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ABSTRACT

Let K7 and K> be complete discrete valuation fields of residue characteristic p > 0.
Let g, and mg, be their uniformizers. Let L /K and L2/ K> be finite extensions with
compatible isomorphisms of rings Ok, /(7% ) ~ Ok, /(7%,) and Or, /(7 ) = OL, /(7%,)
for some positive integer m which is no more than the absolute ramification indices of
K; and Ks. Let j < m be a positive rational number. In this paper, we prove that
the ramification of Lj/K; is bounded by j if and only if the ramification of Lo/K>
is bounded by j. As an application, we prove that the categories of finite separable
extensions of K; and K5 whose ramifications are bounded by j are equivalent to
each other, which generalizes a theorem of Deligne to the case of imperfect residue
fields. We also show the compatibility of Scholl’s theory of higher fields of norms with
the ramification theory of Abbes—Saito, and the integrality of small Artin and Swan
conductors of p-adic representations with finite local monodromy.
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1. Introduction

Let K be a complete discrete valuation field of residue characteristic p > 0. Let k£ be the residue
field, O be the ring of integers and m = wx be a uniformizer of K. We define e(K) to be the
absolute ramification index of K if char(K) = 0 and an arbitrary positive integer if char(K) = p.

When k£ is perfect, the classical ramification theory defines a notion of ramification of any
finite separable extension L/K and, for any positive rational number j, a notion of whether the
ramification of L/K is bounded by j (see [Ser68]). We let FE}/ denote the category of finite
separable extensions L/K whose ramification is bounded by j.
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RAMIFICATION THEORY AND PERFECTOID SPACES

Deligne [Del84] defined a ramification theory of truncated discrete valuation rings with perfect
residue fields. Let m be a positive integer. A truncated discrete valuation ring of length m is
by definition a local ring A with principal maximal ideal which is nilpotent such that A is of
length m as an A-module. The ring Ok /(7™) is a truncated discrete valuation ring of length
m, and conversely any truncated discrete valuation ring of length m can be written as such a
quotient of the ring of integers of some complete discrete valuation field. For the case where the
residue field of A is perfect, Deligne defined a notion of finite extension B/A of truncated discrete
valuation rings and a notion of whether its ramification is bounded by j, for any positive rational
number j satisfying j < m. Moreover, for any truncated discrete valuation ring A of length m
with perfect residue field and j < m, he also defined a category (ext A)? of finite extensions B/A
whose ramification is bounded by j.

Depending on the choice of a presentation A ~ Ok /(7™) of A as a quotient of a complete
discrete valuation ring O, we have a natural functor FER/ — (ext A)7 defined by L+ O /(7™).
Then Deligne also showed that this is an equivalence of categories. A striking fact is that the
category (ext A)/ is independent of the choice of a presentation A ~ O /(7™). This implies that,
for any complete discrete valuation fields K7 and K5 with perfect residue fields of characteristic
p, if there exists a ring isomorphism O, /(7% ) =~ Ok, /(7%,), then the categories FE;]1 and
FEEJ2 are equivalent, even though the characteristics of K7 and Ko may be different. A key
point of this equivalence is that, since the residue field & is assumed to be perfect, for any finite
separable extension L/K the Og-algebra O, is generated by a single element z, and ramification
of the extension L/K can be read off from the Newton polygon of (a translation of) the minimal
polynomial of x, which is a combinatorial object independent of char(K).

For the case where the residue field k is imperfect, a ramification theory of finite separable
extensions of K was developed satisfactorily by Abbes and Saito [AS02, AS03], and we have a
category FE;J of finite separable extensions L/ K whose (non-log) ramification is bounded by 7,
as in the case of a perfect residue field. In their ramification theory, the notion of whether the
(non-log and log) ramification of a finite separable extension L/K is bounded by some positive
rational number j is defined by counting the number of geometric connected components of a
tubular neighborhood of defining equations of the Og-algebra O in the sense of rigid analytic
geometry. Note that, in this case, the Og-algebra Op, is not necessarily generated by a single
element and thus it seems difficult to control its ramification by Newton polygons.

Using their works and the author’s [Hat06], Hiranouchi and Taguchi [HTO08] defined, for
any truncated discrete valuation ring A of length m whose residue field may be imperfect and
any positive rational number j < m, a category of finite extensions B/A whose ramification
is bounded by j, which we denote by FFP;J (see Definition 4.15). In fact, they defined the
category by choosing a presentation of A as above. They questioned whether it is independent
of the choice, and whether we can generalize the striking equivalence of Deligne to the case of
an imperfect residue field.

In this paper, we prove the following correspondence result of (non-log and log) ramification
of finite extensions of complete discrete valuation fields which may have different characteristics.

THEOREM 1.1. Let L1/K; and Ly/K be finite extensions of complete discrete valuation fields
of residue characteristic p > 0. Let mg, be a uniformizer of K;. Let m be a positive integer
satisfying m < min; e(K;). Suppose that we have compatible isomorphisms of rings Ok, /(7§ ) ~
Ok, /(7§,) and Or, /(7)) ~ OL, /(7},).

(i) (Corollary 4.11) For any positive rational number j < m, the ramification of Li/K; is
bounded by j if and only if the ramification of Ly /K5 is bounded by j.
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(ii) (Corollary 5.6) For any positive rational number j < m—2, the log ramification of Ly /K,
is bounded by j if and only if the log ramification of Lo/ K> is bounded by j.

Note that a similar correspondence of ramification is studied by the author for the case of
finite flat group schemes [Hat12a, Hat12b]. As an application of Theorem 1.1, we answer the
above questions of Hiranouchi-Taguchi affirmatively for the case of pA = 0, as follows.

THEOREM 1.2. (i) (Theorem 4.16) The category FFij is independent of the choice of a
presentation A ~ O /(7).

(ii) (Corollary 4.18) Let K; and Ko be complete discrete valuation fields with residue fields
k1 and ko of characteristic p > 0, respectively. Let j be a positive rational number satisfying
J < min; e(K;). Suppose that the fields ki and ko are isomorphic to each other. Then there exists
an equivalence of categories

<j <j
FE Kjl ~ FE Kj2 .
In particular, there exists an isomorphism of topological groups
Gk, /G = GKQ/GJKQ,

where G%Q is the jth (non-log) upper ramification subgroup of the absolute Galois group G,
(see [AS02, § 3]).
We also give the following applications of Theorem 1.1 to Scholl’s theory of higher fields of

norms [Sch06] and the integrality of the Artin and the Swan conductors. Note that Theorem 1.3
was proved by Ohkubo using a totally different method [Ohk13, Theorem 3.42].

THEOREM 1.3 (Theorem 6.2). The functor of higher fields of norms is compatible with (non-log
and log) ramification.

THEOREM 1.4 (Theorem 7.2). Suppose char(K) = 0. Let V' be a p-adic representation of G
with finite local monodromy. Let Art(V') (respectively Sw(V')) be the Artin conductor (respectively
Swan conductor) of V.

(i) If Art(V') < e(K), then Art(V') is an integer.

(ii) If Sw(V) < e(K) — 2, then Sw(V') is an integer.

The key idea of the proof of Theorem 1.1 is to compare the sets of geometric connected
components of affinoid varieties of different characteristics using the theory of perfectoid spaces
due to Scholze [Sch12]. By a base change, we reduce ourselves to such a comparison of the

case where the residue field k is perfect. Namely, we consider the following situation: we have a
diagram of surjections

kllu]] = A < Ok,

where the images of 7 and u in A coincide, and we also have a set of polynomials f = {f1,..., f-}
in A[X]. Here we put X = (X1,...,X,). Let f C Ok[X] and f C k[[u]][X] be lifts of f. Let C
be the completion of an algebraic closure of K. Let C” be its tilt [Sch12, § 3], which is defined as
the fraction field of the inverse limit ring

O = 1%10@ /(x™)

along the pth power Frobenius map. The field k((u)) is considered as a subfield of C* by u — ,
where we define m = (7;);>0 by choosing a system of p-power roots of 7 in C satisfying mo = 7
and Wf 41 = ™. Consider the adic spaces over C

Xg = Spa(C(X), Oc(X)), X = Spa(C(XP™), 0c(X1/P™))
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and also similar adic spaces X2¢ and X E‘Eoo over C’. Then we have a diagram

C’,0
ad T ad
X(C’OO ~ X(Cb,OO
ad ad
X(QO X(Cb,o

where the map 7 is the homeomorphism of [Sch12, Theorem 6.3]. The equations f and f define
the rational subsets Xg:’ad C X2d and X o dc X(gfo given by the inequalities

fi()| < |m(2)  and  [fi(2)] < [u(z),

respectively. Here | - (x)| denotes the associated continuous valuation for any point x of these
adic spaces. The inverse image of X (]Cba din X(%fioo by the composite in the above diagram is the
rational subset given by the inequality

£ (2)] < | ()P,

where (-)% : O (X1/P7) — Oc(X'/P7) is a natural multiplicative map [Sch12, Theorem 6.3].
From the choice of f and f, we can prove the congruence

ff = f; modn™.

Thus the assumption on j implies that the inverse image coincides with the inverse image of Xé’ad
in X%doo. Then Theorem 1.1 follows by showing that the vertical arrows of the above diagram
induce bijections between the sets of connected components of the rational subsets X{C’ad, X7 d

L ; : ad ad
and their inverse images in X¢, X@,Oo

2. Lemmas on connected components of analytic spaces

Let K be a complete valuation field of rank one. Let K®°P be a separable closure of K, which we
consider as a valuation field by extending the valuation of K naturally. Let C be the completion
of K®°P. In this section, we show lemmas which compare the sets of connected components in
various settings of analytic geometry over K. First we show the following lemma comparing
the sets of connected components between K-affinoid varieties and their associated adic spaces
[Hub94].

LEMMA 2.1. Let A be a K-affinoid algebra in the sense of [BGR84, Definition 6.1.1/1] and A°
be the subring of power-bounded elements of A. Let X = Sp(A) be its associated K-affinoid
variety and X?d = Spa(A, A°) be its associated adic space. Then we have a natural bijection
7T0(Xad) — 7T0(X).

Proof. The set X is naturally considered as a subset of X1, Since X is quasi-separated, the
association U — U N X gives a bijection from the set of quasi-compact open subsets of X?4 to
the set of quasi-compact admissible open subsets of X. Moreover, the notions of open covering
and admissible open covering correspond to each other by this bijection [Hub96, (1.1.11)].

Let U be a quasi-compact admissible open subset of X and U?? be the associated quasi-
compact open subset of X24 via the above bijection. We first prove that if U is connected, then
U?d is also connected. Indeed, suppose that we have a decomposition U?d = Vf‘d 11 Vf‘d of U4
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into the disjoint union of open subsets Vf‘d. Since U?? is quasi-compact, the open subsets ViaLd
are also quasi-compact. Put V; = Viad N X, which is a quasi-compact admissible open subset of
X. We have U = V4 [[ V2 and this is an admissible open covering by the above bijection. Since
U is connected, we may assume U = V; and thus we obtain U?d = Vad This implies that U?d i
connected.

Let Uq,...,U, be the connected components of X. Each U; is a rational subdomain of X
and thus quasi-compact. Let UaGl be the associated quasi-compact open subset of X24. Since the
covering X =[], U; is an adm1851ble open covering, the above bijection shows X2d = =, Ui ad
Since U2 N U; ad jg constructible and X N (U2 N Uad) U; N Uj, [Hub93, Corollary 4.2] 1n1phes
U; ad U; rad @ for any ¢ # j. Thus each U"ld is a connected component of X2 and the lemma
follows O

Let A be a K-affinoid algebra which is geometrically reduced. We define the set of geometric
connected components of Sp(A) as

TEOM(Sp(A)) = Lln mo(Sp(A ®k L)),
L/K

where the limit on the right-hand side runs over the category of finite separable extensions of
K in K5°P. This set is a finite set and the inverse system is constant for any sufficiently large
L, by the reduced fiber theorem [BLR95, Theorem 1.3] (see also [AS02, Theorem 4.2]). It has a
natural continuous action of the absolute Galois group G = Gal(K*P/K).

