extension.

We fix a p-basis {b̄λ}λ∈Λ of k and its lift {bλ}λ∈Λ in C(k). We also fix a system of p-power
roots (bλ,l)l>0 of bλ in OK̄ satisfying bλ,0 = bλ and bpλ,l+1 = bλ,l. Let K ′0 be the completion of
the discrete valuation field

⋃
λ,lK0(bλ,l), which is naturally considered as a subfield of C. Then

the extension K ′0/K0 is of relative ramification index one and the residue field k′ of K ′0 is the
perfect closure of k in k̄. Put K ′ = K ′0K, the composite field in C. This is a finite extension of
K ′0, and K ′/K is an extension of complete discrete valuation fields of relative ramification index
one satisfying OK′ = OK ⊗C(k) OK′0 .

Next suppose that K is of characteristic p. Then the map C(k)→OK factors through k and
gives a k-algebra structure of OK . We have an isomorphism of k-algebras k[[u]] → OK sending
u to π. Let k′ be the perfect closure of k in K̄ and K ′ be the completion of the composite field
k′K in K̄. Then the field K ′ is naturally isomorphic to k′((u)), and it is naturally considered as
a subfield of C. Moreover, K ′/K is an extension of complete discrete valuation fields of relative
ramification index one.

In both cases, let K ′sep be the separable closure of K ′ in C and put K ′∞ = K ′sep∩(
⋃
nK

′(πn))
as before.

Lemma 3.10. (i) The subfield K ′sep is dense in C.

(ii) The natural map

Gal(K ′sep/K ′)→ Gal(Ksep/Ksep ∩K ′)

is an isomorphism.

(iii) If char(K) = p, then the extension K ′/K is primary. In particular, the map in (ii) induces
an isomorphism

Gal(K ′sep/K ′) ' Gal(Ksep/K).

Proof. Note that Ksep is a dense subfield of C. First suppose char(K) = 0. Then Krasner’s lemma
implies K ′sep = KsepK ′ and the assertion (i) follows. This equality also shows the assertion (ii).

Next suppose char(K) = p. Let (k′K)sep be the separable closure of k′K in C. Krasner’s
lemma shows K ′sep = (k′K)sepK ′ ⊇ Ksep and the assertion (i) follows. Let σ be an element
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of Gal(K ′sep/K ′) satisfying σ|Ksep = id. Take x ∈ (k′K)sep. Let g(X) be its minimal polynomial
over k′K and write it as

g(X) = XN + a1X
N−1 + · · ·+ aN−1X + aN

with some ai ∈ k′K. Then there exists a non-negative integer l satisfying ap
l

i ∈K for any i. Thus
g(X)p

l ∈ K[X] and xp
l ∈ Ksep. Hence we obtain σ(x) = x and the map in the assertion (ii) is an

injection. Let L be a finite Galois extension of Ksep∩K ′ in Ksep. Then we have L∩K ′ =Ksep∩K ′.
This implies the isomorphism

Gal(LK ′/K ′) ' Gal(L/Ksep ∩K ′)

and the map in the assertion (ii) is also a surjection.
Finally, we show that the extension K ′/K is primary. Since the algebraic extension k′K/K

is purely inseparable, it is enough to show that any finite separable extension L/k′K in K ′

coincides with k′K. Since the discrete valuation field k′K is the union of finite extensions of
K, it is Henselian. This implies that the valuation of k′K uniquely extends to L, and thus the
extended valuation is equal to the restriction of the valuation ofK ′. Since the relative ramification
index and the residue degree of L/k′K are both equal to one, we obtain L = k′K. 2

Using the isomorphism of Lemma 3.10(ii), we consider the absolute Galois group GK′ =
Gal(K ′sep/K ′) as a subgroup of GK .

We consider the k-algebra A as a C(k)-algebra by the composite C(k)→ k → A. Put A′ =
A⊗k k′. This ring can be also written as A′ = A⊗OK

OK′ . Indeed, this follows from the equality
A′ = A⊗C(k) OK′0 for char(K) = 0 and

Ok′K/(πm) = lim−→
l/k

(OlK/(πm)) = lim−→
l/k

(OK/(πm)⊗k l) = OK/(πm)⊗k k′

for char(K) = p, where the limit runs over the category of finite extensions inside k′/k. The
map ι induces an isomorphism OK′/(πm)→ A′. Thus A′ is a truncated discrete valuation ring of
length m with perfect residue field k′ endowed with the induced map k′ → A′ giving a section of
the reduction map, and also with the induced lift ι′ : OK′ → A′. Put F ′ = k′((u)). The field F is
considered as a subfield of F ′ by the map u 7→ u and the natural inclusion k → k′. Then the lift
ι also induces a lift ι′ : OF ′ = k′[[u]]→ A′. Hence we obtain the following cocartesian diagram.

k′[[u]]
ι′ // A′ OK′

ι′oo

k[[u]]

OO

ι
// A

OO

OKι
oo

OO

Let f̄ ′ be the image of f̄ by the map A → A′. Similarly, let f ′ and f ′ be the images of f and f
by the maps OK → OK′ and k[[u]]→ k′[[u]], respectively. We have the equality

ι′(f ′) = f̄ ′ = ι′(f ′).

Thus the sets of polynomials f̄ ′, f ′ and f ′ are also in the situation of § 3.2, for the truncated
discrete valuation ring A′ with perfect residue field k′. Note that the extensions K ′/K and
F ′/F are of relative ramification index one, and that formation of jth tubular neighborhoods is
compatible with the base change by any extension of relative ramification index one. Applying
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Lemma 2.2, we obtain natural bijections

πgeom
0 (Xj

K(f̄ , n))→ πgeom
0 (Xj

K′(f̄
′, n)),

πgeom
0 (Xj

F (f̄ , n))→ πgeom
0 (Xj

F ′(f̄
′, n))

which are compatible with the GK′-action and the GF ′-action, respectively. Hence Theorem 3.1
implies the following theorem.

Theorem 3.11. There exists an isomorphism of finite GK′∞-sets

ρK,F
f̄,n

: πgeom
0 (Xj

K(f̄ , n))→ πgeom
0 (Xj

F (f̄ , n))

via the isomorphism GK′∞ ' GF ′ of the classical theory of fields of norms which fits into the
commutative diagram

πgeom
0 (Xj

K(f̄ , n))
ρK,F

f̄,n //

o
��

πgeom
0 (Xj

F (f̄ , n))

o
��

πgeom
0 (Xj

K′(f̄
′, n))

ρK
′,F ′

f̄ ′,n

// πgeom
0 (Xj

F ′(f̄
′, n))

where ρK
′,F ′

f̄ ′,n
is the isomorphism of Theorem 3.1. 2

Remark 3.12. When k is imperfect, the isomorphism ρK,F
f̄,n

depends on the choices of a k-algebra
structure and a uniformizer of A, a p-basis and a Cohen ring C(k) of k, an algebraic closure, a
local map C(k) → OK , a uniformizer π, a lift {bλ}λ∈Λ of the fixed p-basis of k and compatible
p-power roots of π and bλ for K.

4. Non-log ramification

In the rest of the paper, we give applications of Theorem 3.11 to ramification theory. Let A be
a truncated discrete valuation ring of length m, with residue field k of characteristic p > 0. We
allow the case where k is imperfect. We fix a uniformizer π̄ of A. Let B be a finite flat A-algebra.
The aim of this section is to study ramification of the extension B/A, as in [Hat06, HT08].

4.1 Ramification theory over truncated discrete valuation rings
First we briefly recall the construction of a ramification theory of B/A for a fixed lift (K, ι) of
A given in [Hat06]. Let (K, ι) be a lift of A. Fix an algebraic closure K̄ and a uniformizer π
of K. We let k̄ denote the residue field of K̄, as in § 3.1. Let j ∈ Q∩ (0,m]. Fix a system of finite
generators Z = (z1, . . . , zn) of the A-algebra B. This defines a surjection of A-algebras

A[X1, . . . , Xn]→ B, Xi 7→ zi.

