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Strong orthogonality between the Möbius
function, additive characters and Fourier

coefficients of cusp forms

Étienne Fouvry and Satadal Ganguly

Abstract

Let νf (n) be the nth normalized Fourier coefficient of a Hecke–Maass cusp form f for
SL(2,Z) and let α be a real number. We prove strong oscillations of the argument of
νf (n)µ(n) exp(2πinα) as n takes consecutive integral values.

1. Introduction

Fourier coefficients of cusp forms are mysterious objects and an interesting question for a fixed
form is how its Fourier coefficients are distributed. There are many results from which the
distribution appears to be highly random. For example, consider the following uniform bound on
linear forms involving normalized Fourier coefficients νf (n) of a Maass cusp form f (see § 2 for
the normalization) twisted by an additive character e(α) := exp(2πiα) (see [Iwa95, Theorem 8.1])

∑

|n|6N

νf (n)e(nα)�f N
1/2 log 2N. (1)

We emphasize that the implied constant here depends only on f and not on the real number
α. The estimate (1) signifies an enormous number (square-root of the length of summation)
of cancellations. This means that the Fourier coefficients are quite far from being aligned with
the values of any fixed additive character and therefore, the bound (1) can be interpreted as
manifestation of non-correlation or a kind of ‘orthogonality ’ between the Fourier coefficients of
(νf (n)) and the sequence (e(nα)). Following [GT12, Sar], we say two sequences (xn) and (yn) of
complex numbers are asymptotically orthogonal (in short, ‘orthogonal’) if

∑

16n6N

xnyn = o

((∑

n6N

|xn|2
)1/2(∑

n6N

|yn|2
)1/2)

(2)

as N −→∞; and strongly asymptotically orthogonal (in short, ‘strongly orthogonal’) if

∑

16n6N

xnyn = OA

(
(logN)−A

∑

n6N

|xnyn|
)

(3)

for every A > 0, uniformly for N > 2. The bound (1) shows that the two sequences (νf (n)) and
(e(nα)) are strongly orthogonal. The question we seek to answer is whether strong orthogonality
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is manifested if, instead of the sum in (1), we consider the corresponding sum over primes

Pf (X,α) :=
∑

p6X
p prime

νf (p)e(pα). (4)

Another interesting question is to ask whether the sequences (νf (n)e(nα)) and (µ(n)) are strongly
orthogonal. The Möbius randomness law (see [IK04, § 13.1]) asserts that the sequence (µ(n))
should be orthogonal to any ‘reasonable’ sequence. Sarnak has recently posed a more precise
conjecture in this direction and we refer the reader to [BSZ13, CS13, Sar, SU11] for recent
developments on this theme. In particular, [Sar, Conjecture 4] proposes to replace the condition
‘reasonable’ by ‘bounded with zero topological entropy’. The sequences (νf (n)) or more generally
(νf (n)e(nα)) do not fit immediately in this context, because they are unbounded. One can
nevertheless expect that a suitable reformulation would apply to these sequences and it would
be interesting to know if they have entropy zero (e.g. does the sequence of signs of νf (n) have
entropy zero?)

This question leads us to investigate cancellations in the sum dual to (1) (in the sense of
Dirichlet convolution)

Mf (X,α) :=
∑

16n6X

µ(n)νf (n)e(nα). (5)

Using classical techniques from analytic number theory and a recent impressive result due to
Miller [Mil06], we establish bounds for both (4) and (5) that go beyond strong orthogonality, at
least when f is a Maass cusp form for the full modular group SL(2,Z) (of arbitrary weight and
Laplace eigenvalue). Here our definition of Maass form is general enough to include holomorphic
modular forms. Our main theorem is as follows.

Theorem 1.1. There exists an effective absolute c0 > 0 such that, for any Maass cusp form
f for the group SL(2,Z), of arbitrary weight and Laplace eigenvalue, there exists an effective
constant C0(f) > 0 such that one has the inequalities

|Pf (X,α)| 6 C0(f)X exp(−c0

√
logX), (6)

and
|Mf (X,α)| 6 C0(f)X exp(−c0

√
logX), (7)

for every α ∈ R and X > 2.