LEMMA 2.2. Let A be a geometrically reduced K-affinoid algebra. Then there exists a natural
isomorphism of finite G i -sets

mo(Spa(A @k C, (A®k C)°)) = m5°" (Sp(A4)).

Proof. For any extension L/K of complete valuation fields of rank one, the ring A @x L is an
L-affinoid algebra and we put

= Spa(A®k L, (A®k L)°).
By Lemma 2.1, it suffices to show that the natural map of finite G'g-sets

mo(X20) — lim mo(X3%)
L/K

is a bijection, where the limit runs over the category of finite separable extensions of K in K®°P,

Let k be the residue field of K®P, which is an algebraic closure of k. By the reduced fiber
theorem and replacing K with a sufficiently large finite separable extension, we may assume that
A° is topologically of finite type over O and A° ®o,. k is reduced. Then we have (A ®x L)° =
A°®o K] Oy, for any finite separable extension L/K. We may also assume that the inverse system
{mo (X3} /K is constant. This implies that for any connected component C' of X, its inverse
image p LlK(C) by the natural pI‘OJeCtIOn prx : X2 — X3 is a connected component of X3d

We claim the equality (A& C)° = A° ®o, (9@. Indeed7 let @ be any non-zero element of
the maximal ideal of Ok and consider the exact sequence

wl
0= A° ®o, Oc == A° ®o,. Oc = A° ®o, (Oc/w'Oc) = 0

for any positive integer [. Since the Oc-algebra A° ®o, Oc is w-torsion free, the w-adic topology
on the ring A° ®o, Oc of the middle term of the sequence induces the w-adic topology on the
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ring of its left term. Taking the w-adic completion, we have an exact sequence
N wl ~
0= A°®o, Oc =5 A° @, Oc = A° @0, (Oc/w'Oc) — 0

and thus the ring A° ®p,. Oc is torsion free. Moreover, since A° is topologically of finite type,
we can choose an Og-algebra surjection Ok (Xy,...,X,) — A°. Via the natural surjection

Ok (X1,...,X,) ®o, Oc = A° ®o, Oc,

the w-adic topology on the right-hand side coincides with the quotient topology of the w-adic
topology on the left-hand side. Thus we obtain a surjection

Oc<X1, ... ,Xn> ~ OK<X1, ... ,Xn> ®(9K O(C — A° ®(9K Oc.

By the above exact sequence, the special fiber of A°®p, Oc is isomorphic to the k-algebra
A° ®0,. k, which is reduced by assumption. Then [BLR95, Proposition 1.1] implies the equality
(A& C)° = A° ®p,, Oc and the claim follows.

By this claim, we have

X8 = X3 Xgpar.0,) SPa(C, Oc)

for any finite separable extension L/K and [Hub94, Lemma 3.9(i)] implies that the projection
pC,L - X@d — X%d is a surjection.
Note that for any affinoid ring (R, S), there exists a natural homeomorphism

Spa(R, S) — Spa(R,5)

preserving rational subsets, where R and S are the completions of R and S, respectively [Hub93,
Proposition 3.9]. Thus we have a homeomorphism

X2 5 Spa(A @ K™, A° ®0,. Ofeer)

preserving rational subsets, where the topology of the ring A @ g K% is given by the w-adic
topology of the subring A° ®o, Ogser for any non-zero element w in the maximal ideal of O.
From this homeomorphism, we see that any rational subset of X(%d is the inverse image of a
rational subset of X gd for some finite separable extension L of K.

Let C be any connected component of X %d. To prove the lemma, it is enough to show that
the inverse image pg 1K(C) is connected. Note that C' is a rational subset. Suppose that we have
a decomposition p(EI;((C) = V1 ][ V2 into the disjoint union of non-trivial open subsets. Since
p(E}K(C’) is also a rational subset, the open subsets V; are quasi-compact and thus are finite
unions of rational subsets. This implies that the open subsets V; are the inverse images of some
open subsets of X gd for a sufficiently large finite separable extension L of K. Since the projection
pc,L is a surjection and ple(C) is connected, the lemma follows. O

3. Comparison of geometric connected components for affinoids of
different characteristics

3.1 Lifts of truncated discrete valuation rings
Let A be a truncated discrete valuation ring of length m (see [Del84, §1.1], [HTO08, §2]) with
residue field k of characteristic p > 0. We fix a uniformizer 7 of A.
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Let us consider a complete discrete valuation field K and a surjective local homomorphism
t: Og — A. We refer to such a pair (K,:) as a lift of the truncated discrete valuation ring
A. Note that a lift of A always exists [Del84, §1.1]. Let us fix a uniformizer 7 of K satisfying
t(m) = 7. The map ¢ induces an isomorphism O /(™) >~ A. We identify the residue field of K
with k using this isomorphism. Let e = ¢(K) be as in § 1. We also fix an algebraic closure K of
K and extend the valuation |- | of K to K. The residue field of K is denoted by k. Let C be
the completion of K and m¢ be the maximal ideal of the valuation ring Oc. The field C is a
perfectoid field in the sense of [Sch12, Definition 3.1]. We let C” denote its tilt.

Suppose pA = 0. Then we have m < e (for the case of char(K) = p, this means that we take
an arbitrarily large e so that this inequality holds) and the field C* can be constructed using m
as follows. Let O¢, be the inverse limit ring

Op = Im(O /(x™) — O /(&™) = ---),
o
where ® means that the transition maps are given by x — xP. We have a natural multiplicative
map
O —+ Oc, x> 2!

!
sending x = (20, z1,...) € Og to the limit 2t = limy oo :?:f in the ring O¢, where z; € O¢ is a
lift of 2;. Note that the element z¥ is independent of the choice of lifts &; and the equality

2% mod 7™ = pry(z)

holds. The ring O is a complete valuation ring of rank one and characteristic p with algebraically
closed fraction field C* whose valuation is defined by |z| = |#f|, and the map (-)! extends to a
natural multiplicative map (-)f : C* — C. If K is of characteristic p, then the map (-)* gives an
isomorphism of valuation fields C* — C. The maximal ideal of the valuation ring O¢» is denoted
by mes.

We fix a system (m);>0 of p-power roots of 7 in K such that my = 7 and Wfﬂ = m. The
system defines an element m = (7o, 71, . ..) of the ring O, satisfying ¥ = 7.

Suppose also that A is endowed with a k-algebra structure such that the diagram

k——sA

AN

k

commutes, where the vertical arrow is the reduction map. Then the ring A also lifts to a complete
discrete valuation ring of equal characteristic p. Namely, the map ¢ : k[[u]] — A sending u to 7
gives an isomorphism of k-algebras k[[u]]/(u™) ~ A. We put F = k((u)). Then the pair (F,¢)
defines a lift of A. For any algebraic closure F of F', we extend the u-adic valuation | - | of F to
F naturally. We normalize it as |u| = |r|.

3.2 Tubular neighborhoods of equations over A

Let A be a truncated discrete valuation ring of length m and (K,:) be a lift of A. Let n be a
positive integer and f = {fi,..., f} be a finite subset of the polynomial ring A[X1, ..., X,]. Let
fi be a lift of f; by the surjection

OK[Xl, . ,Xn] — A[Xl, R ,Xn]
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induced by ¢ : Ox — A. For any j = (ji1,...,Jjr) € (QN(0,m])", let us write j; = k;/l; with
positive integers k; and [;. Put

Iy -
%g((f,n):K<X1,...,Xn>< 1 J: >

E,.--,Trkr

This ring is a K-affinoid algebra independent of the choices of presentations j; = k; /l; and lifts
fi- Then we define the jth tubular neighborhood X7.(f,n) of f with respect to n along the lift
(K, () to be the following rational subdomain of the n-dimensional rigid analytic unit polydisc

={x € Sp(K(X1,..., X)) | |fi(z)| < |x|’* for any i}.

Suppose that pA = 0 and A is endowed with a k-algebra structure which gives a section of
the reduction map. Let (F}¢) be the lift of A as above. Then we can construct a similar tubular
neighborhood of f on the side of F: choose a lift f; of f; by the surjection

kl[u]][X1, ..., Xa] = A[X1, ..., Xn]

induced by ¢ : k[[u]] — A. We define the jth tubular neighborhood X%(f, n) of f with respect
to n along the lift (F,¢) by

L f{l £lr
%JF(fvn):F<X177Xn>< . z >,

%, ey ukr
X3(f,n) = Sp(Bh(f,n))
— {2 € Sp(F(X1,..., X)) | [fi(x)] < |up" for any i}.

These are also independent of the choices of presentations j; = k;/l; and lifts f;. Note that the
numbers of geometric connected components of these affinoid varieties are finite.

3.3 The case of perfect residue field

Now we assume pA = 0 until the end of §3. We also assume that the residue field k of A is
perfect until the end of §3.4. Since k is perfect, we have the unique inclusions £k — A and
k — O /(7™) which are sections of the reduction maps by [Ser68, ch. II, § 4, Proposition 8|, and
the isomorphism O /(™) — A induced by ¢ is k-linear. Let K™ be the maximal unramified
extension of K in K. Since the residue field of K™ is k in this case, we also have the unique
section k — O /(7™) of the reduction map. This gives an inclusion [] : k — O /(7™) which
is compatible with the map k¥ — Ok /(7™), and a natural inclusion

k= Og, @ ([z],[27), [z1/7°),..).
Then the map (-)* induces an isomorphism of k-algebras
Oc /(@™) = O /(x™).
Consider the lift (F,¢) of A. The map u + m and the natural inclusion k¥ — Og, define

an inclusion F' — C”, by which we consider F as a subfield of C*. By our normalization, the
valuation | - | of F coincides with the restriction of the valuation | - | of C” to the subfield F.
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We have a commutative diagram of k-algebras

OF ch
A pro (1)
Lli

O /(™) — Og/(7™)

since the left vertical composite sends u to .

We choose an algebraic closure F of F as the algebraic closure of F' in C?, and let F5¢P be the
separable closure of F' in C°. The subfield F*P is dense in C? and the absolute Galois group Gp =
Gal(F*°P/F) acts naturally on C°. Put Ko = K*? N (U, K(m,)) and G, = Gal(K*P/K,).
By the classical theory of fields of norms of Fontaine-Wintenberger (see [Win83]), the inclusion
F — C’ gives an isomorphism of groups

G Ko =~ G F

]

which is compatible with the map (-)f : C* — C.

3.4 A comparison theorem
In this subsection, we prove the following main theorem of this section.

THEOREM 3.1. There exists an isomorphism of finite G k__-sets
pr T (X (fom) = mEN (XL(F )
via the isomorphism Gk, ~ GF.
Proof. Put X = (X1,...,X,). Let us consider the rings
Oc[XYP') = Oc[X 7. X1V, Oe[XVP™] = Oc[XP™, . X1
for any non-negative integer | and their m-adic completions
Oc(XPy = Oc[X VPN, Oc(XMP™Y = O [XP™)1.

We also put
CX) = Oc(XVP) 1 /7], CXMPT) = Oc(XVP7)(1/x).

On the side of F', we write as
O [X) = O (X7, XV, O [XVP™) = O [X1P7 L X 1P
and their m-adic completions as
O (X7) = O [X P, O (X = O [X VP
Similarly, we put
C (X7 = O (XYY [1/x],  C(XMP™) = O (XMP7)[1/x].

By [Sch12, Proposition 5.20], the ring C(X'/?™) is a perfectoid C-algebra with ring of power-
bounded elements
CXVPT) = O (X1P7)
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and its tilt given by
C(X VPV = C(XVPT), C(XPTY° = O (X1/P7).
Moreover, we also have a continuous multiplicative map
(F - CX) 5 CX™), g g
which is compatible with (-)* : C* — C and induces an isomorphism
O (XMP7) /(m™) = Oc(XMP7) /(=)
[Sch12, Proposition 5.17 and Lemma 6.2].