We let ĪZ denote its kernel. Fix a system of finite generators f̄ = {f̄1, . . . , f̄r} of the ideal ĪZ .
We put

Xj
K(B,Z) = Xj

K(f̄ , ]Z)

with the notation of § 3, where we identify j with the r-tuple (j, . . . , j). The K-affinoid variety
Xj
K(B,Z) is independent of the choice of a system of finite generators f̄ . This is referred to as

the jth tubular neighborhood of B with respect to a system of finite generators Z along the
lift (K, ι).
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We consider a question of functoriality of the finite GK-set πgeom
0 (Xj

K(B,Z)). Though this
is done in [Hat06, § 2], we present here detailed proofs of results stated in [Hat06] whose
proofs are omitted, since we will use some of the omitted arguments. Let B and C be finite
flat A-algebras. Let Z = (z1, . . . , zn) and W = (w1, . . . , wn′) be systems of finite generators of
the A-algebras B and C, respectively. Let ψ : B → C be an A-algebra homomorphism satisfying
ψ(Z) ⊆W . Put X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn′) as before. Choose a ring homomorphism
Ψ : OK [X]→ OK [Y ] which makes the following diagram commutative

OK [X]
Ψ //

��

OK [Y ]

��
B

ψ
// C

where the vertical arrows are the maps Xi 7→ zi and Yi 7→ wi defined using ι : OK → A. Put
Ψ(X) = (Ψ(X1), . . . ,Ψ(Xn)) ∈ OK [Y ]n.

Lemma 4.1. The map Ψ induces a morphism of K-affinoid varieties

Ψ∗ : Xj
K(C,W )→ Xj

K(B,Z).

Moreover, the map induced on the set of geometric connected components

Ψ∗ : πgeom
0 (Xj

K(C,W ))→ πgeom
0 (Xj

K(B,Z))

is independent of the choice of Ψ.

Proof. This is implicit in [Hat06, § 2], and its proof is similar to [AS03, Lemma 1.9]. Let f̄ =
{f̄1, . . . , f̄r} be as above and f be its lift by the surjection ι, as in § 3.2. Define ḡ = {ḡ1, . . . , ḡr′}
and g similarly for C. Then the kernel of the surjection OK [X]→ B is the ideal (πm, f1, . . . , fr)
and similarly for C. The polynomial fi(Ψ(X)) ∈ OK [Y ] is contained in the ideal (πm, g1, . . . , gr′).
This shows the implication

|gi(y)| 6 |π|j for any i⇒ |fi(Ψ(X))(y)| 6 |π|j for any i

for any y = (y1, . . . , yn′) ∈ On
′

K̄
and the first assertion follows. Moreover, we have a natural

cartesian diagram

Xj
K(B,Z)(K̄) //

��

HomOK -alg.(OK [X],OK̄)

��

HomA-alg.(B,OK̄/m
j
K̄

) // HomOK -alg.(OK [X],OK̄/m
j
K̄

)

where mj
K̄

= {x ∈ OK̄ | |x| 6 |π|j} and the vertical arrows are surjections. Since the fiber of
the left vertical arrow is the polydisc of radius |π|j and it is connected, we have a commutative
diagram

HomA-alg.(C,OK̄/m
j
K̄

)
ψ∗ //

��

HomA-alg.(B,OK̄/m
j
K̄

)

��

πgeom
0 (Xj

K(C,W ))
Ψ∗

// πgeom
0 (Xj

K(B,Z))

whose vertical arrows are surjections. The second assertion follows from this diagram. 2

816

S. Hattori

https://doi.org/10.1112/S0010437X1300763X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300763X


Applying Lemma 4.1 to the case of id : B → B, we obtain the inverse system

(πgeom
0 (Xj

K(B,Z)))Z .

Lemma 4.2. This inverse system is constant.

Proof. This is also implicit in [Hat06], and the proof is similar to [AS02, Lemma 3.1]. We may
assume that Z = (z1, . . . , zn) and W = (z1, . . . , zn, zn+1). Let f = {f1, . . . , fr} be as before.
Consider a system of finite generators of the kernel of the surjection A[X1, . . . , Xn+1] → B
associated to W . Then its lift g by ι can be taken as g = {f1, . . . , fr, Xn+1 − h} with some
h ∈ OK [X1, . . . , Xn]. Thus the map

(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn, xn+1 − h(x1, . . . , xn))

induces an isomorphism of K-affinoid varieties Xj
K(B,W )→ Xj

K(B,Z)×DK(0, |π|j) fitting into
the commutative diagram

Xj
K(B,W ) //

))

Xj
K(B,Z)×DK(0, |π|j)

pr1

��

Xj
K(B,Z)

where DK(0, |π|j) is the one-dimensional disc of radius |π|j centered at the origin. This implies
the lemma. 2

By Lemmas 4.1 and 4.2,

F j(K,ι)(B) = lim
←−
Z

πgeom
0 (Xj

K(B,Z))

defines a contravariant functor from the category of finite flat A-algebras to that of finite GK-sets.

4.2 Ramification correspondence between different characteristics
Now we assume pA = 0 and fix a k-algebra structure of A which gives a section of the reduction
map A→ k, as in § 3.5. Let (K, ι) and (F, ι) be lifts of A as in § 3.1.

Let B be a finite flat A-algebra, Z be its system of finite generators and j be a positive
rational number satisfying j 6 m. Let f̄ be a finite subset of A[X] with respect to Z, as before.
Let K̄, C, C[, K ′, K ′∞ and F ′ be as in § 3.5. From the definition of the jth tubular neighborhoods
Xj
K(B,Z) and Xj

F (B,Z), Theorem 3.11 yields an isomorphism of finite GK′∞-sets

ρK,F
f̄,]Z

: πgeom
0 (Xj

K(B,Z))→ πgeom
0 (Xj

F (B,Z)),

which is also denoted by ρK,FB,Z . Then the main result of this subsection is the following.

Proposition 4.3. The isomorphism ρK,FB,Z induces a natural isomorphism of functors

ρK,F : F j(K,ι)(·)|GK′∞
→ F j(F,ι)(·)|GF ′

from the category of finite flat A-algebras to that of finite GK′∞-sets, via the isomorphism

GK′∞ ' GF ′

of the classical theory of fields of norms.

Proof. Let A, B, Z and f̄ be as above. Recall that we considered a map A → A′ of truncated
discrete valuation rings in § 3.5. Put B′ = B ⊗A A′, which is a finite flat A′-algebra. Then Z
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defines a system of finite generators of the A′-algebra B′, which is denoted by Z ′. The kernel of

the surjection A′[X]→ B′ associated to Z ′ is generated by the image f̄ ′ of f̄ by the map A→ A′.

Thus, from the definition of the map ρK,FB,Z , it is enough to show a similar statement for the map

ρK
′,F ′

B′,Z′ . Namely, we may assume that the residue field k is perfect.

Let C be a finite flat A-algebra with system of finite generators W . Let ψ : B → C be an

A-algebra homomorphism satisfying ψ(Z) ⊆W . Put n′ = ]W and Y = (Y1, . . . , Yn′). We choose

a lift Ψ : OK [X]→ OK [Y ] of ψ along the lift (K, ι) as in § 4.1 and put Ψi = Ψ(Xi) ∈ OK [Y ].

Consider the adic spaces

Xad
C,0 = Spa(C〈X〉,OC〈X〉), Y ad

C,0 = Spa(C〈Y 〉,OC〈Y 〉).

Let Xad
C,∞ be the adic space over Xad

C,0 considered in § 3.4, and Y ad
C,∞ be a similar adic space for

Y ad
C,0. Let Xj,ad

C (B,Z) be the adic space associated to the base change of the rigid analytic space

Xj
K(B,Z) to Sp(C), as before. Let Xj,ad

C,∞(B,Z) be its inverse image by the natural projection

p∞,0 : Xad
C,∞ → Xad

C,0. We define adic spaces Y j,ad
C (C,W ) and Y j,ad

C,∞(C,W ) similarly, using Y ad
C,0

and Y ad
C,∞. The map Ψ induces a morphism of adic spaces Ψ∗ : Y ad

C,0 → Xad
C,0 which maps the

rational subset Y j,ad
C (C,W ) to Xj,ad

C (B,Z). Thus we have a diagram of finite sets,

π0(Y j,ad
C,∞(C,W )) //

��

π0(Xj,ad
C,∞(B,Z))

��

π0(Y j,ad
C (C,W ))

Ψ∗
// π0(Xj,ad

C (B,Z))

where the lower horizontal arrow is compatible with the Galois action. Since the vertical arrows

are also bijections compatible with the Galois action by Lemma 3.6, there exists a unique map

π0(Ψ∗)∞ : π0(Y j,ad
C,∞(C,W ))→ π0(Xj,ad

C,∞(B,Z))

which makes the above diagram commutative. From the definition, we see that this map is also

compatible with the Galois action.