The strong orthogonality we mentioned above now follows from the lower bound given in
Proposition 3.1. In particular, (7) says that the Möbius randomness law is true in the case of
the function n 7→ νf (n)e(nα) in a strong sense. Theorem 1.1 can also be interpreted as the
prime number theorem (denoted henceforth by PNT) for Fourier coefficients of cusp forms with
additive twists. In fact, (5) is the GL(2) analogue of a result of Davenport (see [Dav37] or [IK04,
§ 13.5]) which says that for any real number α, X > 2 and A > 0, we have the bound

∑

n6X

µ(n)e(nα)�A X(logX)−A. (8)

The weaker bound here is a reflection of the exceptional zero (see [IK04, ch. 5]) which is not
yet ruled out in the GL(1) situation. By contrast, Hoffstein and Ramakrishnan [HR95] have
shown that there are no exceptional zeros for L-functions on GL(2) that are not associated to
grossencharacters of quadratic fields.
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Strong orthogonality and cusp forms

As soon as α has a sufficiently good approximation by rationals, for example, if we have
suitable control over the infinite continued fraction expansion of α, then the upper bound (6)
is highly improved and we obtain a power saving. The most typical case is the golden ratio
α = ρ = (1 +

√
5)/2. In that particular case, we know that for every X > 2, there is a fraction

a/q, (a, q) = 1, satisfying (92) and the inequality
√
X < q < 2

√
X. The formula (119) then

directly leads to the following corollary.

Corollary 1.1. We have the bound

Mf (X, ρ)� X(59/60)+ε.

Theorem 1.1 is suitable for invoking the circle method. For instance, reserving the letter p to
denote primes, we have the following corollary. The proof follows directly from the basic identity
of the circle method and the Parseval formula.

Corollary 1.2. There exists an effective absolute c0 > 0, such that for any Maass cusp form f
for the group SL(2,Z) there exists an effective constant C0(f) such that one has the inequality

∣∣∣∣
∑∑∑

N=p+a+b

νf (p)αaβb

∣∣∣∣ 6 C0(f)N exp(−c0

√
logN)‖αN‖ ‖βN‖, (9)

for every N > 4, for every sequence of complex numbers (αa)a>1 and (βb)b>1 where we denote
‖αN‖2 =

∑
16a6N |αa|2 and ‖βN‖2 =

∑
16b6N |βb|2. In particular, for the Ramanujan τ -function

and for N > 6, one has the inequality∣∣∣∣
∑ ∑ ∑

N=p1+p2+p3

τ(p1)

∣∣∣∣ 6 C0N
15/2 exp(−c0

√
logN), (10)

where C0 and c0 are some positive constants, both effectively computable.

To see the interest of (9), suppose that the sequences (αa) and (βb) are the characteristic
functions of sequences of positive integers A and B, with counting functions A(N) and B(N),
up to N . If f is holomorphic, Deligne’s bound (18) implies the trivial bound

∣∣∣∣
∑ ∑ ∑

N=p+a+b

νf (p)αaβb

∣∣∣∣� A(N)B(N).

Hence, (9) is interesting as soon as the sequences A and B are dense enough, which means the
condition A(N)B(N) � N2 exp(−2c0

√
logN) is satisfied for sufficiently large N ; for instance,

when A and B are the sequence of primes or certain sequences of smooth numbers: A = B = {n :
p | n⇒ p < exp(logθ n)}, where θ is any fixed real number satisfying θ > 1/2. Note that (10) is
trivial if N is even; but if N > 7 is odd, the famous Vinogradov’s theorem gives the lower bound

∑ ∑ ∑

N=p1+p2+p3

1� N2(logN)−3.

In other words, (10) shows a lot of oscillations of the coefficient τ(p1) in the expression of N of
the form N = p1 + p2 + p3. The same is true for the coefficient τ(p1)τ(p2)τ(p3).