LEMMA 3.2. The map (-)* induces the natural isomorphism
O (XMP7) /(@™) = Oc(XMP7) /(=)
defined by Xil/pl > Xil/pl over the isomorphism pry : Oy /(z™) = Oc/(7™).

Proof. We basically follow the notation of [Sch12, Proposition 5.17]. Put R = C(X'/?™) and
R = C*(XYP™). Let 0 : R — R°/(7™) be the composite of the natural surjection and the
isomorphism in the lemma. Consider the localization functor M +— M from the category
of Oc-modules (respectively Og,-modules) to that of almost Oc-modules (respectively almost
Oc»-modules) and its right adjoint N — N,. The inverse limit ring lim = R° /(™) along the
Frobenius homomorphism is endowed with a natural Og,-algebra structure. Put A = R°* and
A = (1(11[_1&(p R°/(mw™))%. Then, from the proof of [Sch12, Propositions 5.17 and 5.20], there exists
a unique isomorphism of almost Op,-algebras ¥ : R'°* — A" which makes the following diagram
commutative.

R'°a v A

(R2/ (™))"
The map g — ¢f mod 7™ is the composite of ¥, : R = (R"°%), — (A”), and the natural map
(A"). = Homoe (0%, (lm R/ (x™))") = lim Homoy (02, (R°/(x™))")
@ @
pr a o m a m
— Homeg (OF, (R°/(7™))") = (A/(7™))s

whose image is contained in the subring A, /(7™) ~ R°/(x"™). Note that the isomorphism

R/o N (R/Oa)* = Homoéb( ((éb, R/Oa) — HomOCb (mcb,R/O)

is given by g — (d — dg). Applying the functor (-). to the above diagram, we see that the element
g% mod ™ is the unique element of the ring R°/(7™) whose image in (A/(7™)). = Homo, (mc,
R°/(m™)) is the map (¢ — £0(g)). Since the element o(g) € R°/(n™) satisfies this property, we
conclude the equality ¢f mod 7™ = o(g). O

Then the commutative diagram (1) and Lemma 3.2 give the following corollary.

COROLLARY 3.3. The congruence
fiTj =f; modn™

holds in the ring Oc (X /P™).
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Consider the adic spaces

(Cl _ Spa((C<X1/pl> O <X1/pl>)7 X(%(,ioo — Spa((C<X1/p°°>7 OC<X1/poo>)’
Xg8) = Spa(C (XVP), O (X)), X! = Spa(C (X!7), O (X1/P7)).
By [Sch12, Theorem 6.3], there exists a homeomorphism 7 : X | — X2 preserving rational

subsets of both sides and satisfying |g(7(z))| = |¢*(x)| for any € Xégoo and g € C*(X1/P™),
Here | - (z)| denotes the continuous valuation associated to the point z. We have a diagram

ad T ad
X(C,OO X(Cb ,O0

~

poo,ll ipboo 1

ad ad
X¢j X&) (2)
pl,ol lpw
ad ad
XC,O X(Cb,o

where the vertical arrows are the natural projections.

LEMMA 3.4. The projection py : X(%dl — X(%dl/ is a continuous open surjection for any l,1' €
Z=o U {oo} satistying | > I'. Moreover, if K is of characteristic p, then p; ;s is a homeomorphism.

Proof. We may assume I’ = 0. Let [ be a non-negative integer. The maps
C(X) = C(XP), Oc(X) = Oc(X1/P

are flat and finitely presented, and also radicial if char(K) = p. We also see that the integral
domain O¢(X 1/pl> is integrally closed. By [Hub96, Lemma 1.7.9], the continuous map p; g is
open. Furthermore, the map

Spec(C(X'/?')) = Spec(C(X))

is a surjection, and also a homeomorphism if char(K) = p. Take x € XE‘?O. Let p, be the prime
ideal of C(X) defined by

pz = {f € C(X) | [f(2)] = 0}

and (z) be its residue field. Let q be a prime ideal of C(X/?') above the prime ideal p,, which
is unique if char(K) = p. Then there exists a valuation on the residue field x(q) of q whose
restriction to k(z) is equivalent to the valuation |- (z)|, and it is unique up to equivalence if
char(K) = p, since in the latter case the residue field x(q) is a purely inseparable extension of
k(z). We can show that this valuation defines a point of ngil above z and also that such a
point is unique if char(K) = p. Hence the map p;( is a continuous open surjection, and also a
homeomorphism if char(K) = p.
Next we treat the case of p. 0. By the equality
C[XYP™] = lim C[X /7]

—
l
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and [Hub93, Proposition 3.9], we have the commutative diagram

X(C o Spa(C[Xl/poo]’ Oc [Xl/poo])

|

Xp, —— Spa(C[X /], Oc[X /7))

|

ad
X(C,O

Spa(C[X], Oc[X])

whose horizontal arrows are homeomorphisms preserving rational subsets. Hence, by extending
valuations as above, we see that the continuous map p; is a surjection for any I and any rational
subset of X(C ~ 1s the inverse image of a rational subset of ngll for some non-negative integer [.
This proves the first assertion. If char(K) = p, we also see that the map p; is a bijection and
the second assertion follows. O

Now we put
BL ) = Bie(F.n) @K C, XEU(F,n) = Spa(#L (. n), BL(f.n)°),
BL,(F,n)=BL(f.n)&pC, XI(F.n) = Spa(BL,(f,n), L, (f.n)°).
Then we have the equalities

XE(fon) = {z € X&4 | |fil2)] < |n(@)|” for any i},
<

XE4(fon) = (o € X&' | I6(2)] < Ju(@)P* for any i},

where f; and f; are the lifts of f; as before. By Lemma 2.2, we have natural bijections

mo(XE(f,m) S m ™ (X (F.m),
mo(X2M(F,n)) S 7O (XE(F,n))

which are compatible with the natural Galois action. Hence we are reduced to constructing a
natural isomorphism of Gi__-sets

mo(XE(F,n)) = mo(XLM(f,n)).

For any | € Z>oU{oo}, set X(Jca;d(f n) to be the inverse image of the rational subset X% ad(f
n) C X(%do by the natural projection py : X(c ] X(%do This is the rational subset of X deﬁned
by
{w € XE | |fi)] < ()’ for any i}.

LEMMA 3.5. The rational subset thc&:i( f,n) of X  1s the inverse image of the rational subset
j - (f ,n) of X% ol _ by the homeomorphism T.

Proof. By the relation |g(7(z))| = |¢*(z)|, the inverse image in the lemma is the rational subset
{w € X2, | [£f(2)] < [uf ()% for any i}
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of the adic space X(%doo. Note the equality u# = 7. By Corollary 3.3 and the assumption j; < m,
we obtain the equivalence

£ (2)] < |m(@)l & |fi(z)] < |n(2))
and the lemma follows. O

Therefore, the diagram (2) induces a diagram
od s od
X(éio(fa n) %’ Xéf;oo(f, n)

poo,ll lpio,l

XE(Fom) XZ(f.n) (3)
Pl,ol plb,0
XEfm) X5

where 7 is a homeomorphism.

LEMMA 3.6. The natural projections induce isomorphisms
To(XE e (F,m)) = mo(XE5(f.) = mo(XE™(f,m)).
o (X% () = mo(XE () = mo(XZ(F,m)
of G-sets (respectively G F—sets) for any .

Proof. We may only consider the case over C. Since the projections are continuous and
compatible with the natural Gg-action, the maps are well defined. It is enough to show the
bijectivity. If K is of characteristic p, then this follows from Lemma 3.4.

Suppose that K is of mixed characteristic. Note that the ring %% (f,n) is Noetherian and
[Hub94, Theorem 2.2] (or Lemma 2.1) implies that the number of connected components of
X/ ’ad( f, n) is finite. Moreover, each of its connected components is a rational subset. Since p; o
is a surJectlon for any | € Z>o U {oo} it suffices to show that, for any connected component C'

of X{: 24(f.n), the inverse image Pro Ly is connected.

Suppose that we have a decomposMon Pro 1(C) = V1 ][ V» into the disjoint union of non-trivial
open subsets. Since p; 0 (C) is also a rational subset, the open subsets V; are quasi-compact and
thus are finite unions of rational subsets. For the case of [ = 00, this implies that the open subsets
V; are the inverse images of some open subsets of Xé?fi( f,n) for a sufficiently large non-negative
integer !’. Since the projection ps  is a surjection, this shows that we may assume [ € Zxg.

Let [ be a non-negative integer. Since the map p; g is a continuous open surjection, the images
p1,0(V;) are non-trivial quasi-compact open subsets covering the connected component C' and thus
they would meet each other. By [Hub93, Corollary 4.2], the intersection of these images has a
point defined by the map X; — x; with some z; € O¢. Thus we reduce ourselves to showmg
that, for any such classical point © = (x1,...,2,) € X]’ad(f n), any two points y,y’ € plo( x)
are contained in the same connected component of X 1 ( f,n).

Consider the rational subset

X1 — o X, —
U:X(fa:(,i0< 1 $1,7rm> n xn)

= {2 € X | [(Xi — 2:)(2)| < |7 ()™ for any i}
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of X(?:do containing x. Since x satisfies the inequality

|fi(@)] < |m

for any 4, our assumption j; < m implies that any point z € U also satisfies the inequality and
U is contained in Xg:’ad( f,n). Then the inverse image pl_ol(U ) is the rational subset

{z € X2} | (Xi — 25)(2)] < |m(2)|™ for any i}
of X(%l containing y and y which is contained in X% ad(f n).
LEMMA 3.7. For any z € X(C 1> any a € Oc and any positive rational number j' satisfying
|m|P'e/ @' D) g P )
we have the equivalence
! 1 i [l
(X — ) (2)| < (=) & (X7 — a)(2)| < [n ()P 77"

Proof. We let (,; denote a primitive p'th root of unity in C. Then we have

(X; —a?') er\ X~ acs)(2).

Suppose that the inequality Ll g
(X7 = a3 ()| < |m(2)/?

(2

holds for some s. Then the assumption on j’ implies

677 = aG) ()] = 17— aGy +a(Gy = G < =7

for any other s’. This shows the implication of one direction. Conversely, if |(X; — a? )(z)| <
|7(2))", then Lyl L
min |(X; 7 — a¢y)(2)] < |n(2)]7 /7

and the other direction also follows from the above claim. O
Since m < e, Lemma 3.7 shows that p; L(U) is equal to the rational subset
{z € X2 [ |(X —2}/")(2)] < |n(2)|™"' for any i},

which is a polydisc and thus it is connected by [Hub94, Theorem 2.2] (or Lemma 2.1). Hence
the two points y, %’ are contained in the same connected component of Xg:’?d( fin). O

LEMMA 3.8. The homeomorphism 7 induces an isomorphism of finite G __ -sets
j,ad 1 7 d 7
mo(XE (fon) = mo(XL (f,m)
via the isomorphism Gk, ~ GF.

Proof. By Lemma 3.5, the homeomorphism 7 induces a bijection of the sets in the lemma. It
is enough to show that this is compatible with the Gk __-action. Note that the action ¢* of any
element o € Gk, on the adic space Xy grad " (f,n) is defined by the action of o' on the coefficients
of the ring C(X'/?™) and similarly for X5 g.ad o f,n). Every connected component C' of the adic

space X Jad e f,n) is a rational subset Wthh is the inverse image of a rational subset of X(C 0s as
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is shown in the proof of Lemma 3.6. Thus C contains a point = defined by the map
C(X'/P™y - ¢, X.l/pl = T

with some z;; € Oc satisfying :L‘Z 11 = Til for any [. It suffices to show for this x that for any
o € Gk, the points o*(7(x)) and 7(c*(z)) are contained in the same connected component of
X(jcfio(fa n). Note that we have

for any g € C*(X/P7).