On the other hand, let

Xad
C[,0

, Y ad
C[,0

, Xad
C[,∞, Y ad

C[,∞, Xj,ad

C[,∞(B,Z) and Y j,ad

C[,∞(C,W )

be similar adic spaces on the side of F . We choose Ψ[
i ∈ OF [Y ] so that the images of Ψi

and Ψ[
i in the ring A[Y ] by the surjections induced by ι and ι coincide with each other. Let

Ψ[ : OF [X] → OF [Y ] be the map defined by Xi 7→ Ψ[
i. Then it is a lift of ψ along (F, ι) as in

§ 4.1. This induces a morphism of adic spaces (Ψ[)∗ : Y ad
C[,0
→ Xad

C[,0
. Note that, by the choice

of Ψ[
i, Lemma 3.2 yields the congruence

(Ψ[
i)
] ≡ Ψi mod πm (5)

in the ring OC〈Y 1/p∞〉.
Since the integral domain OC[〈Y 1/p∞〉 is perfect, we have the unique plth root (Ψ[

i)
1/pl of Ψ[

i

in this ring. The map X
1/pl

i 7→ (Ψ[
i)

1/pl defines a morphism of adic spaces (Ψ[
∞)∗ : Y ad

C[,∞→Xad
C[,∞
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which fits into the commutative diagram

Y ad
C[,∞

(Ψ[
∞)∗//

��

Xad
C[,∞

��
Y ad
C[,0 (Ψ[)∗

// Xad
C[,0

and induces a continuous map (Ψ[
∞)∗ : Y j,ad

C[,∞(C,W ) → Xj,ad

C[,∞(B,Z). Moreover, we can see as

above that the induced map

π0(Y j,ad

C[,∞(C,W ))
(Ψ[
∞)∗

−−−−→ π0(Xj,ad

C[,∞(B,Z))

is also compatible with the Galois action. Hence we are reduced to showing that the lower square

of the diagram

π0(Y j,ad
C (C,W ))

Ψ∗ // π0(Xj,ad
C (B,Z))

π0(Y j,ad
C,∞(C,W ))

π0(Ψ∗)∞//

τ

��

o

OO

π0(Xj,ad
C,∞(B,Z))

τ

��

o

OO

π0(Y j,ad

C[,∞(C,W ))
(Ψ[
∞)∗
// π0(Xj,ad

C[,∞(B,Z))

is commutative.

This can be shown as in the proof of Lemma 3.8: take a point y in a connected component

of Y j,ad
C,∞(C,W ) defined by Y

1/pl

i 7→ yi,l with some yi,l ∈ OC satisfying ypi,l+1 = yi,l for any l. Put

y0 = (y1,0, . . . , yn′,0). Note that y0 ∈ Y j,ad
C (C,W ) and Ψ∗(y0) ∈ Xj,ad

C (B,Z). Moreover, the latter

point is defined by the map Xi 7→ Ψi(y0). Choose a system (Ψi(y0)1/pl)l>0 of its p-power roots

in OC satisfying (Ψi(y0)1/pl+1
)p = Ψi(y0)1/pl . Then the map X

1/pl

i 7→ Ψi(y0)1/pl gives a point

Ψ∗(y0)1/p∞ of the adic space Xj,ad
C,∞(B,Z). From the definition, we see that the map π0(Ψ∗)∞

sends the connected component containing y to the connected component containing Ψ∗(y0)1/p∞ .

It is enough to show that the points

(Ψ[
∞)∗(τ(y)) and τ(Ψ∗(y0)1/p∞)

are contained in the same connected rational subset of the adic space Xj,ad

C[,∞(B,Z). Put

y
i

= (yi,l)l ∈ OC[ and y = (y
1
, . . . , y

n′
) as before. Then we have y] = (y1,0, . . . , yn′,0) and the

commutative diagram (1) implies y ∈ Y j,ad

C[ (C,W ). We let y also denote the unique inverse image

of this point in Y j,ad

C[,∞(C,W ). Let V be the rational subset of Xad
C[,∞ defined by

V = {z ∈ Xad
C[,∞ | |(Xi −Ψ[

i(y))(z)| 6 |u(z)|m}.

From Lemma 3.4, we see that V is connected. By the definition of the map (Ψ[
∞)∗, the point

(Ψ[
∞)∗(y) lies in V and the assumption j 6 m implies V ⊆ Xj,ad

C[,∞(B,Z). By the commutative
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diagram (1), Lemma 3.2 and the congruence (5), we obtain the equivalences

|(Ψ[
i −Ψ[

i(y))](y)| 6 |u](y)|m ⇔ |(Ψ[
i)
](y)− (Ψ[

i(y))]| 6 |π|m

⇔ |Ψi(y0)−Ψi(y0)| 6 |π|m ⇔ |Ψi(y0)− (Ψ[
i(y))]| 6 |π|m

⇔ |(Xi − (Ψ[
i(y))])(Ψ∗(y0)1/p∞)| 6 |π(Ψ∗(y0)1/p∞)|m

⇔ |(Xi −Ψ[
i(y))](Ψ∗(y0)1/p∞)| 6 |u](Ψ∗(y0)1/p∞)|m.

This implies the claim and concludes the proof of the proposition. 2

Corollary 4.4. Let j be a positive rational number satisfying j 6m. Let (K1, ι1) and (K2, ι2)
be lifts of A. Then there exists a natural isomorphism

ρK1,K2 : F j(K1,ι1) → F
j
(K2,ι2)

of functors from the category of finite flat A-algebras to that of finite sets.

Proof. Note that the functor F j(F,ι) is independent of the choice of an algebraic closure of F , up
to a natural isomorphism. The corollary follows from this fact and Proposition 4.3. 2

Remark 4.5. The natural isomorphism ρK1,K2 depends on various choices: it depends on the
choices of a k-algebra structure and a uniformizer of A, a p-basis and a Cohen ring C(k) of k,
an algebraic closure, a local map C(k)→ OK1 , a uniformizer, a lift of the fixed p-basis of k and
their compatible p-power roots for K1 and similar choices for K2.

4.3 Ramification of complete intersection A-algebras
Let A be a truncated discrete valuation ring of length m. Let B be a finite flat A-algebra which is
relatively of complete intersection [Gro67, Définition (19.3.6)]. The following lemma gives typical
examples of such an extension B/A.

Lemma 4.6. (i) Let K be a complete discrete valuation field with uniformizer π. Let L be a
finite extension of K and n be a positive integer. Then OL (respectively OL/(πn)) is a finite flat
OK-algebra (respectively OK/(πn)-algebra) which is relatively of complete intersection.

(ii) Let A and B be truncated discrete valuation rings such that B is a finite flat A-algebra.
Then the A-algebra B is relatively of complete intersection.

Proof. Since OL is a complete Noetherian regular local ring and π is a regular element, the ring
OL/(π) is a ring of complete intersection [Gro67, Définition (19.3.1)]. Then the first assertion
follows from the definition and [Gro67, Corollaire (19.3.8)]. The second assertion also follows from
the definition, since B ⊗A k is a truncated discrete valuation ring, and thus a ring of complete
intersection. 2

Definition 4.7 [HT08, Definition 3.2]. Let B be a finite flat A-algebra which is relatively of
complete intersection, (K, ι) be a lift of A and j ∈ Q ∩ (0,m]. We say that the ramification of
B/A is bounded by j if

]F j(K,ι)(B) = rankA(B).