Our proof is along the lines of Davenport’s [Dav37] and it follows different paths depending
on the diophantine nature of α: whether or not it is near a rational number with denominator
sufficiently small. In the first case, i.e. when α belongs to the so called major arcs, we can use
a suitable PNT for automorphic L-functions. The formulas (6) and (7), though apparently not
equivalent, are recognized to have the same depth. We only prove the bound (7) since the proof

765

https://doi.org/10.1112/S0010437X13007732 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007732
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of (7) is more delicate than the proof of (6). One reason for this is that we need to prove the
required PNT Theorem 4.1 from scratch.

For minor arcs, i.e., when α cannot be approximated by rationals with small denominators,
we apply Vinogradov’s method for exponential sum via Vaughan’s identity. Thus we are led to
the so called sums of type I and type II. In estimating the type II sum, the more difficult one, we
encounter a sum which is naturally related to the symmetric square lift of the Maass form f . A
result of Miller (see [Mil06, Theorem 1.1]) suitably adapted to our requirement (see Lemma 6.4)
is crucial here. Miller’s theorem, which is a consequence of Voronoi’s summation formula for
GL(3) (see [MS06] and also [GL06]), says the following: for a cusp form on GL(3,Z)\GL(3,R)
with Fourier coefficients ar,n, one has

∑

n6T

ar,ne(nα)� T (3/4)+ε, (11)

where the implied constant depends only on the form, the integer r and ε. This is why we confine
ourselves to the level one situation as the analogous result in the case of a general level, though
expected, is not yet available.

However, in certain ranges of the variables (11) gives trivial bounds and we need to appeal
to the oscillations of the additive character n 7→ e(αn). Here the condition that α belongs to the
minor arcs becomes important (see the classical Lemma 7.1 below).

This brings us to another difference between the proofs of (6) and (7). This is due to the
difference between the combinatorial structures of Λ and µ. It is more difficult in this context
to apply the Vaughan identity (89) for the Möbius function than its classical analogue for the
von Mangoldt function. The reason is that one needs to control the greatest common divisors of
the variables of summations in the case of the Möbius function whereas this problem disappears
completely in the case of the von Mangoldt function (as two distinct primes are coprime). This
problem is amplified by the fact that n 7→ λf (n) is not completely multiplicative (see Lemma 5.1).
To circumvent this, we introduce a function λ∗ (see (65)) to average out the chaotic behavior of
the function λf (see (65)). Then the average behavior of the function λ∗ is controlled thanks to
the recent result of Lau and Lü [LL11] on higher moments of Fourier coefficients of Maass cusp
forms. In the case where f is holomorphic, the proof is highly shortened due to Deligne’s bound.

1.1 Some remarks
Remark 1. We expect both the sums (4) and (5) to be quite small, at least on average. Indeed,
it is relatively easy to see that square-root cancellations take place in both the sums in the
mean-square sense. By the Parseval formula and the Rankin–Selberg estimate (see (20)) it readily
follows that ∫ 1

0
|Mf (X,α)|2 dα 6

∑

16n6X

|νf (n)|2 �f X,

and similarly for Pf (X,α). Using a simple observation of Oesterlé (see [MS02, § 1]) we can even
get the pointwise bound

Mf (X,α), Pf (X,α)�α,ε,f X
(1/2)+ε

for any ε > 0, for almost all α (in the sense of Lebesgue measure). Recall the famous theorem
of Carleson [Car66] which says that if (cn) is a sequence of complex numbers satisfying∑∞

n=1 |cn|2 < ∞, then the Fourier series
∑∞

n=1 cne(nα) converges for almost all real α. Now
the Rankin–Selberg estimate (20) and partial summation allows us to apply the theorem to the
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sequence cn = νf (n)/n1/2+ε, where ε > 0 is arbitrary, and draw the desired conclusion. Of course,
this line of arguments does not give any non-trivial bound for any specific value of α.

Remark 2. Regarding the sum appearing in (5), it turns out that proving mere orthogonality
between (µ(n)) and the sequence (νf (n)e(nα)) is not very difficult. Indeed, bounds of the type

∑

16n6X

|λf (n)| �f X(logX)−δ

for some 0 < δ 6 1 for normalized Hecke eigenvalues λf (n) of holomorphic forms f have been
known for quite some time. See, for example, [EMS84, Mur85, Ran85]. For Maass forms also,
one can easily conclude that ∑

16n6X

|λf (n)| = o(X)

as X −→ ∞ from [Hol09, (66)] and [Ell80, Theorem 2]. Orthogonality follows from this bound
and (20). However, as the lower bound (25) shows, it is not possible to save an arbitrary large
power of logarithm in the above sum. The situation is exactly similar for the sum over primes.