The system (z;;)iez., defines an element z; € Og, for any i. Put = = (z,...,z,) and
2t = (ﬁ, .. ,J) By the definition of the map (- )ﬁ, we have z* = (10,...,2n0). Consider the
rational subset

U={zeX& ||(Xi—o(z))(2)] < u(z)|™ for any i}

of the adic space X adoo This is the inverse image of a polydisc in X2 o by the projection piqo

and thus connected by Lemma 3.4. By Lemma 3.2, we have congruences
(01X —o(z)))f = 071 (X; = o(ip)) =0 ((X; — o(2;))F)  mod 7™
in the ring Oc(X/P™). Hence we have equivalences

(071 (Xi = 0 (2:)))*(2)] < (0™ (w)F ()™
& [(Xi = zip)(@)] < [ ()™
& o7 (X — o(2:)) ()] < lo™ (uf) (@)™,

which implies that the points o*(7(2)) and 7(c*(x)) lie in U.

On the other hand let xl 2 be the unique p'th root of z; in the perfect integral domain O .
Then the map X, 1/ — 331 7 defines a point of the adic space X ad o Which is also denoted by
x. The commutative dlagram (1) yields the congruence

(fi(g))Tj = fi(z1,0,...,2n0) modn™
in the ring O¢. Since z € XJ ,ad (f,n), we have the inequality
\fi(z10,- . 2n0)| < |77 for any i

and the above congruence implies that the points x and ¢*(z) are contained in the rational
. _ l )
subset X]’ad (f;n). Note that the latter point is defined by the map Xz.l/p — a(gg/p ). Thus we

see that U is contained in XJ ,ad " (f;n). This shows that the points o*(7(z)) and 7(c*(z)) are
contained in the same connected component of Xj ,ad ~(f,n) and the lemma follows. O

By Lemmas 3.6 and 3.8, we have a diagram of bijections
mo(XEA(Fn)) === mo(XZ7S_(Fin)
poo,()lz Zip?’o’o (4)
m(XFU(Fn)  m(XE(F )

where all arrows are compatible with the natural Galois action. This concludes the proof of
Theorem 3.1. a
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Remark 3.9. The isomorphism p{(’nF of Theorem 3.1 depends on the choices of a uniformizer of
A, an algebraic closure K, a uniformizer 7 and a system of its p-power roots (T1)1ez50 -

3.5 The case of imperfect residue field
Now we return to the situation of §3.2. Namely, we consider a truncated discrete valuation ring
A of length m with uniformizer 7 and residue field k, which may be imperfect. We also assume
pA = 0. We fix a k-algebra structure £k — A which gives a section of the reduction map A — k.
Note that we can always find such a map by [Gro64, Théoreme (19.6.1)], since the extension
k/F, is separable. Let (K1), (F,¢), f, f and f be as before.

We fix a Cohen ring C(k) of k. Using [Gro64, Théoreme (19.8.6)(i)], we also fix a local
homomorphism C(k) — O which makes the following diagram commutative.

O (k) —= O
|
k A

Suppose that K is of characteristic zero. Then this local homomorphism is an injection and
the C'(k)-algebra Of is finite. By this fixed map, we consider Ky = Frac(C(k)) as a subfield of
K. The extension K/Kj is a finite totally ramified extension.

We fix a p-basis {by}rea of k and its lift {by}rea in C(k). We also fix a system of p-power
roots (by;)i>0 of by in O satisfying by = by and b§,1+1 = by;. Let K be the completion of
the discrete valuation field | A Ko(by,), which is naturally considered as a subfield of C. Then
the extension K()/Kj is of relative ramification index one and the residue field £’ of K|, is the
perfect closure of k in k. Put K’ = K} K, the composite field in C. This is a finite extension of
K|, and K'/K is an extension of complete discrete valuation fields of relative ramification index
one satisfying Og» = Ok ®c(x) (’)Ké.

Next suppose that K is of characteristic p. Then the map C(k) — O factors through &k and
gives a k-algebra structure of Ox. We have an isomorphism of k-algebras k[[u]] — Ok sending
u to 7. Let K’ be the perfect closure of k in K and K’ be the completion of the composite field
k'K in K. Then the field K’ is naturally isomorphic to &’((u)), and it is naturally considered as
a subfield of C. Moreover, K'/K is an extension of complete discrete valuation fields of relative
ramification index one.

In both cases, let K°P be the separable closure of K’ in C and put K., = K**n(U,, K' (7))
as before.

LEMMA 3.10. (i) The subfield K'*P is dense in C.
(ii) The natural map

Gal(K"P /K') = Gal(K*P/K*P 0 K')

is an isomorphism.
(iii) If char(K) = p, then the extension K'/K is primary. In particular, the map in (ii) induces
an isomorphism

Qal(K"P /K") ~ Gal(K*P/K).

Proof. Note that K*P is a dense subfield of C. First suppose char(K) = 0. Then Krasner’s lemma
implies K’*P = K*P K’ and the assertion (i) follows. This equality also shows the assertion (ii).

Next suppose char(K) = p. Let (K'K)*P be the separable closure of £’K in C. Krasner’s
lemma shows K" = (K'K)**PK’ O K*P and the assertion (i) follows. Let o be an element
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of Gal(K"**P/K') satisfying o|gser = id. Take x € (K'K)*P. Let g(X) be its minimal polynomial
over k'K and write it as

g X)=XN +a XV 14 fan_ 1 X +an
with some a; € kK. Then there exists a non-negative integer [ satisfying a? : € K for any . Thus
g(X)pl € K[X] and 2" € K*P_ Hence we obtain o(x) = x and the map in the assertion (ii) is an
injection. Let L be a finite Galois extension of K**PNK' in K*P. Then we have LNK' = K5PNK'.
This implies the isomorphism

Gal(LK'/K') ~ Gal(L/K*" N K)

and the map in the assertion (ii) is also a surjection.

Finally, we show that the extension K'/K is primary. Since the algebraic extension k'K /K
is purely inseparable, it is enough to show that any finite separable extension L/k'K in K’
coincides with &’K. Since the discrete valuation field &K is the union of finite extensions of
K, it is Henselian. This implies that the valuation of k'K uniquely extends to L, and thus the
extended valuation is equal to the restriction of the valuation of K’. Since the relative ramification
index and the residue degree of L/k'K are both equal to one, we obtain L = k¥'K. O

Using the isomorphism of Lemma 3.10(ii), we consider the absolute Galois group Gy =
Gal(K"**P /K") as a subgroup of G.

We consider the k-algebra A as a C(k)-algebra by the composite C'(k) — k — A. Put A’ =
A®y k'. This ring can be also written as A’ = A®p, Ok-. Indeed, this follows from the equality
A= A®c ) Ok for char(K) = 0 and

Opr/(r™) = lim(Oy /(7)) = I (O /(7™) @ 1) = Ok /(7™) @ K’
1/k 1k

for char(K) = p, where the limit runs over the category of finite extensions inside k’/k. The
map ¢ induces an isomorphism O/ /(7"™) — A’. Thus A’ is a truncated discrete valuation ring of
length m with perfect residue field k&’ endowed with the induced map k' — A’ giving a section of
the reduction map, and also with the induced lift /' : Og» — A’. Put F’ = k’((u)). The field F' is
considered as a subfield of F’ by the map u — u and the natural inclusion k& — k’. Then the lift
¢ also induces a lift ¢/ : Op = K/[[u]] — A’. Hence we obtain the following cocartesian diagram.

K [[u]] - A" <X O

]

klul] 7 A=——0xk

Let f' be the image of f by the map A — A’. Similarly, let f’ and f’ be the images of f and f
by the maps O — Ok and k[[u]] — K'[[u]], respectively. We have the equality

()= =),

Thus the sets of polynomials f/, f’ and f’ are also in the situation of § 3.2, for the truncated
discrete valuation ring A’ with perfect residue field k’. Note that the extensions K'/K and
F'/F are of relative ramification index one, and that formation of jth tubular neighborhoods is
compatible with the base change by any extension of relative ramification index one. Applying
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Lemma 2.2, we obtain natural bijections

TE (X (Fom)) = mE (X (),
rEm (XA, m)) = 7 (K ()

which are compatible with the G gs-action and the G gr-action, respectively. Hence Theorem 3.1
implies the following theorem.

THEOREM 3.11. There exists an isomorphism of finite Gk:_-sets
K,F i 7 i 7
Prn i (Xgc(fin)) = mg ™ (Xp(f,m))

via the isomorphism Gg: =~ G of the classical theory of fields of norms which fits into the

commutative diagram
K,F

TEOM (X (F )~ 7B (X (F, 1))

| |

o (X (s ))7 o (X ()

where p?,/’F/ is the isomorphism of Theorem 3.1. O

Remark 3.12. When k is imperfect, the isomorphism p f depends on the choices of a k-algebra
structure and a uniformizer of A, a p-basis and a Cohen ring C(k) of k, an algebraic closure, a
local map C'(k) — Ok, a uniformizer 7, a lift {by}rca of the fixed p-basis of k and compatible
p-power roots of m and by, for K.

4. Non-log ramification

In the rest of the paper, we give applications of Theorem 3.11 to ramification theory. Let A be
a truncated discrete valuation ring of length m, with residue field k£ of characteristic p > 0. We
allow the case where k is imperfect. We fix a uniformizer 7 of A. Let B be a finite flat A-algebra.
The aim of this section is to study ramification of the extension B/A, as in [Hat06, HT08].

4.1 Ramification theory over truncated discrete valuation rings

First we briefly recall the construction of a ramification theory of B/A for a fixed lift (K,¢) of
A given in [Hat06]. Let (K,¢) be a lift of A. Fix an algebraic closure K and a uniformizer 7
of K. We let k denote the residue field of K, as in §3.1. Let j € QN (0, m]. Fix a system of finite
generators Z = (z1,..., 2,) of the A-algebra B. This defines a surjection of A-algebras

AXqy,..., X, = B, X;— z.

We let Iz denote its kernel. Fix a system of finite generators f = {fi,..., fr} of the ideal I.
We put ' o
X5 (B, Z) = Xy (f,42)

with the notation of § 3, where we identify j with the r-tuple (j,...,J )._The K-affinoid variety
X7-(B, Z) is independent of the choice of a system of finite generators f. This is referred to as
the jth tubular neighborhood of B with respect to a system of finite generators Z along the
lift (K,¢).
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We consider a question of functoriality of the finite G x-set 7™ (X7} (B, Z)). Though this
is done in [Hat06, §2|, we present here detailed proofs of results stated in [Hat06] whose
proofs are omitted, since we will use some of the omitted arguments. Let B and C be finite
flat A-algebras. Let Z = (z1,...,2,) and W = (wy,...,w,) be systems of finite generators of
the A-algebras B and C| respectively. Let ¢ : B — C be an A-algebra homomorphism satisfying
Y(Z)CW.Put X =(X1,...,X,)and Y = (Y1,...,Y,) as before. Choose a ring homomorphism
U : Okg[X] = Ok[Y] which makes the following diagram commutative

Ox[X] —L= Ok[Y]

L

B C

where the vertical arrows are the maps X; — z; and Y; — w; defined using + : O — A. Put

LEMMA 4.1. The map V¥ induces a morphism of K-affinoid varieties
¥ XI(C, W) — X.(B, Z).
Moreover, the map induced on the set of geometric connected components
U 7 (X (C, W) = 7§ (X (B, Z))

is independent of the choice of V.