This condition a priori depends on the choice of a lift (K, ι) of A. However, the following
corollary shows that it is in fact independent of the choice of a lift, for the case of pA = 0.

Corollary 4.8. Suppose pA = 0. Let j be a positive rational number satisfying j 6 m. Let
B be a finite flat A-algebra relatively of complete intersection. Then the condition that the
ramification of B/A is bounded by j is independent of the choice of a lift (K, ι) of A.
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Proof. This follows immediately from Corollary 4.4. 2

Next we study a relationship between ramification of finite flat A-algebras and of finite
flat algebras over complete discrete valuation rings. Let K be a complete discrete valuation
field of residue characteristic p > 0 with algebraic closure K̄. For any finite flat OK-algebra B̃,
put B̃K = B̃ ⊗OK

K and FK(B̃) = HomK-alg.(B̃K , K̄). For any positive rational number j, let
F jK be the functor of (non-log) ramification theory for K constructed in [AS02, § 3.1]. It is a
contravariant functor from the category of finite flat OK-algebras to that of finite GK-sets which
is endowed with a natural map of finite GK-sets

FK(B̃)→ F jK(B̃).

If the OK-algebra B̃ is relatively of complete intersection, then this map is a surjection [AS02,
Proposition 6.1].

Definition 4.9. For a finite flat OK-algebra B̃ relatively of complete intersection, we say that
the (non-log) ramification of B̃/OK is bounded by j if

]F jK(B̃) = rankOK
(B̃).

For a finite extension L/K, we say that the ramification of L/K is bounded by j if the ramification
of OL/OK is bounded by j.

Note that, if the K-algebra B̃K is etale, then it is equivalent to the definition given in [AS02,
Definition 6.3]. Moreover, if the ramification of B̃/OK is bounded by some j, then the K-algebra
B̃K is etale.

Let A be a truncated discrete valuation ring of length m and (K, ι) be a lift of A. For
any finite flat OK-algebra B̃, the A-algebra B = B̃ ⊗OK ,ι A is a finite flat A-algebra. If the
OK-algebra B̃ is relatively of complete intersection, then the A-algebra B is also relatively of
complete intersection. For any positive rational number j 6m, [Hat06, Lemma 1] yields a natural
isomorphism of finite GK-sets

F jK(B̃) ' F j(K,ι)(B).

Lemma 4.10. Let K be a complete discrete valuation field of residue characteristic p > 0 with
uniformizer π. Let n be a positive integer and j be a positive rational number satisfying j 6 n.

(i) [HT08, Corollary 3.5] Let B̃ be a finite flat OK-algebra which is relatively of complete
intersection. Put A = OK/(πn) and B = B̃/(πn). Then the ramification of B̃/OK is bounded by
j if and only if the ramification of B/A is bounded by j.

(ii) Let L be a finite extension of K. Put A = OK/(πn) and B = OL/(πn). If the ramification
of B/A is bounded by j, then L is a separable extension of K.

Proof. The first assertion follows from the definition and [Hat06, Lemma 1]. Let us show the
second assertion. By Lemma 4.6(i), the finite flat OK-algebra OL is relatively of complete
intersection. By [AS02, Proposition 6.1], we have a surjection

FK(OL)→ F jK(OL).

Hence we obtain the inequality

[L : K] > ]FK(OL) > ]F jK(OL) = ]F j(K,ι)(B) = [L : K],

which implies that the extension L/K is separable. 2
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Corollary 4.11. Let L1/K1 and L2/K2 be extensions of complete discrete valuation fields of
residue characteristic p > 0. Let πKi be a uniformizer of Ki. Let e(Ki) be as in § 1. Let m be
a positive integer satisfying m 6 mini e(Ki). Suppose that we have compatible isomorphisms
of rings OK1/(π

m
K1

) ' OK2/(π
m
K2

) and OL1/(π
m
K1

) ' OL2/(π
m
K2

). Then, for any positive rational
number j 6 m, the ramification of L1/K1 is bounded by j if and only if the ramification of
L2/K2 is bounded by j.

Proof. By [Hat06, Lemma 1] and Corollary 4.4, we obtain the equalities

]F jK1
(OL1) = ]F j(K1,ι1)(OL1/(π

m
K1

)) = ]F j(K2,ι2)(OL2/(π
m
K2

)) = ]F jK2
(OL2),

from which the corollary follows. 2

4.4 An equivalence of categories
Let A be a truncated discrete valuation ring of length m with residue field k of characteristic
p > 0.

Definition 4.12 [HT08, § 2]. A truncated discrete valuation ringB is said to be a finite extension
of A if it is a finite flat A-algebra for m > 2, and if it is a field which is a finite extension of k
for m = 1.

Note that for any finite extension B/A of truncated discrete valuation rings, the A-algebra
B is relatively of complete intersection by Lemma 4.6(ii).

Any finite extension B/A of truncated discrete valuation rings has the following lifting
property, which is shown in the first part of the proof of [HT08, Proposition 2.2]. This proposition
also states that L/K can be taken to be finite separable. However, the proof of this latter part
seems to have a gap, since it is not clear in general that we have the equality p′ ∩ R = q with
their notation.

Lemma 4.13. Let B be a finite flat A-algebra which is relatively of complete intersection and
(K, ι) be a lift of A. Then there exist a finite flat OK-algebra B̃ which is relatively of complete
intersection and the following cocartesian diagram.

OK //

ι

��

B̃

��
A // B

Moreover, if B/A is a finite extension of truncated discrete valuation rings, then the OK-algebra
B̃ can be taken to be the ring of integers OL of a finite extension L/K.

Proof. We present a proof for the convenience of the reader. We may assume that B is local with
maximal ideal mB and residue field kB. By assumption, the ring B ⊗A k is a ring of complete
intersection. Fix an A-algebra surjection

Ā = A[X1, . . . , Xn]→ B.

Consider the surjection A = OK [X1, . . . , Xn] → Ā induced by ι and let m (respectively m̄) be
the maximal ideal of A (respectively Ā) which is the inverse image of mB. The completions of
the local rings Ām̄ and Am are denoted by R̄ and R, respectively. Let mR be the maximal ideal
of the local ring R and π be a uniformizer of OK .

The local ring R̄ is a flat A-algebra such that R̄ ⊗A k is regular. Then [Gro67, Corollaire
(19.3.5)] implies that the kernel n̄ of the surjection R̄ → B is generated by a regular

822

S. Hattori

https://doi.org/10.1112/S0010437X1300763X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300763X


sequence (ḡ1, . . . , ḡr) of R̄. Let gi be a lift of ḡi in R. Since the sequence (πm, g1, . . . , gr) in
the ideal mR is regular and the local ring R is Noetherian, the sequence (g1, . . . , gr, π

m) is also
regular by [Gro64, Corollaire (15.1.11)]. Then the OK-algebra B̃ = R/(g1, . . . , gr) is flat and
π-adically complete. From the definition, we have B̃/(πm) ' B and thus the OK-algebra B̃ is
finite. By assumption, the k-algebra B̃⊗OK

k is relatively of complete intersection. From [Gro67,
Corollaire (19.3.8)], we see that the OK-algebra B̃ is also relatively of complete intersection.

Next we assume that B/A is a finite extension of truncated discrete valuation rings. If m = 1,
then we can construct L as in the lemma by taking an unramified extension of K for the case
where B/k is separable, an extension generated by a lift of a generator of B/k for the case where
B/k is purely inseparable of degree p and by induction for the general case.