1.2 Notation and conventions
We follow the well-known notation and conventions described below:

• d(n) denotes the number of divisors of the integer n, d3(n) is the number of ways of writing
n = n1n2n3, where the ni are positive integers. The number of prime divisors of n is ω(n)
and ϕ(n) denotes the number of moduli coprime to n;

• (m,n) and [m,n] denote the g.c.d and the l.c.m. of integers m and n;

• ε denotes a positive unspecified real number, different in different occurrences;

• in asymptotic formulae of the form A(X) = B(X) +Oβ(C(X)) or
A(X) �β B(X) the suffix β signifies the dependence of the implied constant on some
parameter β which is fixed with respect to the variable X. However, dependence of various
parameters will sometimes be suppressed when it is either not important for our purpose
or is clear from the context;

• w ∼W denotes W < w 6 2W .

2. Background on Maass forms

2.1 Maass forms
This section contains a very brief account of the theory of Maass forms based primarily on
[DFI02, §§ 4–6]. See also [Bum98, § 2.1]. One of our aims is to explain the embedding of the
holomorphic modular forms in the space of Maass forms so that we can give a unified proof of
our result. Although we shall work only with forms of level one, we consider a general level q in
this section.

Let k be an integer, q a positive integer, and χ, a Dirichlet character modulo q that satisfies
the consistency condition χ(−1) = (−1)k. Such a character gives rise to a character of the Hecke
congruence group Γ0(q) by declaring χ(γ) = χ(d) for γ =

(
a b
c d

)
∈ Γ0(q). For z ∈ H, the upper

half plane, we set
jγ(z) := (cz + d)|cz + d|−1 = ei arg(cz+d).

A function f : H −→ C that satisfies the condition

f(γz) = χ(γ)jγ(z)kf(z)
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É. Fouvry and S. Ganguly

for all γ ∈ Γ0(q) is called an automorphic function of weight k, level q, and character (also called
nebentypus) χ. The Laplace operator of weight k is defined by

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky ∂

∂x
,

and a smooth automorphic function f as above that is also an eigenfunction of the Laplace
operator; i.e., (∆k+λ)f = 0 for some complex number λ, is called a Maass form of corresponding
weight, level, character, and Laplace eigenvalue λ. One writes λ(s) = s(1− s) and s = 1/2 + ir,
with r, s ∈ C, r being known as the spectral parameter. It is related to the Laplace eigenvalue λ
by the equation

λ = 1
4 + r2. (12)

Beware that some authors define ‘Maass forms’ to be what are Maass forms of weight zero in our
setting. One can show that λ(|k|/2) is the lowest eigenvalue of −∆k and if k > 0 (respectively
k 6 0) and f is a Maass form with this lowest eigenvalue, then the Cauchy–Riemann equation
shows that y−k/2f(z) (respectively yk/2f(z)) is a holomorphic function. These holomorphic
functions are actually the classical modular forms (see [DFI02, § 4]). A fact that we require
is that the Laplace eigenvalue λ(s) = s(1 − s) of a Maass cusp form which is not induced from
a holomorphic form must satisfy (see [DFI02, Corollary 4.4])

<s = 1
2 or 0 < s < 1. (13)

However, the Selberg eigenvalue conjecture asserts that the latter case never occurs (see § 2.4
also).