Proof. This is implicit in [Hat06, §2], and its proof is similar to [AS03, Lemma 1.9]. Let f
{f1,..., fr} be as above and f be its lift by the surjection ¢, as in §3.2. Define g = {g1,...,gm
and ¢ similarly for C. Then the kernel of the surjection O [X] — B is the ideal (7™, f1,..., fr
and similarly for C. The polynomial f;(¥ (X)) € Og[Y] is contained in the ideal (7™, g1, ..., g,).
This shows the implication

~— ——

19i(y)| < |7l for any i = | f;(¥(X))(y)| < |x} for any i

for any vy = (y1,...,yn) € O?—(/ and the first assertion follows. Moreover, we have a natural
cartesian diagram

X3.(B, Z)(K) Homo,alg (Ok [X], Og)

| |

Hom gl (B, O /m}.) — Homo,ag (Ok[X], O /m%)

where mjl'—( = {r € O | |z| < |7} and the vertical arrows are surjections. Since the fiber of
the left vertical arrow is the polydisc of radius |7]’ and it is connected, we have a commutative

diagram - '
HomA_alg.(C, Of(/mjl—() E—— HomA_alg.(B, Og/mjk)
6 (X5 (C, W) ——— 6™ (X5 (B, 2))
whose vertical arrows are surjections. The second assertion follows from this diagram. O
816
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Applying Lemma 4.1 to the case of id : B — B, we obtain the inverse system
(m§* ™ (X3 (B, 2))) .
LEMMA 4.2. This inverse system is constant.
Proof. This is also implicit in [Hat06], and the proof is similar to [AS02, Lemma 3.1]. We may
assume that Z = (z1,...,2,) and W = (z1,...,2pn, 2nt1). Let f = {f1,..., fr} be as before.
Consider a system of finite generators of the kernel of the surjection A[Xy,...,Xp41] — B
associated to W. Then its lift g by ¢ can be taken as g = {f1,..., fr, Xn+1 — h} with some
h € Ok[X1,...,X,]. Thus the map
(1, oy Tny Tpg1) = (1, oy Ty T — (T, ..oy 2y))
induces an isomorphism of K-affinoid varieties Xg((B, W) — X% (B, Z) x Dk (0, |x}?) fitting into
the commutative diagram

X3(B,W) —= X}.(B, Z) x Dk (0, |r}9)

~ I

Xi.(B,Z)

where Dk (0,|m]’) is the one-dimensional disc of radius |7/ centered at the origin. This implies
the lemma. O

By Lemmas 4.1 and 4.2,

7

Yen(B) = lim w6 (X3 (B, 2))

Z

defines a contravariant functor from the category of finite flat A-algebras to that of finite G x-sets.

4.2 Ramification correspondence between different characteristics
Now we assume pA = 0 and fix a k-algebra structure of A which gives a section of the reduction
map A — k, as in §3.5. Let (K,¢) and (F,¢) be lifts of A as in §3.1.

Let B be a finite flat A-algebra, Z be its system of finite generators and j be a positive
rational number satisfying 7 < m. Let f be a finite subset of A[X] with respect to Z, as before.
Let K,C,C" K, K/ and F’ be as in § 3.5. From the definition of the jth tubular neighborhoods
XJ.(B,Z) and X7.(B, Z), Theorem 3.11 yields an isomorphism of finite Gg;_-sets

K,F j j
Piiz" 5N (X% (B, Z)) = 75" (XH(B, Z)),
which is also denoted by pg’g. Then the main result of this subsection is the following.

PRrROPOSITION 4.3. The isomorphism pgg induces a natural isomorphism of functors
P Fle Ol = Flioy Olaw
from the category of finite flat A-algebras to that of finite G _-sets, via the isomorphism
Gk, ~Gp
of the classical theory of fields of norms.

Proof. Let A, B, Z and f be as above. Recall that we considered a map A — A’ of truncated
discrete valuation rings in §3.5. Put B’ = B ®4 A’, which is a finite flat A’-algebra. Then Z
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defines a system of finite generators of the A’-algebra B’, which is denoted by Z’. The kernel of
the surjection A’[X] — B’ associated to Z’ is generated by the image f’ of f by the map A — A’.

Thus from the definition of the map p B 5, it is enough to show a similar statement for the map
,0 B Z,. Namely, we may assume that the residue field & is perfect.

Let C be a finite flat A-algebra with system of finite generators W. Let ¢ : B — C be an
A-algebra homomorphism satisfying ¢(Z) C W. Put n’ = W and Y = (Y3,...,Y,). We choose
a lift ¥ : Ok [X] — OklY] of ¢ along the lift (K,¢) as in §4.1 and put ¥; = ¥(X;) € Og[Y].

Consider the adic spaces

X% = Spa(C{X),0c(X)), Y& = Spa(C(Y), Oc(Y)).

Let ng be the adic space over X o considered in § 3.4, and Y(Cad be a similar adic space for
Y@% Let X J’ad(B Z) be the adic space associated to the base change of the rigid analytic space
X % (B,Z) to Sp(C ), as before. Let Xj od (B, Z) be its inverse image by the natural projection
Pooo : XL — X&(. We define adic spaces Y2 (C, W) and Y2 22(0 W) similarly, using Y&§
and Y@‘io The Inap ¥ induces a morphism of adic spaces U* : Y@% — X(CO which maps the
rational subset Yj . w) to X2 ad(B Z). Thus we have a diagram of finite sets,

mo (Y22 (C,W)) oo mo (XL (B, Z)

| |

mo(Y2*U(C, W) —— mo(XE"(B, 2))

where the lower horizontal arrow is compatible with the Galois action. Since the vertical arrows
are also bijections compatible with the Galois action by Lemma 3.6, there exists a unique map

To(W")oo : To(YEES(C, W) = mo(XE%(B, Z))

which makes the above diagram commutative. From the definition, we see that this map is also
compatible with the Galois action.
On the other hand, let

xad

Cb,0 Y

Cb,0 X

8 YA XL(B.Z) and YIS (C,W)
be similar adic spaces on the side of F. We choose \IIE € Op[Y] so that the images of W,
and \Ilft in the ring A[Y] by the surjections induced by ¢ and ¢ coincide with each other. Let
T : Op[X] — Or[Y] be the map defined by X; — ¥2. Then it is a lift of ¢ along (F,¢) as in
§4.1. This induces a morphism of adic spaces (¥")* : Y(Caﬁfio — Xféfo. Note that, by the choice
of \I/'z?, Lemma 3.2 yields the congruence
(U =0; mod 7™ (5)

in the ring Oc(Y'/P%).

Since the integral domain O, (Y/P™) is perfect, we have the unique p'th root (¥?)/ P of o’
in this ring. The map Xl/p (\IJE)l/p defines a morphism of adic spaces (U?_)* : Ygfoo — Xg? -
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which fits into the commutative diagram

\I/b )*
ad (Voo ad
Y(C" ,00 X(C" ,00

L

ad ad
Y(Cb ,0 (\I/b)* X(Cb ,0

and induces a continuous map (W2, )* : Yé;ﬁ‘i(C, W) — Xé’fio(B, Z). Moreover, we can see as
above that the induced map

(P2)"

j,ad j,ad
WO(Yéfw(a wW)) —> FO(XE?:?,OO(B7Z))
is also compatible with the Galois action. Hence we are reduced to showing that the lower square
of the diagram

mo (YO, W) — mo(XL*(B, Z))

j,a T (\Il*)oo ). au
mo(Y22(C, W) = mo (XE(B. 2))

mo(VE (CW)) e mo(XE (B, 2))
is commutative.

This can be shown as in thle proof of Lemma 3.8: take a point y in a connected component
of Yé’zg(C’, W) defined by Y;l/p — ;1 with some y;; € O¢ satisfying yflﬂ = y;, for any [. Put
Yo = 7(y170, ..., Yn 0). Note that yo € Yé’ad(C, W) and ¥*(yg) € Xg:’ad(B, Z) Moreover, the latter
point is defined by the map X; — ¥;(yo). Choose a system (\I'i(yol)l/pl)l>0 of its p-power roots
in O¢ satisfying (\Ili(yo)l/plﬂ)p = \Ili(yg)l/pl. Then the map Xil/p — \Ili(yo)l/pl gives a point
T* (1) /P~ of the adic space Xé’?i(B,Z). From the definition, we see that the map (V™)
sends the connected component céntaining y to the connected component containing \Il*(yo)l/ P,

It is enough to show that the points

(V2)"(7(y)) and 7(¥*(y0)"/"™)

are contained in the same connected rational subset of the adic space X (]Cf io (B,Z). Put
Y, = (Wi € O» and y = (y,,...,y,,) as before. Then we have y* = (y1,0,---,Yn0) and the
commutative diagram (1) implies y € Y(é;ad(C', W). We let y also denote the unique inverse image
of this point in Yé;?:O(C, W). Let V be the rational subset of ng,{oo defined by

V={zeX& |I(Xi - %)) < |u(z)"}.

From Lemma 3.4, we see that V is connected. By the definition of the map (\I/E,o)*, the point

(¥°)*(y) lies in V and the assumption j < m implies V C Xé’fio(B, Z). By the commutative
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diagram (1), Lemma 3.2 and the congruence (5), we obtain the equivalences

(27 = T3 () ()] < [ )™ & [(FDHy) — (T3 ()] < |x|™
& [Wiyo) — Wilyo)| < [n]™ & [Wilyo) — (¥ (y))F] < |=|™
& (X = (W) (T (o) /77| < (¥ (o) /77|
& (G = ()P0 (yo) V77| < Juf (U (o) /7)™

This implies the claim and concludes the proof of the proposition. O

COROLLARY 4.4. Let j be a positive rational number satisfying j < m. Let (K1,t1) and (K2, t2)
be lifts of A. Then there exists a natural isomorphism

i
PELE: S Fl iy = Flicyum

of functors from the category of finite flat A-algebras to that of finite sets.

Proof. Note that the functor f is independent of the choice of an algebraic closure of F', up
to a natural isomorphism. The corollary follows from this fact and Proposition 4.3. O

Remark 4.5. The natural isomorphism pg, x, depends on various choices: it depends on the
choices of a k-algebra structure and a uniformizer of A, a p-basis and a Cohen ring C(k) of k,
an algebraic closure, a local map C(k) — Ok, , a uniformizer, a lift of the fixed p-basis of k and
their compatible p-power roots for K7 and similar choices for Ko.

4.3 Ramification of complete intersection A-algebras

Let A be a truncated discrete valuation ring of length m. Let B be a finite flat A-algebra which is
relatively of complete intersection [Gro67, Définition (19.3.6)]. The following lemma gives typical
examples of such an extension B/A.

LEMMA 4.6. (i) Let K be a complete discrete valuation field with uniformizer w. Let L be a
finite extension of K and n be a positive integer. Then Oy, (respectively Or /(7™)) is a finite flat
Ox-algebra (respectively O /(n")-algebra) which is relatively of complete intersection.

(ii) Let A and B be truncated discrete valuation rings such that B is a finite flat A-algebra.
Then the A-algebra B is relatively of complete intersection.

Proof. Since Oy, is a complete Noetherian regular local ring and 7 is a regular element, the ring
Or/(m) is a ring of complete intersection [Gro67, Définition (19.3.1)]. Then the first assertion
follows from the definition and [Gro67, Corollaire (19.3.8)]. The second assertion also follows from
the definition, since B ® 4 k is a truncated discrete valuation ring, and thus a ring of complete
intersection. O

DEFINITION 4.7 [HTO08, Definition 3.2]. Let B be a finite flat A-algebra which is relatively of
complete intersection, (K, ¢) be a lift of A and j € QN (0, m]. We say that the ramification of
B/A is bounded by j if

f (KL( ) = rank4(B).

This condition a priori depends on the choice of a lift (K, ¢) of A. However, the following
corollary shows that it is in fact independent of the choice of a lift, for the case of pA = 0.

COROLLARY 4.8. Suppose pA = 0. Let j be a positive rational number satisfying j < m. Let
B be a finite flat A-algebra relatively of complete intersection. Then the condition that the
ramification of B/A is bounded by j is independent of the choice of a lift (K, ) of A.
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Proof. This follows immediately from Corollary 4.4. a

Next we study a relationship between ramification of finite flat A-algebras and of finite
flat algebras over complete discrete valuation rings. Let K be a complete discrete valuation
field of residue characteristic p > 0 with algebraic closure K. For any finite flat Og-algebra B,
put Bk =B ®o, K and .FK(B) = HomK_alg,(BK, K). For any positive rational number j, let
Fi- be the functor of (non-log) ramification theory for K constructed in [AS02, §3.1]. It is a
contravariant functor from the category of finite flat Ox-algebras to that of finite GG i-sets which
is endowed with a natural map of finite G g-sets

Fr(B) = Fi(B).