Let us consider the case of m > 2. We identify the residue field of R with kB. Put n =
Ker(R→ B) = (πm, g1, . . . , gr). Since m > 2, the maximal ideal mB is not zero and we have an
exact sequence of kB-vector spaces

0→ n/(n ∩m2
R)→ mR/m

2
R → mB/m

2
B → 0,

where the kB-vector space on the middle (respectively right) term is of dimension n + 1
(respectively 1). The assumption m > 2 also implies that the kB-vector space on the left term is
generated by the images of g1, . . . , gr, and thus r > n. Since the local ring R is Cohen–Macaulay
of dimension n + 1, the maximal length of regular sequences in mR is n + 1. Hence we obtain
r = n and the images of g1, . . . , gn in n/(n ∩ m2

R) are linearly independent over kB. This means
that g1, . . . , gn form a part of a system of regular parameters of the regular local ring R. Thus
the local ring B̃ = R/(g1, . . . , gn) is regular of dimension 1, namely a discrete valuation ring.
Since it is flat over OK , the map OK → B̃ is an injection. Since it is π-adically complete, it is
also a complete discrete valuation ring and the second assertion follows. 2

Let B/A and B′/A be finite extensions of truncated discrete valuation rings. For any lift
(K, ι) of A and any positive rational number j 6 m, we define an equivalence relation ∼j on the
set HomA-alg.(B,B

′) by
ψ ∼j ψ′ ⇔ F j(K,ι)(ψ) = F j(K,ι)(ψ

′)

for any A-algebra homomorphisms ψ,ψ′ : B → B′.

Lemma 4.14. The equivalence relation ∼j is independent of the choice of a lift (K, ι). Moreover,
it is compatible with the composite.

Proof. Let (K ′, ι′) be another lift of A. By Corollary 4.4, we have a commutative diagram

HomA-alg.(B,B
′) //

**

Map(F j(K,ι)(B
′),F j(K,ι)(B))

o
��

Map(F j(K′,ι′)(B
′),F j(K′,ι′)(B))

where the vertical arrow is a bijection. This implies the first assertion. If ψ1 ∼j ψ′1 and ψ2 ∼j ψ′2,
then

F j(K,ι)(ψ1 ◦ ψ2) = F j(K,ι)(ψ2) ◦ F j(K,ι)(ψ1)

= F j(K,ι)(ψ
′
2) ◦ F j(K,ι)(ψ

′
1) = F j(K,ι)(ψ

′
1 ◦ ψ′2)

and the second assertion also follows. 2
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Definition 4.15 [HT08, Definition 3.3]. We define a category FFP<jA as follows: the object of

FFP<jA is any finite extension B/A of truncated discrete valuation rings such that the ramification

of B/A is bounded by j. The morphism of FFP<jA is defined by

Hom
FFP<j

A
(B,B′) = HomA-alg.(B,B

′)/ ∼j .

In [HT08], this category is denoted by FFP6j
A .

Theorem 4.16. The category FFP<jA is independent of the choice of a lift (K, ι) of A.

Proof. This follows from Corollary 4.8 and Lemma 4.14. 2

On the other hand, let (K, ι) be a lift of A and FE<jK be the category of finite separable

extensions L/K such that its ramification is bounded by j. For j 6 m, we have a natural

covariant functor r<j(K,ι) : FE<jK → FFP<jA defined by L 7→ OL/(πm), where π is a uniformizer of

K and we consider the ring OL/(πm) as an A-algebra by the isomorphism OK/(πm) ' A induced

by ι. Indeed, this functor is well defined by Lemma 4.10(i) for m > 2 and by [AS02, Proposition

6.9] for m = 1. Then the following proposition is shown in [HT08]; we present a proof for the

convenience of the reader.

Proposition 4.17 [HT08, Corollary 1.2]. The functor r<j(K,ι) : FE<jK → FFP<jA is an equivalence

of categories.

Proof. First we show that the functor is essentially surjective. Let B be an object of the category

FFP<jA . By Lemma 4.13, there exists a finite extension L/K satisfying OL ⊗OK ,ι A ' B. By

Lemma 4.10, the extension L/K is separable and its ramification is bounded by j.

For the full faithfulness, let L and L′ be objects of the category FE<jK . Put B = OL/(πm)

and B′ = OL′/(πm). Then we have the following commutative diagram.

HomK-alg.(L,L
′)

o
��

HomOK -alg.(OL,OL′) //

o
��

HomA-alg.(B,B
′)

��

MapGK
(F jK(OL′),F jK(OL)) ∼

//MapGK
(F j(K,ι)(B

′),F j(K,ι)(B))

Here MapGK
means the set of morphisms of finite GK-sets. Note that the left vertical arrows

are bijections, since the ramifications of L/K and L′/K are bounded by j. Moreover, the lower

horizontal arrow is also a bijection by [Hat06, Lemma 1]. The full faithfulness follows from this

diagram and the definition of the equivalence relation ∼j . 2

Corollary 4.18. Let K1 and K2 be complete discrete valuation fields with residue fields k1

and k2 of characteristic p > 0, respectively. Let e(Ki) be as in § 1. Let j be a positive rational

number satisfying j 6 mini e(Ki). Suppose that the fields k1 and k2 are isomorphic to each other.

Then there exists an equivalence of categories

FE<jK1
' FE<jK2

.
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In particular, there exists an isomorphism of topological groups

GK1/G
j
K1
' GK2/G

j
K2
,

where GjKi
is the jth (non-log) upper ramification subgroup of GKi (see [AS02, § 3]).

Proof. Put m = mini e(Ki). Let πKi be a uniformizer of Ki. Note that if char(Ki) = 0, then the
ring OKi can be considered as a finite totally ramified extension of a Cohen ring of ki. Thus the
ring Ai = OKi/(π

m
Ki

) is non-canonically isomorphic to ki[u]/(um). Hence the categories FFP<jA1

and FFP<jA2
are equivalent, and the first assertion follows from Proposition 4.17. The second

assertion can be shown verbatim as the proof of [Del84, (3.5.1)]. 2

5. Log ramification

In this section, we prove a variant of Proposition 4.3 for log ramification [AS02, § 3.2].
Let K be a complete discrete valuation field with residue field k of characteristic p > 0 and

uniformizer π. Let K̄ be an algebraic closure of K. Let L be a finite extension of K with residue
field kL, uniformizer πL and additive valuation vL which is normalized as vL(πL) = 1. Let eL/K
be the relative ramification index of the extension L/K. Let Z = (z1, . . . , zn) be a system of finite
generators of the OK-algebra OL and P be a subset of {1, . . . , n} such that the set {zi | i ∈ P}
contains a uniformizer of OL and does not contain the zero element. Such a pair (Z,P ) is referred
to as a log system of generators of the OK-algebra OL. Put ei = vL(zi) for any i ∈ P . Consider
the surjection OK [X]→OL associated to Z and write its kernel as (f1, . . . , fr). For any i ∈ P , we
choose a lift gi ∈ OK [X] of the unit z

eL/K

i /πei by this surjection. For any i, i′ ∈ P , we also choose
a lift hi,i′ ∈ OK [X] of the unit zeii′ /z

ei′
i . For any positive rational number j, the jth log tubular

neighborhood Xj
K,log(OL, Z, P ) of the OK-algebra OL with respect to (Z,P ) is the K-affinoid

variety defined as
|fi(x)| 6 |π|j for any i,

x ∈ Sp(K〈X〉) |(XeL/K

i − πeigi)(x)| 6 |π|j+ei for any i ∈ P,
|(Xei

i′ −X
ei′
i hi,i′)(x)| 6 |π|j+eiei′/eL/K for any i, i′ ∈ P

 .

Then the K-affinoid variety Xj
K,log(OL, Z, P ) is independent of the choice of fi, gi and hi,i′ .

Though L/K is assumed to be separable in [AS02, § 3.2], a verbatim argument shows that the
inverse system of finite GK-sets

{πgeom
0 (Xj

K,log(OL, Z, P ))}(Z,P )

is constant also for the case where L/K is not separable. This gives a contravariant functor

OL 7→ F jK,log(OL) = lim
←−

(Z,P )

πgeom
0 (Xj

K,log(OL, Z, P ))

from the category of rings of integers of finite extensions of K to that of finite GK-sets. We have
a natural map of finite GK-sets

FK(OL)→ F jK,log(OL),

which is a surjection if the finite extension L/K is separable [AS02, Proposition 9.3(i)].