2.2 Normalizations of Fourier coefficients
Given a holomorphic cusp form F with a Fourier expansion at the cusp at ∞ of the form

F (z) =
∑

n>1

aF (n)e(nz),

we define the normalized Fourier coefficients of a holomorphic cusp form F to be

ψF (n) = aF (n)/n(k−1)/2, (14)

where k is the weight of F .
Now we come to Maass forms. We consider Maass cusp forms only. See [DFI02, § 4] for the

definition. We shall denote the space of Maass forms of level q, weight k, and character χ (mod q)
by Ck(q, χ). A form in this space admits Fourier expansion at the cusp at∞ in terms of Whittaker
functions Wα,β as follows (see [DFI02, (5.1)])

f(z) =
∑

n 6=0

ρf (n)Wkn/2|n|,ir(4π|n|y)e(nx),

where r is the spectral parameter. When we speak of Maass cusp forms, we shall always assume
that they have norm one, i.e., 〈f, f〉 = 1 (see [DFI02, (4.37)]). We define the normalized Fourier
coefficients of a Maass cusp form f (see [Iwa95, ch. 8]) by

νf (n) :=

(
4π|n|

coshπr

)1/2

ρf (n) (15)

provided f is not induced from a holomorphic form, i.e., the Laplace eigenvalue of f is not
λ(|k|/2). Note that if f is such a Maass cusp form, then by (13), the spectral parameter r

768

https://doi.org/10.1112/S0010437X13007732 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007732


Strong orthogonality and cusp forms

satisfies r ∈ R or 0 < 1
2 + ir < 1, and therefore,

π−1 coshπr = Γ(1/2 + ir)−1Γ(1/2− ir)−1 6= 0.

Now we consider Maass cusp forms which are induced from the holomorphic modular forms.
Let F be a holomorphic form of weight k > 0. The Fourier coefficients of F are related to the
coefficients ρf (n) where f is the Maass cusp form associated to F in the following way

f(z) = yk/2F (z) or f(z) = yk/2F (z).

In the first case, the weight of the induced Maass form is k and in the second, it is −k. We
know that in both cases the Laplace eigenvalue is λ(k/2) and thus the spectral parameter is
given by r = −i(k − 1)/2. Now the Whittaker function has the property (see [DFI02, (4.21)])
that Wα,α−1/2(y) = yαe−y/2. Using this fact, we infer (see (14)) that

f(z) = yk/2F (z), ρf (n) =
aF (n)

(4πn)k/2
=

ψF (n)

n1/2(4π)k/2

for n > 1, and ρf (n) = 0 for n 6 0. Similarly, when f(z) = yk/2F (z), we have ρf (n) =
aF (n)/(4πn)k/2 = ψF (n)/n1/2(4π)k/2 for n > 1, and ρf (n) = 0 for n 6 0. Accordingly, for
f(z) = yk/2F (z) (respectively f(z) = yk/2F (z)) where F is a holomorphic cusp form, we define
νf (n) = ψF (n)/(4π)(k−1)/2 (respectively ψF (n)/(4π)(k−1)/2) for n > 1 and νf (n) = 0 otherwise.

2.3 Hecke operators
The definition of the nth Hecke operator Tn,χ, n > 1 acting on the space of modular forms of
level q, weight k, and character χ (mod q) is given by

Tn,χ : F (z) 7→ (Tn,χF )(z) =
1

n

∑

ad=n

χ(a)ak
∑

b(mod d)

F

(
az + b

d

)
.

For an eigenfunction F of Tn, we shall denote the eigenvalue by λF (n). If F is a primitive form
(i.e., newform) then its Fourier coefficients aF (n) are related to the eigenvalues λF (n) by

aF (n) = aF (1)λF (n), (16)

and, moreover, aF (1) 6= 0. Hence, the Fourier coefficients and the Hecke eigenvalues coincide up
to a multiplicative factor that depends only on the form F . We define the action of the nth
Hecke operator T ′n,χ on Ck(q, χ) by (see [DFI02, ch. 6])

T ′n,χ : f(z) 7→ (T ′n,χf)(z) =
1√
n

∑

ad=n

χ(a)
∑

b(mod d)

f

(
az + b

d

)
.