If the Og-algebra B is relatively of complete intersection, then this map is a surjection [AS02,
Proposition 6.1].

DEFINITION 4.9. For a finite flat Ox-algebra B relatively of complete intersection, we say that
the (non-log) ramification of B/Ok is bounded by j if

4 F1(B) = ranko, (B).

For a finite extension L/K, we say that the ramification of L/K is bounded by j if the ramification
of Or/Ok is bounded by j.

Note that, if the K-algebra By is etale, then it is equivalent to the definition given in [AS02,
Definition 6.3]. Moreover, if the ramification of B /OK is bounded by some j, then the K-algebra
BK is etale.

Let A be a truncated discrete valuation ring of length m and (K,:) be a lift of A. For
any finite flat Ox-algebra B, the A-algebra B = B ®og,. A is a finite flat A-algebra. If the
Ox-algebra B is relatively of complete intersection, then the A-algebra B is also relatively of
complete intersection. For any positive rational number j < m, [Hat06, Lemma 1] yields a natural
isomorphism of finite G g-sets o '

Fi(B) ~ ]-"(JKL) (B).
LEMMA 4.10. Let K be a complete discrete valuation field of residue characteristic p > 0 with
uniformizer w. Let n be a positive integer and j be a positive rational number satisfying j < n.

(i) [HT08, Corollary 3.5] Let B be a finite flat Ox-algebra which is relatively of complete
intersection. Put A = Ok /(7") and B = B/(x"). Then the ramification of B/Oy is bounded by
j if and only if the ramification of B/A is bounded by j.

(ii) Let L be a finite extension of K. Put A = Ok /(") and B = O, /(n"). If the ramification
of B/A is bounded by j, then L is a separable extension of K.

Proof. The first assertion follows from the definition and [Hat06, Lemma 1]. Let us show the
second assertion. By Lemma 4.6(i), the finite flat Og-algebra Op is relatively of complete
intersection. By [AS02, Proposition 6.1], we have a surjection

Fr(Or) = Fi(Op).
Hence we obtain the inequality
[L: K] > $Fk(Or) > 8F%(Or) = 47 (B) = [L : K],

which implies that the extension L/K is separable. O
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COROLLARY 4.11. Let L1/K; and Lo/ K> be extensions of complete discrete valuation fields of
residue characteristic p > 0. Let mg, be a uniformizer of K;. Let e(K;) be as in § 1. Let m be
a positive integer satisfying m < min; e(K;). Suppose that we have compatible isomorphisms
of rings Ok, /(7},) ~ Ok, /(7,) and Or, /(7}) ~ O, /(7},). Then, for any positive rational
number j < m, the ramification of L1/K; is bounded by j if and only if the ramification of
Lo/ Ky is bounded by j.

Proof. By [Hat06, Lemma 1] and Corollary 4.4, we obtain the equalities
$FL (OL,) = 8Fl, (O /(T) = 8Fhe, (0L, /(wR,)) = £ (OL,).

from which the corollary follows. a

4.4 An equivalence of categories
Let A be a truncated discrete valuation ring of length m with residue field k£ of characteristic
p > 0.

DEFINITION 4.12 [HT08, §2]. A truncated discrete valuation ring B is said to be a finite extension
of A if it is a finite flat A-algebra for m > 2, and if it is a field which is a finite extension of k
for m = 1.

Note that for any finite extension B/A of truncated discrete valuation rings, the A-algebra
B is relatively of complete intersection by Lemma 4.6(ii).

Any finite extension B/A of truncated discrete valuation rings has the following lifting
property, which is shown in the first part of the proof of [HT08, Proposition 2.2]. This proposition
also states that L/K can be taken to be finite separable. However, the proof of this latter part
seems to have a gap, since it is not clear in general that we have the equality p’ N R = q with
their notation.

LEMMA 4.13. Let B be a finite flat A-algebra which is relatively of complete intersection and
(K, 1) be a lift of A. Then there exist a finite flat O-algebra B which is relatively of complete
intersection and the following cocartesian diagram.

Ox —=B

1

A——2B

Moreover, if B /A is a finite extension of truncated discrete valuation rings, then the O -algebra
B can be taken to be the ring of integers Oy, of a finite extension L/K.

Proof. We present a proof for the convenience of the reader. We may assume that B is local with
maximal ideal mp and residue field kp. By assumption, the ring B ® 4 k is a ring of complete
intersection. Fix an A-algebra surjection

A=A[Xy,...,X,] > B.

Consider the surjection A = Og[X1,...,X,] — A induced by ¢ and let m (respectively m) be
the maximal ideal of A (respectively A) which is the inverse image of mp. The completions of
the local rings As and Ay, are denoted by R and R, respectively. Let mp be the maximal ideal
of the local ring R and 7w be a uniformizer of O.

The local ring R is a flat A-algebra such that R ®4 k is regular. Then [Gro67, Corollaire

(19.3.5)] implies that the kernel n of the surjection R — B is generated by a regular
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sequence (gi,...,g-) of R. Let g; be a lift of g; in R. Since the sequence (7™, g1,...,g,) in
the ideal mp is regular and the local ring R is Noetherian, the sequence (g1, ..., g,,#™) is also
regular by [Gro64, Corollaire (15.1.11)]. Then the Og-algebra B = R/(g1,...,g,) is flat and
m-adically complete. From the definition, we have B/(7™) ~ B and thus the Og-algebra B is
finite. By assumption, the k-algebra B ®¢ « k is relatively of complete intersection. From [Gro67,
Corollaire (19.3.8)], we see that the Og-algebra B is also relatively of complete intersection.

Next we assume that B/A is a finite extension of truncated discrete valuation rings. If m = 1,
then we can construct L as in the lemma by taking an unramified extension of K for the case
where B/k is separable, an extension generated by a lift of a generator of B/k for the case where
B/k is purely inseparable of degree p and by induction for the general case.

Let us consider the case of m > 2. We identify the residue field of R with kg. Put n =
Ker(R — B) = (7™, 91,...,9r). Since m > 2, the maximal ideal mp is not zero and we have an
exact sequence of kp-vector spaces

0 — n/(nNm%) — mg/m% — mp/m% — 0,

where the kp-vector space on the middle (respectively right) term is of dimension n + 1
(respectively 1). The assumption m > 2 also implies that the kp-vector space on the left term is
generated by the images of g1, ..., gr, and thus r > n. Since the local ring R is Cohen—Macaulay
of dimension n + 1, the maximal length of regular sequences in mp is n + 1. Hence we obtain
r = n and the images of g1, ..., g, in n/(nNm%) are linearly independent over kp. This means
that g1,..., g, form a part of a system of regular parameters of the regular local ring R. Thus
the local ring B = R/(g1,...,9n) is regular of dimension 1, namely a discrete valuation ring.
Since it is flat over Ok, the map Ok — B is an injection. Since it is 7-adically complete, it is
also a complete discrete valuation ring and the second assertion follows. O

Let B/A and B’/A be finite extensions of truncated discrete valuation rings. For any lift
(K, 1) of A and any positive rational number j < m, we define an equivalence relation ~; on the
set Hom g1 (B, B") by ‘ ‘

(0 ~j wl ~ f(jKL) (w) = f(JK7L)(¢/)
for any A-algebra homomorphisms 1,7’ : B — B'.

LEMMA 4.14. The equivalence relation ~; is independent of the choice of a lift (K,¢). Moreover,
it is compatible with the composite.

Proof. Let (K', /') be another lift of A. By Corollary 4.4, we have a commutative diagram

Hom g aig (B, B') ——= Map(Fy;, (B'), Fic ,(B))

\lz

Map(Fler 1 (B'), Flier 1 (B))

where the vertical arrow is a bijection. This implies the first assertion. If ¢ ~; 9] and s ~; 15,

then
FlioWrown) = Flyey (W) o Flicy(b)
= ]:(]K,L)(wé) ° f{[(,b)(ipi) = ]:(]K,L)(@bi o)
and the second assertion also follows. O
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DEFINITION 4.15 [HT08, Definition 3.3]. We define a category FFPA as follows: the object of
FFP¥’ 4’ is any finite extension B/A of truncated dlscrete valuation rings such that the ramification
of B/A is bounded by j. The morphism of FFP is defined by

HomFFij(B’ B') = Homa.aig (B, B)/ ~;

In [HTO08], this category is denoted by FFij
THEOREM 4.16. The category FFPZj is independent of the choice of a lift (K, ) of A.

Proof. This follows from Corollary 4.8 and Lemma 4.14. a

On the other hand, let (K,:) be a lift of A and FE<j be the category of finite separable
extensions L/K such that its ramification is bounded by g For j < m, we have a natural
covariant functor r; % : FEY — FFPY/ defined by L — Op/(7™), where  is a uniformizer of
K and we consider the ring (’) r/(m™) as an A-algebra by the 1somorphism Ok /(™) ~ A induced
by ¢. Indeed, this functor is well defined by Lemma 4.10(i) for m > 2 and by [AS02, Proposition
6.9] for m = 1. Then the following proposition is shown in [HT08]; we present a proof for the
convenience of the reader.

PROPOSITION 4.17 [HTO08, Corollary 1.2]. The functor rijl  : FER — FFPY is an equivalence

of categories.

Proof. First we show that the functor is essentially surjective. Let B be an object of the category
FFPZ]. By Lemma 4.13, there exists a finite extension L/K satisfying Or ®o,, A ~ B. By
Lemma 4.10, the extension L/K is separable and its ramification is bounded by j.

For the full faithfulness, let L and L’ be objects of the category FER/. Put B = O, /(7™
and B’ = Op//(7™). Then we have the following commutative diagram.

HomK—alg. (L, L/)

]

Homo,-a1g. (Or, OL) Hom a1 (B, B')

| |

MapGK(f%(OL’)vf%(OL)) T>MapGK (-7:( )(B/) -7:(-1( L)(B))

Here Map;, means the set of morphisms of finite G'x-sets. Note that the left vertical arrows
are bijections, since the ramifications of L/K and L'/K are bounded by j. Moreover, the lower
horizontal arrow is also a bijection by [Hat06, Lemma 1]. The full faithfulness follows from this
diagram and the definition of the equivalence relation ~;. O

COROLLARY 4.18. Let K7 and Ky be complete discrete valuation fields with residue fields k1
and ko of characteristic p > 0, respectively. Let e(K;) be as in § 1. Let j be a positive rational
number satisfying j < min; e(K;). Suppose that the fields ki and ke are isomorphic to each other.
Then there exists an equivalence of categories

824

https://doi.org/10.1112/50010437X1300763X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300763X

RAMIFICATION THEORY AND PERFECTOID SPACES

In particular, there exists an isomorphism of topological groups
GKl/GjKl =~ GKQ/G]K27
where GJ['(Z_ is the jth (non-log) upper ramification subgroup of G, (see [AS02, § 3]).

Proof. Put m = min; e(K;). Let mg, be a uniformizer of K;. Note that if char(K;) = 0, then the
ring Ok, can be considered as a finite totally ramified extension of a Cohen ring of k;. Thus the
ring A; = Ok, /(7%,) is non-canonically isomorphic to k;[u]/(u™). Hence the categories FFPZ{
and FFPZg are equivalent, and the first assertion follows from Proposition 4.17. The second
assertion can be shown verbatim as the proof of [Del84, (3.5.1)]. O

5. Log ramification

In this section, we prove a variant of Proposition 4.3 for log ramification [AS02, §3.2].