Lemma 5.1. Let L/K be a finite extension and M be the separable closure of K in L. Then we
have

]F jK,log(OL) = ]F jK,log(OM ).
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Proof. We may assume char(K) = p. It suffices to show the equality in the lemma for any purely
inseparable extension L/M of degree p of finite extensions of K. Let kM and πM be the residue
field and a uniformizer of M . Let z1, . . . , zn−1 be a lift in OM of a system of finite generators
of the finite extension kM/k and put zn = πM . Then Z = (z1, . . . , zn) and P = {n} form a
log system of generators of the OK-algebra OM . Let (f1, . . . , fr) be the kernel of the associated
surjection OK [X] → OM and g be a lift of the unit π

eM/K

M /π by this surjection. Then the log
tubular neighborhood Xj

K,log(OM , Z, P ) is the affinoid subdomain

{x ∈ Sp(K〈X〉) | |fi(x)| 6 |π|j for any i, |(XeM/K
n − πg)(x)| 6 |π|j+1}

of the n-dimensional unit polydisc Dn
K over K.

Suppose that L/M is totally ramified. Then we have an isomorphism of OM -algebras

OM [Y ]/(Y p − πM ) ' OL.

Let z′n be the image of Y by this isomorphism, which is a uniformizer of L. Put z′i = zi for
i 6 n − 1. Then Z ′ = {z′1, . . . , z′n−1, z

′
n} and P ′ = {n} form a log system of generators of the

OK-algebra OL. The kernel of the associated surjection OK [X]→ OL is the ideal

(f1(X1, . . . , Xn−1, X
p
n), . . . , fr(X1, . . . , Xn−1, X

p
n)).

The surjections associated to Z and Z ′ fit into the commutative diagram

OK [X] //

��

OM

��
OK [X] // OL

where the right vertical arrow is the natural inclusion and the left vertical arrow is defined by
Xi 7→ Xi for i 6 n− 1 and Xn 7→ Xp

n. Since the natural inclusion sends z
eM/K
n /π to (z′n)eL/K/π,

the latter element is lifted to g(X1, . . . , Xn−1, X
p
n) by the surjection OK [X]→OL. Thus the log

tubular neighborhood Xj
K,log(OL, Z ′, P ′) is the affinoid subdomain{

x ∈ Sp(K〈X〉) |fi(X1, . . . , Xn−1, X
p
n)(x)| 6 |π|j for any i,

|(XpeM/K
n − πg(X1, . . . , Xn−1, X

p
n))(x)| 6 |π|j+1

}
of the n-dimensional unit polydisc Dn

K . Let C be the completion of K̄. To compare the sets of
geometric connected components, we may pass to an adic space over Spa(C,OC) and consider the
sets of connected components by Lemma 2.2. Let Xj,ad

C,log(OM , Z, P ) be the adic space associated
to the base change of Xj

K,log(OM , Z, P ) to Sp(C). We also define Xj,ad
C,log(OL, Z ′, P ′) and Dn,ad

C
similarly. From the definition, we see that the rational subset Xj,ad

C,log(OL, Z ′, P ′) is the inverse
image of the rational subset Xj,ad

C,log(OM , Z, P ) of Dn,ad
C by the map

Dn,ad
C → Dn,ad

C , (X1, . . . , Xn−1, Xn) 7→ (X1, . . . , Xn−1, X
p
n).

Since this map is a homeomorphism, the claim follows in this case.
Next suppose that L/M is of relative ramification index one. We have an isomorphism of

OM -algebras
OM [Xn+1]/(Xp

n+1 − a)→ OL, Xn+1 7→ z′n+1 = a1/p

with some a ∈ O×M . Put z′i = zi for i 6 n. Then Z ′ = (z′1, . . . , z
′
n+1) and P = {n} form a log

system of generators of the OK-algebra OL. Let f ′ be a lift of the element a by the surjection
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OK [X] → OM associated to Z. Define Xj,ad
C,log(OM , Z, P ) and Xj,ad

C,log(OL, Z ′, P ′) similarly to the
above case. Then Xj,ad

C,log(OL, Z ′, P ′) is the rational subsetz ∈ Dn+1,ad
C

|fi(X1, . . . , Xn)(z)| 6 |π(z)|j for any i,

|(Xp
n+1 − f ′(X1, . . . , Xn))(z)| 6 |π(z)|j ,

|(XeM/K
n − πg(X1, . . . , Xn))(z)| 6 |π(z)|j+1


of the (n+ 1)-dimensional unit polydisc Dn+1,ad

C . Now we consider the map

ϕ : Dn,ad
C → Dn,ad

C , (X1, . . . , Xn) 7→ (Xp
1 , . . . , X

p
n),

which is also a homeomorphism. The inverse image of Xj,ad
C,log(OL, Z ′, P ′) ⊆ Dn+1,ad

C by the map
ϕ× id is the rational subsetz ∈ Dn+1,ad

C

|fi(Xp
1 , . . . , X

p
n)(z)| 6 |π(z)|j for any i,

|(Xn+1 − f ′′(X1, . . . , Xn))(z)| 6 |π(z)|j/p,
|(XpeM/K

n − πg(Xp
1 , . . . , X

p
n))(z)| 6 |π(z)|j+1

 ,

where f ′′ is the element of the ring C[X] satisfying f ′′(X1, . . . , Xn)p = f ′(Xp
1 , . . . , X

p
n). Since this

adic space is isomorphic to

ϕ−1(Xj,ad
C,log(OM , Z, P ))×Spa(C,OC) D

1,ad
C ,

the claim follows also in this case. 2

Definition 5.2. We say that the log ramification of a finite extension L/K is bounded by j if

]F jK,log(OL) = [L : K].

If L/K is separable, it is equivalent to the definition given in [AS02, Definition 9.4]. Using
Lemma 5.1, we can prove the following variant of Lemma 4.10(ii) for log ramification.

Lemma 5.3. Let L/K be a finite extension and j be a positive rational number. If the log
ramification of L/K is bounded by j, then the extension L/K is separable.

Proof. Let M be the separable closure of K in L. By Lemma 5.1, we have the inequality

[L : K] > [M : K] = ]FK(OM ) > ]F jK,log(OM ) = ]F jK,log(OL) = [L : K],

which implies L = M . 2

Now let L/K be a finite extension as before. Let z1, . . . , zn−1 be elements of OL such that
their images in kL generate the residue extension kL/k. Put zn = πL. Then Z = (z1, . . . , zn) and
P = {n} form a log system of generators of theOK-algebraOL. Consider the associated surjection
OK [X]→OL and write its kernel as (f1, . . . , fr). Let g ∈ OK [X] be a lift of the element π

eL/K

L /π
by this surjection. Let j be a positive rational number. Then the jth log tubular neighborhood
Xj
K,log(OL, Z, P ) is the affinoid variety

{x ∈ Sp(K〈X〉) | |fi(x)| 6 |π|j for any i, |(XeL/K
n − πg)(x)| 6 |π|j+1},

and we also have an isomorphism of finite GK-sets

F jK,log(OL) ' πgeom
0 (Xj

K,log(OL, Z, P )).

Let e = e(K) be as in § 1. Let m be a positive integer satisfying m 6 e−1. Put A = OK/(πm)
and A+ = OK/(πm+1). Then the A-algebra B = OL/(πm) is a truncated discrete valuation ring
which is finite flat over A and similarly for the A+-algebra B+ = OL/(πm+1). The images of π
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in A, A+ and πL in B+ are denoted by π̄, π̄+ and π̄B+ , respectively. The natural map OK → A+

gives a lift (K, ι+) of A+ and a lift (K, ι) of A.
On the other hand, by fixing a section k → A+ of the natural reduction map A+ → k, we

consider A+ and A as k-algebras. Put F = k((u)). The map OF = k[[u]]→ A+ sending u to π̄+

gives a lift (F, ι+) of A+ and a lift (F, ι) of A.
Suppose that there exist a finite extension E/F and an isomorphism of A+-algebras

OE ⊗OF ,ι+ A+ → B+. Note that we have [L : K] = [E : F ]. Let πE be a uniformizer of E
lifting π̄B+ . Since the residue extensions of L/K and E/F are the same, we have the equality
eL/K = eE/F .

Lemma 5.4. The images of the elements π
eL/K

L /π ∈ OL and π
eE/F

E /u ∈ OE in B coincide with
each other.