Note that this definition is independent of the weight k. The Hecke theory for Maass forms is
parallel to the theory for modular forms and an important fact is that there is an orthonormal
basis (called Hecke basis) of Maass cusp forms consisting of forms that are common eigenfunctions
of the Hecke operators T ′n,χ with (n, q) = 1. The forms in a Hecke basis will be called Hecke–Maass
cusp forms. A Hecke–Maass cusp form in the new subspace (consisting of forms that are not linear
combinations of forms induced from lower levels) is called a newform or a primitive form. Note
that a Hecke–Maass cusp form of level one is trivially a primitive form. The Hecke eigenvalue
λf (n) and the normalized Fourier coefficient νf (n) of a Hecke–Maass cusp form are related by

νf (±n) = νf (±1)λf (n); n > 1. (17)
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Moreover, for a Hecke–Maass cusp form f which is not induced from a holomorphic form, we
have the relation νf (−1) = εfνf (1), where εf = 1 or −1 and the form f is accordingly called
even or odd. The following proposition is easy to check.

Proposition 2.1. Suppose F is a holomorphic cusp form of weight k, level q and character
χ (mod q) and let f(z) = yk/2F (z) (respectively f(z) = yk/2F (z)) be the associated Maass
cusp form in Ck(q, χ) (respectively C−k(q, χ)) with Laplace eigenvalue λ(k/2). Then F is an
eigenfunction of the nth Hecke operator if and only if f is. Moreover, the nth Hecke eigenvalues
λF (n) and λf (n) of F and f respectively are related by

λf (n) =
λF (n)

n(k−1)/2

(
respectively

λF (n)

n(k−1)/2

)
.

By the above proposition, (16) and (17), for any primitive Maass cusp form f , whether or
not it is induced from a holomorphic form, we have that

νf (n) = νf (1)λf (n)

for n > 1 and νf (1) 6= 0. Hence, for any fixed primitive Maass cusp form f , the normalized Fourier
coefficients νf (n) for n > 1 and the Hecke eigenvalues λf (n) are the same up to multiplication
by a nonzero constant. From now on, whenever we talk of primitive forms we mean primitive
Maass cusp forms with the understanding that holomorphic modular forms are included in them.

2.4 The Ramanujan conjecture
The general Ramanujan conjecture asserts that for a primitive Maass cusp form f ∈ Ck(q, χ) and
a prime p, p - q, the Hecke eigenvalue λf (p) satisfies the bound

|λf (p)| 6 2. (18)

Although this conjecture is wide open, we know from the works of Kim and Shahidi, Kim, and
Kim and Sarnak [Kim03, KS02a, KS02b] that

|λf (p)| 6 2p7/64. (19)

For forms induced from holomorphic forms, the Ramanujan conjecture is a famous theorem due
to Deligne. A related conjecture concerns the size of the Laplace eigenvalues λ. Indeed, the
Selberg eigenvalue conjecture, which says that for Maass cusp forms of weight zero, the spectral
parameter r should always be real (see (12)), can be interpreted as the Ramanujan conjecture
for the infinite prime. If Selberg’s conjecture is true, then we must have λ > 1/4. If this is not
the case, then (12) implies that r is purely imaginary with |r| < 1/2. Even though we do not
know the truth of the Selberg conjecture, the work of Kim and Sarnak cited above also gives the
bound |r| 6 7/64 if such exceptional eigenvalues λ < 1/4 do actually occur.

3. Moments of Hecke eigenvalues

For a fixed Hecke–Maass cusp form f , we require bounds for sums of the type
∑

16n6X |λf (n)|2j .
Rankin [Ran39] and Selberg [Sel40] had independently treated similar sums in the case of
holomorphic forms for j = 1. We can use standard tools of analytic number theory coupled
with knowledge of analytic properties of higher degree L-functions to bound such moments.
Works of Gelbart and Jacquet [GJ78], and of Kim and Shahidi [KS02a, KS02b] are sufficient to
prove the following theorem.
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Theorem A. Let f be a Hecke–Maass cusp form for the group SL(2,Z). We have, for any X > 1,
the equality ∑

16n6X

|λf (n)|2 = CfX +Of (X3/5), (20)

where Cf > 0 is a constant that depends only on the form f and the same is true for the implied
constant. For j = 2, 3, and 4, we have,

∑

16n6X

|λf (n)|2j = XPf,j(logX) +Of (Xcj+ε) (21)

for any ε > 0. Here the cj are explicit constants strictly smaller than one and the Pf,j are
polynomials of degree 1, 4, and 13 respectively and their coefficients depend on f .