Let K be a complete discrete valuation field with residue field &k of characteristic p > 0 and
uniformizer 7. Let K be an algebraic closure of K. Let L be a finite extension of K with residue
field kz, uniformizer 7, and additive valuation vy, which is normalized as vy (7r) = 1. Let ey
be the relative ramification index of the extension L/K. Let Z = (z1,..., z,) be a system of finite
generators of the Ok-algebra O, and P be a subset of {1,...,n} such that the set {z; | i € P}
contains a uniformizer of Or, and does not contain the zero element. Such a pair (Z, P) is referred
to as a log system of generators of the Og-algebra Or. Put e; = vy (z;) for any i € P. Consider
the surjection Ok [X] — Of, associated to Z and write its kernel as (f1, ..., f.). For any i € P, we
choose a lift g; € O [X] of the unit sz/K /7% by this surjection. For any 7,4’ € P, we also choose
a lift h; € Ok [X] of the unit zic}i/zf"'. For any positive rational number j, the jth log tubular
neighborhood X}(,log(OL’ Z, P) of the Ok-algebra Op, with respect to (Z, P) is the K-affinoid
variety defined as

|fi(z)] < |x|? for any i,
z € Sp(K (X)) | (XM —n¢g;)(z)| < |x]i*e for any i € P,

7

](Xfﬁ — Xfi'hi7i/)(x)| < |7T|j+eiei’/eL/K for any 7,7 € P

Then the K-affinoid variety Xi( 10g(OL,Z, P) is independent of the choice of f;, ¢g; and h; ;.
Though L/K is assumed to be separable in [AS02, §3.2], a verbatim argument shows that the
inverse system of finite Gi-sets

{Tr%eom(X;{Jog(oln Z7 P))}(Z,P)

is constant also for the case where L/K is not separable. This gives a contravariant functor

OL = Ficiog(On) = lim i (X 10, (O, 2, P)
(Z,P)

from the category of rings of integers of finite extensions of K to that of finite Gx-sets. We have
a natural map of finite Gx-sets

fK(OL) - Fg{,log(OL)7
which is a surjection if the finite extension L/K is separable [AS02, Proposition 9.3(i)].

LEMMA 5.1. Let L/K be a finite extension and M be the separable closure of K in L. Then we
have

jjj:?(,log((l)l/) = ﬁfg{,log<OM)‘
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Proof. We may assume char(K) = p. It suffices to show the equality in the lemma for any purely
inseparable extension L/M of degree p of finite extensions of K. Let kp; and s be the residue
field and a uniformizer of M. Let z1,...,2,-1 be a lift in Oy of a system of finite generators
of the finite extension kj;/k and put z, = mp;. Then Z = (21,...,2,) and P = {n} form a
log system of generators of the Ok-algebra Oy;. Let ( fl, ..., fr) be the kernel of the associated
surjection O [X] — Oy and g be a lift of the unit 7 M/K/w by this surjection. Then the log
tubular neighborhood X7, log((’)M, Z, P) is the affinoid subdomain

{z € Sp(K (X)) | |filw)| < [ml/ for any i, |(Xn"" — mg)(2)| < |m*'}

of the n-dimensional unit polydisc D% over K.
Suppose that L/M is totally ramified. Then we have an isomorphism of Oj-algebras

OuY]/(YP —mp) ~ Op.

Let z, be the image of Y by this isomorphism, which is a uniformizer of L. Put z, = z; for
i <n—1 Then Z' = {z],...,2,,_1,2,} and P’ = {n} form a log system of generators of the

»“n—17*n
Og-algebra Op. The kernel of the associated surjection O [X] — Op, is the ideal

(i(Xe, oo, X1, XB) oo o (X, oo Xmr, X))
The surjections associated to Z and Z’ fit into the commutative diagram

Ok[X]——=0Opn

_

Ok[X]—— O

where the right vertical arrow is the natural inclusion and the left vertical arrow is defined by
X;— X; fori <n—1and X, — X}. Since the natural inclusion sends szM/K/ﬂ to (z},)°H/% /7,
the latter element is lifted to g(X1, ..., X,—1, X%) by the surjection O [X] — Of. Thus the log
tubular neighborhood XK 10g(OL; Z', P') is the affinoid subdomain

|fi(X17 sy anlaXﬁ)(l‘” < ‘ﬂ-|j fOI‘ any i?
K(X e .
{f”' € SPUCLXD) | e gy, o Xty XE))(@)] < [

of the n-dimensional unit polydisc D% . Let C be the completion of K. To compare the sets of
geometric connected components, we may pass to an adic space over Spa(C, O¢) and consider the
sets of connected components by Lemma 2.2. Let X(jcal‘og(OM, Z, P) be the adic space associated
to the base change of X7, ,(Oum, Z, P) to Sp(C). We also define Xé?g (O, 7', P') and D™
similarly. From the definition, we see that the rational subset X«j:?dg(OL, A P’) is the inverse
image of the rational subset Xé?og(OM, Z,P) of D¢ rad by the map

DR = DR (X, X1, X)) = (X, X, XE).

Since this map is a homeomorphism, the claim follows in this case.
Next suppose that L/M is of relative ramification index one. We have an isomorphism of
O)r-algebras
Om[Xn1l /(X1 —a) = 0L, Xpyr = 24 = a'/?

with some a € Of,. Put 2} = z; for i < n. Then Z' = (2,...,2,,;) and P = {n} form a log
system of generators of the Og-algebra Op. Let f’ be a lift of the element a by the surjection
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Ok[X] — Oy associated to Z. Define Xé’?gg(OM, Z,P) and Xé’?gg((’)L, Z', P") similarly to the
above case. Then X(]C’?gg(OL, Z', P') is the rational subset

1fi(X1,...,X,)(2)] < |7(2)) for any i,
2 € DI (XD = f1(Xa, ., X)) (2)] < (=),
(

n

(XM = mg(X, ., X)) (2)] < [m(2) P
of the (n + 1)-dimensional unit polydisc D(’E’Ll’ad. Now we consider the map
¢ : DF = DI (X, X)) e (XD, XD,

which is also a homeomorphism. The inverse image of Xé?gg((’),;, Z' P C Dg+1’ad by the map
@ X id is the rational subset

S, XE)(2)] < ()P for any 4
2 € D | (X — (X0, X)) ()| < [n()PP, 4
™ = mg(XF, - XD) ()] < Im=)

where f” is the element of the ring C[X] satisfying f”(X1,...,X,)? = f/(X?,..., X}). Since this
adic space is isomorphic to

_ j.ad 1,ad
¢ (X 10g(Onr, Z, P)) Xspa(c,00) D™,
the claim follows also in this case. a
DEFINITION 5.2. We say that the log ramification of a finite extension L/K is bounded by j if
17 10g(OL) = [L : K].

If L/K is separable, it is equivalent to the definition given in [AS02, Definition 9.4]. Using
Lemma 5.1, we can prove the following variant of Lemma 4.10(ii) for log ramification.

log

LEMMA 5.3. Let L/K be a finite extension and j be a positive rational number. If the log
ramification of L/ K is bounded by j, then the extension L/K is separable.

Proof. Let M be the separable closure of K in L. By Lemma 5.1, we have the inequality

L2 K] > [M: K] = $Fk(Or) > §F% 10, (Onr) = 710, (O1) = [L : K],
which implies L = M. a
Now let L/K be a finite extension as before. Let z1,...,2,-1 be elements of Op, such that
their images in kj, generate the residue extension ky /k. Put z, = 7. Then Z = (z1,..., 2z,) and

P = {n} form a log system of generators of the Ox-algebra Oy,. Consider the associated surjection
Ok[X] — Op, and write its kernel as (f1, ..., fr). Let g € Ox[X] be a lift of the element WZL/K/W
by this surjection. Let j be a positive rational number. Then the jth log tubular neighborhood
X}{,log(OL, Z, P) is the affinoid variety

{w € Sp(K(X)) | | fi(x)| < |x? for any i, |(X;""* = 7g)(2)| < |7 *'},
and we also have an isomorphism of finite G i-sets
Fle10g(OL) = 78 (X3, (O1, Z, P)).
Let e = e(K) be as in § 1. Let m be a positive integer satisfying m < e—1. Put A = Ok /(7™)
and A, = O /(7™T1). Then the A-algebra B = O /(™) is a truncated discrete valuation ring
which is finite flat over A and similarly for the A -algebra B, = Op/(7™*1). The images of 7
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in A, Ay and 77, in B are denoted by 7, 7 and 7g, , respectively. The natural map O — A4
gives a lift (K, t4) of Ay and a lift (K, ¢) of A.

On the other hand, by fixing a section & — A, of the natural reduction map A, — k, we
consider Ay and A as k-algebras. Put F' = k((u)). The map Op = k[[u]] - A4 sending u to 74
gives a lift (F, ¢4 ) of A and a lift (F,¢) of A.

Suppose that there exist a finite extension E/F and an isomorphism of A, -algebras
Op ®0p., Ay — By. Note that we have [L : K] = [E : F]. Let mg be a uniformizer of £
lifting 7p, . Since the residue extensions of L/K and E/F are the same, we have the equality
€L/K — E€E/F-

LEMMA 5.4. The images of the elements WZL/K/T(' € Or, and WZE/F/U € Op in B coincide with
each other.

Proof. From the definition, we see that the images of 7 and u in A4 and the images of 7y and
7w in B4 both coincide. Thus we have the equation in the ring B

u(ﬂ'ZL/K/TF) = 7T(7T2L/K/7T) = WZL/K = W%E/F = u(TrEE/F/u).
This implies the lemma. g

Let z; be the image of z; in B. Then Z = (%1,...,2,) gives a system of generators of the
A-algebra B. Let f; and g be the images of f; and g in the ring A[X]. Let f; and g be their
lifts in Op[X] by the surjection ¢ : Op — A. Let z; be a lift of z; in Op satisfying z, = 7p.
Then Z = (z1,...,2,) and P = {n} form a log system of generators of the Op-algebra Op.
Consider the associated surjection Op[X] — O, and let g’ be a lift of the element W;E/ " Ju by
this surjection. Then the images g and g’ in B are both equal to the element of Lemma 5.4.
Hence we have the congruence

g=g mod (f,..., £, u™)

in the ring Op[X].

Let j be a positive rational number satisfying j < m — 1. The above congruence implies that
the jth log tubular neighborhood X7, 1og (O, Z, P) of the Op-algebra O with respect to (Z, P)
is equal to the F-affinoid variety

{w € Sp(F(X)) | |fi(2)] < [ul for any i, [(Xn™" — ug)(z)| < Jul*'}.

Put fri1 = XoH/% —7g, [ = {fi,-.s frs fraa} and §° = (4,...,4,j + 1). Then we have the
equalities ‘ L ‘ L

Xgﬂog((’)L,Z, P)=X7.(f",n), X%,log(OE’ Z,P)=X.(f,n).
Hence Theorem 3.11 implies the following theorem.

THEOREM 5.5. Let L/ K be a finite extension and m be a positive integer satisfyingm < e(K)—1.
Put A, = O /(7™1). Fix a section k — A of the reduction map and consider the k-algebra
surjection t4 : k[[u]] = Ay defined by u — w. Put F' = k((u)). Let E/F be a finite extension
with an isomorphism of A -algebras

Og ®OF7L+ A+ — OL/(ﬂ'm—H).

Let j be a positive rational number satisfying j < m — 1. Then there exists an isomorphism of
finite G'i1_-sets ' '
fi(,log(ol/) - ]:%',log(OE)

via the isomorphism G~ G+ of the classical theory of fields of norms.

828

https://doi.org/10.1112/50010437X1300763X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300763X

RAMIFICATION THEORY AND PERFECTOID SPACES

COROLLARY 5.6. Let L1/K; and Lo/Ksy be extensions of complete discrete valuation fields
of residue characteristic p > 0. Let mg, be a uniformizer of K;. Let m be a positive integer
satisfying m < min; e(K;). Suppose that we have compatible isomorphisms of rings Ok, /(7§ ) =~
Or,/(r%,) and Or, /(7 ) = O, /(7%,). Then, for any positive rational number j < m — 2, the
log ramification of L1 /K is bounded by j if and only if the log ramification of Lo /K> is bounded
by j.