Proof. From the definition, we see that the images of π and u in A+ and the images of πL and
πE in B+ both coincide. Thus we have the equation in the ring B+

u(π
eL/K

L /π) = π(π
eL/K

L /π) = π
eL/K

L = π
eE/F

E = u(π
eE/F

E /u).

This implies the lemma. 2

Let z̄i be the image of zi in B. Then Z̄ = (z̄1, . . . , z̄n) gives a system of generators of the
A-algebra B. Let f̄i and ḡ be the images of fi and g in the ring A[X]. Let fi and g be their
lifts in OF [X] by the surjection ι : OF → A. Let zi be a lift of z̄i in OE satisfying zn = πE .
Then Z = (z1, . . . , zn) and P = {n} form a log system of generators of the OF -algebra OE .
Consider the associated surjection OF [X]→ OE , and let g′ be a lift of the element π

eE/F

E /u by
this surjection. Then the images g and g′ in B are both equal to the element of Lemma 5.4.
Hence we have the congruence

g ≡ g′ mod (f1, . . . , fr, u
m)

in the ring OF [X].
Let j be a positive rational number satisfying j 6m− 1. The above congruence implies that

the jth log tubular neighborhood Xj
F,log(OE ,Z,P) of the OF -algebra OE with respect to (Z,P)

is equal to the F -affinoid variety

{x ∈ Sp(F 〈X〉) | |fi(x)| 6 |u|j for any i, |(XeE/F
n − ug)(x)| 6 |u|j+1}.

Put f̄r+1 = X
eL/K
n − π̄ḡ, f̄ ′ = {f̄1, . . . , f̄r, f̄r+1} and j′ = (j, . . . , j, j + 1). Then we have the

equalities
Xj
K,log(OL, Z, P ) = Xj′

K(f̄ ′, n), Xj
F,log(OE ,Z,P) = Xj′

F (f̄ ′, n).

Hence Theorem 3.11 implies the following theorem.

Theorem 5.5. Let L/K be a finite extension and m be a positive integer satisfying m6 e(K)−1.
Put A+ = OK/(πm+1). Fix a section k → A+ of the reduction map and consider the k-algebra
surjection ι+ : k[[u]] → A+ defined by u 7→ π. Put F = k((u)). Let E/F be a finite extension
with an isomorphism of A+-algebras

OE ⊗OF ,ι+ A+ → OL/(πm+1).

Let j be a positive rational number satisfying j 6 m − 1. Then there exists an isomorphism of
finite GK′∞-sets

F jK,log(OL)→ F jF,log(OE)

via the isomorphism GK′∞ ' GF ′ of the classical theory of fields of norms.
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Corollary 5.6. Let L1/K1 and L2/K2 be extensions of complete discrete valuation fields
of residue characteristic p > 0. Let πKi be a uniformizer of Ki. Let m be a positive integer
satisfying m 6 mini e(Ki). Suppose that we have compatible isomorphisms of rings OK1/(π

m
K1

) '
OK2/(π

m
K2

) and OL1/(π
m
K1

) ' OL2/(π
m
K2

). Then, for any positive rational number j 6 m− 2, the
log ramification of L1/K1 is bounded by j if and only if the log ramification of L2/K2 is bounded
by j.

Proof. Put A+ = OK1/(π
m
K1

) and B+ = OL1/(π
m
K1

). We choose a uniformizer πK2 such that
its image in A+ coincides with the image of πK1 . Fix a section k → A+ of the reduction map
and consider the lift (F, ι+) of A+ as above. Since we have m > 2 by assumption, B+/A+ is a
finite extension of truncated discrete valuation rings and Lemma 4.13 enables us to find a finite
extension E/F with an isomorphism of A+-algebras OE ⊗OF ,ι+ A+ → B+. Then Theorem 5.5
yields bijections

F jK1,log(OL1) ' F jF,log(OE) ' F jK2,log(OL2)

for any positive rational number j 6 m− 2. This concludes the proof. 2

Remark 5.7. Here we do not study any functoriality of the isomorphism of Theorem 5.5 similar
to Proposition 4.3, for the following reason: let L and L′ be finite separable extensions of K. Let
(Z,P ) be a log system of generators of the OK-algebra OL and (Z ′, P ′) be that of OL′ . Consider
an inclusion of K-algebras ψ : L→ L′ satisfying ψ(Z) ⊆ Z ′ and ψ(P ) ⊆ P ′. Then P ′ contains a
uniformizer of L. However, this forces us to include in defining equations of the jth log tubular
neighborhood of the OK-algebra OL′ the following equation:

|(X
eL′/K
i − πeL′/Lg)(x)| 6 |π|j+eL′/L .

Since eL′/L can be arbitrarily large, we cannot connect affinoid varieties of different characteristics
functorially using mod πm for a fixed m as we did in the non-log case.

6. Compatibility of Scholl’s higher fields of norms with ramification

In this section, we prove that Scholl’s theory of higher fields of norms [Sch06] is compatible with
the ramification theory of Abbes–Saito. Let d be a non-negative integer. Let K• = (Kn)n>0 be a
strictly deeply ramified extension of d-big local fields of mixed characteristic (0, p) (see [Sch06,
§ 1.3]). In particular, there exists a positive integer n0 and an element ξ ∈ OKn0

satisfying
|p| 6 |ξ| < 1 such that for any n > n0, the relative ramification index eKn+1/Kn

is equal to p
and the pth power Frobenius map induces a surjection OKn+1/(ξ)→OKn/(ξ). Moreover, for any
n > n0, we can choose a uniformizer πKn of Kn satisfying πpKn+1

≡ πKn mod ξ. Put K∞ =
⋃
nKn

and

X+ = X+(K∞) = lim
←−

n>n0,Φ

OKn/(ξ),

where all the transition maps are the pth power Frobenius maps. Set Π = (πKn)n>n0 . Let kn be
the residue field of Kn. Then X+ is a complete discrete valuation ring of characteristic p with
uniformizer Π and residue field

k′ = lim
←−

n>n0,Φ

kn

(see [Sch06, Theorem 1.3.2]). Moreover, X+ is independent of the choice of n0 and ξ. Put
X = Frac(X+).
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Let L∞ be a finite extension of K∞. Then L∞ can be written as L∞ = K∞L0 with some
finite extension L0/K0 inside L∞. Put Ln = KnL0. Then L• = (Ln)n>0 is also strictly deeply
ramified for any ξ′ satisfying |ξ| < |ξ′| < 1 with some n′0, and we can define a complete discrete
valuation ring X+(L∞) by a similar construction to X+ for L•. Put X(L∞) = Frac(X+(L∞)).
Then L∞ 7→ X(L∞) defines an equivalence of categories from the category of finite extensions
of K∞ to that of finite separable extensions of X (see [Sch06, Theorem 1.3.5]). In particular, for
any finite Galois extension L∞/K∞, we have an isomorphism

Gal(L∞/K∞) ' Gal(X(L∞)/X),

which induces an isomorphism of absolute Galois groups GK∞ ' GX .

Definition 6.1. Let L∞/K∞ be a finite separable extension and Ln be as above. We say that
the ramification (respectively log ramification) of L∞/K∞ is bounded by j if the ramification
(respectively log ramification) of Ln/Kn is bounded by j for any sufficiently large n.

Then the main theorem of this section is the following, which reproves a result recently
obtained by Ohkubo using a totally different method [Ohk13, Theorem 3.42].

Theorem 6.2. The ramification (respectively log ramification) of L∞/K∞ is bounded by j if
and only if the ramification (respectively log ramification) of X(L∞)/X is bounded by j.