Proof. Put Ay = Ok, /(7)) and By = Oy, /(7). We choose a uniformizer mx, such that
its image in A4 coincides with the image of 7, . Fix a section & — A4 of the reduction map
and consider the lift (F,¢4) of Ay as above. Since we have m > 2 by assumption, By /A, is a
finite extension of truncated discrete valuation rings and Lemma 4.13 enables us to find a finite
extension F/F with an isomorphism of A -algebras O ®0, ., A+ — B4. Then Theorem 5.5
yields bijections

Fhe10g(OL) = Fhyoy(Op) = Fie 10, (OL,)

for any positive rational number j < m — 2. This concludes the proof. O

Remark 5.7. Here we do not study any functoriality of the isomorphism of Theorem 5.5 similar
to Proposition 4.3, for the following reason: let L and L’ be finite separable extensions of K. Let
(Z, P) be a log system of generators of the Og-algebra Op, and (Z’, P’) be that of Op,. Consider
an inclusion of K-algebras ¢ : L — L' satisfying ¢/(Z) C Z’ and ¢(P) C P’. Then P’ contains a
uniformizer of L. However, this forces us to include in defining equations of the jth log tubular
neighborhood of the Ox-algebra Oy, the following equation:
(X2 = wermg) ()] < [ e,

Since e/, can be arbitrarily large, we cannot connect affinoid varieties of different characteristics
functorially using mod 7« for a fixed m as we did in the non-log case.

6. Compatibility of Scholl’s higher fields of norms with ramification

In this section, we prove that Scholl’s theory of higher fields of norms [Sch06] is compatible with
the ramification theory of Abbes—Saito. Let d be a non-negative integer. Let Ko = (K},)n>0 be a
strictly deeply ramified extension of d-big local fields of mixed characteristic (0,p) (see [Sch06,
§1.3]). In particular, there exists a positive integer ny and an element & € OKno satisfying
Ip| < |€] < 1 such that for any n > ng, the relative ramification index eg, /i, is equal to p
and the pth power Frobenius map induces a surjection Ok, ., /(§) = Ok, /(). Moreover, for any
n = ng, we can choose a uniformizer 7g, of K,, satisfying ﬂ'%n_H =7k, mod &. Put Ko = Un K,
and
X* = X*(Kw) = lim O, /(€),
n=ng,d
where all the transition maps are the pth power Frobenius maps. Set II = (7x, )n>n,- Let &k, be
the residue field of K,,. Then X is a complete discrete valuation ring of characteristic p with
uniformizer Il and residue field
K= lim k
n;n_o,d) "

(see [Sch06, Theorem 1.3.2]). Moreover, X' is independent of the choice of ng and &. Put
X = Frac(X™).
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Let L, be a finite extension of K.,. Then Lo, can be written as Lo, = K Lo with some
finite extension Lg/Ky inside Lo. Put L, = K, L. Then Le = (Ly)n>0 is also strictly deeply
ramified for any &’ satisfying |¢| < |¢/| < 1 with some ny, and we can define a complete discrete
valuation ring X (L) by a similar construction to X for Le. Put X (L) = Frac(X1(Lo)).
Then Lo, — X (L) defines an equivalence of categories from the category of finite extensions
of K to that of finite separable extensions of X (see [Sch06, Theorem 1.3.5]). In particular, for
any finite Galois extension L, /K, we have an isomorphism

Gal(Loo/Ko) ~ Gal(X (La)/X),

which induces an isomorphism of absolute Galois groups G, ~ Gx.

DEFINITION 6.1. Let Lo, /Ko be a finite separable extension and L,, be as above. We say that
the ramification (respectively log ramification) of Lo,/Ks is bounded by j if the ramification
(respectively log ramification) of L, /K, is bounded by j for any sufficiently large n.

Then the main theorem of this section is the following, which reproves a result recently
obtained by Ohkubo using a totally different method [Ohk13, Theorem 3.42].

THEOREM 6.2. The ramification (respectively log ramification) of Lo, /K is bounded by j if
and only if the ramification (respectively log ramification) of X (Ls)/X is bounded by j.

Proof. We let vk, denote the additive valuation of K, normalized as vk, (7k,) = 1 and e(K},)
be the absolute ramification index of K,,. By replacing £ by ¢, we may assume ny = n(, and
& =¢'. Then we have vk, () < e(K,). Note that vk, (§) can be arbitrarily large by increasing n.
Take any positive integer n > ng satisfying j < vg,, (§) — 2. Put m = vk, (). Then the surjections

X+ 25 Ok, /() « Ok,

give two lifts of the truncated discrete valuation ring Ok, /(7% ) of length m, which is killed by
p. Moreover, the diagram

XH(Loo) —% Oy, /(7 ) <—— O,

| ]

X+t Ok, /(7},) ~— Ok,

PTy

is cocartesian. Hence Corollaries 4.11 and 5.6 imply the theorem. O

For any positive rational number 7, let FE;]Oo (respectively FE;Oo log) be the category of finite
separable extensions L.,/K+ whose ramification (respectively log ramification) is bounded by
j. Put

J J —
Gr.= || Gie Grolog= [ Gl
<Jj <Jj
Loo€FE} Loo€FER! 100

%et G]}( ar]ld leog be the jth non-log and log upper ramification subgroups of Gx, respectively
AS02, §3].

COROLLARY 6.3. The isomorphism Gk, ~ Gx induces isomorphisms

J o~ (Y J
Gk, ~ Gy, GKoo,lo

~ (Y
g GX,log'
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Proof. By Theorem 6.2, the equivalence of higher fields of norms induces an isomorphism

ﬂ GLOOL" ﬂ GX’

Looc€FER X'€FEY/
and the latter group is equal to Gg(. The assertion on log ramification follows similarly. O

7. An application to a generalization of the Hasse—Arf theorem

Finally, we give an application of Theorem 3.11 to a generalization of the Hasse—Arf theorem to
the case of imperfect residue fields, though it is under a very restrictive condition.

Let K be a complete discrete valuation field of residue characteristic p > 0. Let k£ be the
residue field of K. For any non-negative rational number j, put

GJK = U GJK’ GJK,log = U GjK,log‘
J'>j J'>j
Let V be a p-adic representation of Gx with finite local monodromy. Then the Artin conductor
Art(V) and the Swan conductor Sw(V') of V' are defined as

Art(V) = Y jdimg, (VOK /VOK),
J€Q>0 . .
Sw(V)= 3 jdimg, (VEkiee /1 Chios).
J€Q>0
For their integrality, we have the following theorem of Xiao.
THEOREM 7.1. (i) [Xial0O, Corollary 4.4.3] Suppose char(K) = p. Then Art(V) and Sw(V') are
integers.
(i) [Xial2, Theorem] Suppose char(K) = 0.
(a) Art(V) is an integer if K is not absolutely unramified.
(b) Sw(V') is an integer if p > 2, and Sw(V') € Z[1/2] if p = 2.

By using Theorem 3.11, we can prove the following theorem on the integrality of the
conductors, which includes some new cases for the Swan conductor and p = 2.
THEOREM 7.2. Suppose char(K) = 0. Let e be the absolute ramification index of K.

(i) If Art(V') < e, then Art(V) is an integer.

(ii) If Sw(V) < e — 2, then Sw(V) is an integer.
Proof. Replacing K with the completion of its maximal unramified extension, we may assume
that the associated homomorphism p : Gg — Aut(V') has finite image. Since the Artin and the

Swan conductors are additive, we may also assume that the representation V is irreducible. Let
L/K be the finite Galois extension corresponding to Ker(p). Put

¢(L/K)=inf{j € Qso | Fx(OL) = Fl(OL) is a bijection},
Clog(L/K) =inf{j € Qxo | Fx(OL) = Fg1,,(O1) is a bijection},

which are known to be non-negative rational numbers [AS02, Propositions 6.4 and 9.5]. From
the definition and the irreducibility of V', we have the equalities

Art(V) = ¢(L/K)dimg,(V), Sw(V) = cog(L/K)dimg, (V).
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Let 7 be a uniformizer of K. Put m = n = e for the Artin case, and m=e—1,n=e¢— 2 for
the Swan case. We also put A = Ok /(™) and B = O /(7). Then A is a truncated discrete
valuation ring of length m killed by p and B is also a truncated discrete valuation ring which is
finite flat over A. For the Artin case, if m = 1 then Art(V) < 1 and thus ¢(L/K) < 1. This is the
same as saying that L/K is unramified [AS02, Proposition 6.9] and ¢(L/K) = Art(V) = 0. For
the Swan case, we have m = e —1 > 1+ Sw(V'). Hence we may assume m > 2 for both cases. In
particular, B/A is a finite extension of truncated discrete valuation rings. Fix a section k¥ — A
of the reduction map A — k. Then we have a lift k[[u]] — A sending u to the image of m. Put
F =Ek((u)). Let K', K. and F’ be as in §3.5.

By Lemma 4.13, we can find a finite extension F/F and the following cocartesian diagram.

O —=0Op
A——B
Note the equality [L : K] = [E : F]. By Corollary 4.11 or Corollary 5.6, we have the equality in

each of two cases
177(Op) = 1Fx(Or) = [L: K] = [E : F],
1 F10g(O8) = 8 F K 10g(OL) = [L - K] = [E : F].
Thus Lemma 4.10(ii) or Lemma 5.3 implies that the extension E/F is separable. Moreover, its
(non-log or log) ramification is bounded by n.

We claim that the extension E/F is Galois with Galois group isomorphic to Gal(L/K).
Indeed, by Proposition 4.3 or Theorem 5.5, we have diagrams of finite G p/-sets

Fr(Or) Fr(Og) Fr(Or) Fr(Og)

| L |

Fi(OL) —==Fi(08),  Fp14,(0OL) —= Fi10,(OE)

whose horizontal arrows are isomorphisms in each of two cases. Since the (non-log or log)
ramification is bounded by n, the vertical arrows are bijections compatible with the Galois
action.

Since L/K is Galois, the stabilizer of the G g-set Fx(Or)

{9 € Gk | g() = o for any ¥ € Fg(Op)}

is equal to Gr. Let E be the Galois closure of the finite separable extension F /F. Then the
stabilizer of the G p/-set Fr(Og)|q,, is G ;- By the above isomorphism, it is also isomorphic to
the stabilizer of the G -set fK(OL)|GKgo’ which is equal to Gpg: . The isomorphism
GFr =~ Gk induces an isomorphism

Cal(EF')F') ~ Gal(LK!_/K.,).

In particular, we have the equality [EF’ : F'] = [LK’_ : K'_]. Since the extension F/ F' is finite
separable and F’/F is primary by Lemma 3.10(iii), we obtain the equality F' = F' N E. Hence

[E:F|<[E:F|=[EF :F]=[LK :K')<[L:K]=[E:F]

832

https://doi.org/10.1112/50010437X1300763X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300763X

RAMIFICATION THEORY AND PERFECTOID SPACES

and F is equal to E. Thus the extension E/F is Galois. Moreover, we also have
Gal(E/F) ~ Gal(EF'/F') ~ Gal(LK. /K. ) ~ Gal(L/LN K. ) C Gal(L/K),

which yields an isomorphism Gal(E/F) ~ Gal(L/K).
By Proposition 4.3 or Theorem 5.5, we also have a bijection

Fe(OL) = FL(Op),  Fi10,(0L) ~ Fi,

log (OE)

log

for any positive rational number j satisfying j < n. Thus we obtain the equality
(LK) = e(B/F),  cog(L/K) = cuog (E/F).
Now let us consider the p-adic representation
p:Gp — Gal(E/F) ~ Gal(L/K) — Aut(V)
induced by p. Since this representation is also irreducible, we have the equalities

Art(p) = c¢(E/F)dimg,(V) = ¢(L/K)dimg, (V) = Art(p),
Sw(p) = ciog(E/F) dimg, (V) = ciog(L/K) dimg, (V) = Sw(p).

Hence the theorem follows from Theorem 7.1(i). O
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