Proof. We let vKn denote the additive valuation of Kn normalized as vKn(πKn) = 1 and e(Kn)
be the absolute ramification index of Kn. By replacing ξ by ξ′, we may assume n0 = n′0 and
ξ = ξ′. Then we have vKn(ξ) < e(Kn). Note that vKn(ξ) can be arbitrarily large by increasing n.
Take any positive integer n > n0 satisfying j 6 vKn(ξ)−2. Put m = vKn(ξ). Then the surjections

X+ prn−−→ OKn/(π
m
Kn

)← OKn

give two lifts of the truncated discrete valuation ring OKn/(π
m
Kn

) of length m, which is killed by
p. Moreover, the diagram

X+(L∞)
prn // OLn/(π

m
Kn

) OLn
oo

X+

OO

prn
// OKn/(π

m
Kn

)

OO

OKn
oo

OO

is cocartesian. Hence Corollaries 4.11 and 5.6 imply the theorem. 2

For any positive rational number j, let FE<jK∞ (respectively FE<jK∞,log) be the category of finite
separable extensions L∞/K∞ whose ramification (respectively log ramification) is bounded by
j. Put

GjK∞ =
⋂

L∞∈FE<j
K∞

GL∞ , GjK∞,log =
⋂

L∞∈FE<j
K∞,log

GL∞ .

Let GjX and GjX,log be the jth non-log and log upper ramification subgroups of GX , respectively
[AS02, § 3].

Corollary 6.3. The isomorphism GK∞ ' GX induces isomorphisms

GjK∞ ' G
j
X , GjK∞,log ' G

j
X,log.
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Proof. By Theorem 6.2, the equivalence of higher fields of norms induces an isomorphism⋂
L∞∈FE<j

K∞

GL∞ '
⋂

X′∈FE<j
X

GX′

and the latter group is equal to GjX . The assertion on log ramification follows similarly. 2

7. An application to a generalization of the Hasse–Arf theorem

Finally, we give an application of Theorem 3.11 to a generalization of the Hasse–Arf theorem to
the case of imperfect residue fields, though it is under a very restrictive condition.

Let K be a complete discrete valuation field of residue characteristic p > 0. Let k be the
residue field of K. For any non-negative rational number j, put

Gj+K =
⋃
j′>j

Gj
′

K , Gj+K,log =
⋃
j′>j

Gj
′

K,log.

Let V be a p-adic representation of GK with finite local monodromy. Then the Artin conductor
Art(V ) and the Swan conductor Sw(V ) of V are defined as

Art(V ) =
∑
j∈Q>0

j dimQp(V Gj+
K /V Gj

K ),

Sw(V ) =
∑
j∈Q>0

j dimQp(V Gj+
K,log/V Gj

K,log).

For their integrality, we have the following theorem of Xiao.

Theorem 7.1. (i) [Xia10, Corollary 4.4.3] Suppose char(K) = p. Then Art(V ) and Sw(V ) are
integers.

(ii) [Xia12, Theorem] Suppose char(K) = 0.
(a) Art(V ) is an integer if K is not absolutely unramified.
(b) Sw(V ) is an integer if p > 2, and Sw(V ) ∈ Z[1/2] if p = 2.

By using Theorem 3.11, we can prove the following theorem on the integrality of the
conductors, which includes some new cases for the Swan conductor and p = 2.

Theorem 7.2. Suppose char(K) = 0. Let e be the absolute ramification index of K.

(i) If Art(V ) < e, then Art(V ) is an integer.

(ii) If Sw(V ) < e− 2, then Sw(V ) is an integer.

Proof. Replacing K with the completion of its maximal unramified extension, we may assume
that the associated homomorphism ρ : GK → Aut(V ) has finite image. Since the Artin and the
Swan conductors are additive, we may also assume that the representation V is irreducible. Let
L/K be the finite Galois extension corresponding to Ker(ρ). Put

c(L/K) = inf{j ∈ Q>0 | FK(OL)→ F jK(OL) is a bijection},
clog(L/K) = inf{j ∈ Q>0 | FK(OL)→ F jK,log(OL) is a bijection},

which are known to be non-negative rational numbers [AS02, Propositions 6.4 and 9.5]. From
the definition and the irreducibility of V , we have the equalities

Art(V ) = c(L/K) dimQp(V ), Sw(V ) = clog(L/K) dimQp(V ).
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Let π be a uniformizer of K. Put m = n = e for the Artin case, and m = e− 1, n = e− 2 for
the Swan case. We also put A = OK/(πm) and B = OL/(πm). Then A is a truncated discrete
valuation ring of length m killed by p and B is also a truncated discrete valuation ring which is
finite flat over A. For the Artin case, if m = 1 then Art(V ) < 1 and thus c(L/K) < 1. This is the
same as saying that L/K is unramified [AS02, Proposition 6.9] and c(L/K) = Art(V ) = 0. For
the Swan case, we have m = e− 1 > 1 + Sw(V ). Hence we may assume m > 2 for both cases. In
particular, B/A is a finite extension of truncated discrete valuation rings. Fix a section k → A
of the reduction map A → k. Then we have a lift k[[u]] → A sending u to the image of π. Put
F = k((u)). Let K ′, K ′∞ and F ′ be as in § 3.5.

By Lemma 4.13, we can find a finite extension E/F and the following cocartesian diagram.

OF //

��

OE

��
A // B

Note the equality [L : K] = [E : F ]. By Corollary 4.11 or Corollary 5.6, we have the equality in
each of two cases

]FnF (OE) = ]FnK(OL) = [L : K] = [E : F ],

]FnF,log(OE) = ]FnK,log(OL) = [L : K] = [E : F ].

Thus Lemma 4.10(ii) or Lemma 5.3 implies that the extension E/F is separable. Moreover, its
(non-log or log) ramification is bounded by n.

We claim that the extension E/F is Galois with Galois group isomorphic to Gal(L/K).
Indeed, by Proposition 4.3 or Theorem 5.5, we have diagrams of finite GF ′-sets

FK(OL)

��

FF (OE)

��
FnK(OL) ∼

// FnF (OE),

FK(OL)

��

FF (OE)

��
FnK,log(OL) ∼

// FnF,log(OE)

whose horizontal arrows are isomorphisms in each of two cases. Since the (non-log or log)
ramification is bounded by n, the vertical arrows are bijections compatible with the Galois
action.

Since L/K is Galois, the stabilizer of the GK-set FK(OL)

{g ∈ GK | g(ψ) = ψ for any ψ ∈ FK(OL)}

is equal to GL. Let Ẽ be the Galois closure of the finite separable extension E/F . Then the
stabilizer of the GF ′-set FF (OE)|GF ′ is GẼF ′ . By the above isomorphism, it is also isomorphic to
the stabilizer of the GK′∞-set FK(OL)|GK′∞

, which is equal to GLK′∞ . The isomorphism
GF ′ ' GK′∞ induces an isomorphism

Gal(ẼF ′/F ′) ' Gal(LK ′∞/K
′
∞).

In particular, we have the equality [ẼF ′ : F ′] = [LK ′∞ : K ′∞]. Since the extension Ẽ/F is finite
separable and F ′/F is primary by Lemma 3.10(iii), we obtain the equality F = F ′ ∩ Ẽ. Hence

[E : F ] 6 [Ẽ : F ] = [ẼF ′ : F ′] = [LK ′∞ : K ′∞] 6 [L : K] = [E : F ]

832

S. Hattori

https://doi.org/10.1112/S0010437X1300763X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300763X


and Ẽ is equal to E. Thus the extension E/F is Galois. Moreover, we also have

Gal(E/F ) ' Gal(EF ′/F ′) ' Gal(LK ′∞/K
′
∞) ' Gal(L/L ∩K ′∞) ⊆ Gal(L/K),

which yields an isomorphism Gal(E/F ) ' Gal(L/K).
By Proposition 4.3 or Theorem 5.5, we also have a bijection

F jK(OL) ' F jF (OE), F jK,log(OL) ' F jF,log(OE)

for any positive rational number j satisfying j 6 n. Thus we obtain the equality

c(L/K) = c(E/F ), clog(L/K) = clog(E/F ).

Now let us consider the p-adic representation

ρ : GF → Gal(E/F ) ' Gal(L/K)→ Aut(V )

induced by ρ. Since this representation is also irreducible, we have the equalities

Art(ρ) = c(E/F ) dimQp(V ) = c(L/K) dimQp(V ) = Art(ρ),

Sw(ρ) = clog(E/F ) dimQp(V ) = clog(L/K) dimQp(V ) = Sw(ρ).

Hence the theorem follows from Theorem 7.1(i). 2
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