The first one is the well-known Rankin–Selberg estimate and a detailed proof of (21) with
explicit numerical constants appears in [LL11]. See, in particular, [LL11, Remark 1.7] and its
proof at the end of that paper. Note that they only consider what is defined as a weight zero
Maass cusp form here but their proof works for general Hecke–Maass forms on SL(2,Z) of any
weight. This can be seen by noting that the shape of the L-function and the Gamma factors
remain the same (see [DFI02, (8.17)]) if we take the more general definition of Maass form as
considered here. We note the following obvious corollary of (20) which will be required later. It
can be improved slightly (by a fractional exponent of logX) as mentioned in Remark 2 in the
introduction.

Corollary 3.1. For any Hecke–Maass cusp form f for the group SL(2,Z), and any X > 1, we
have ∑

16n6X

|λf (n)| �f X, (22)

where the implied constant depends only on f .

3.1 Moments of Hecke eigenvalues at primes
The following bound on the second moment of the Hecke eigenvalues at primes is a consequence
of PNT for the Rankin–Selberg L-function L(s, f ⊗f). See, for example, [LY05, LY07], [LWY05,
Corollary 1.2 and Lemma 5.1]. Similar results were obtained by Rankin [Ran73] and Perelli
[Per82] in the context of holomorphic forms.

Theorem B. For a Hecke–Maass cusp form f for the group SL(2,Z), we have the bound

∑

16n6X

Λ(n)|λf (n)|2 �f X,

for any X > 2.

Note that if f was a holomorphic form then the theorem would follow trivially from PNT
and Deligne’s bound on Hecke eigenvalues.

From the above theorem, we deduce the following result.

Corollary 3.2. For a Hecke–Maass cusp form f for the group SL(2,Z), we have the estimates

∑

16p6X

|λf (p)|log p�f X, (23)
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and ∑

16p6X

|λf (p)| �f X/logX, (24)

for any X > 2.

We also need a lower bound for the above sum and we follow the approach of Holowinsky
[Hol09, § 4.1] in proving the following proposition. See [Ran85, Wu09, WX] for more precise
results in this direction.

Proposition 3.1. For a Hecke–Maass cusp form f of level one we have the bound
∑

16p6X

|λf (p)| �f X/logX, (25)

for all X sufficiently large.

Proof. We start with a polynomial of the form

f(x) = c0 + c1(x2 − 1) + c2(x4 − 2) + c3(x6 − 5),

where the ci are real, c0 > 0, and f(x) satisfies f(x) 6 |x| for all real values of x. For example,
one can check that the polynomial

f(x) = 0.01 + (0.09)(x2 − 1) + (0.1)(x4 − 2)− (0.05)(x6 − 5)

satisfies all the conditions. Now, for each prime p, we put x = λf (p) and then sum over them.
The following relations are consequences of Hecke’s formula (63).

For any prime p, we have

λf (p)2 − 1 = λf (p2),

λf (p)4 − 2 = λf (p4) + 3λf (p2),

λf (p)6 − 5 = λf (p6) + 5λf (p4) + 9λf (p2).

Now note that λf (pj) is the pth coefficient of the jth symmetric power L-function L(s, symjf).
By facts known about symmetric power L-functions, it follows (see, for example, [Bru03, (2.23)])
that ∑

p6X

λf (pj) = o(X/logX)

as X −→ ∞ for 1 6 j 6 8. Therefore, by the above comments and PNT, we have the
bound (25). 2

4. The prime number theorem

4.1 Statements of the theorems
Our goal in this section is to obtain non-trivial bounds for the sums

∑
p6X λf (p)χ(p) and∑

n6X µ(n)λf (n)χ(n), where χ is a Dirichlet character modulo q and f is a Hecke–Maass cusp
form of level one. This will play an important role in the proof of the main theorem (see § 7.1).
Recall that

∑∞
n=1 λf (n)χ(n)e(nz) is a primitive cusp form of level q2, provided χ (mod q) is

primitive (see [Iwa97, § 7.3], [Li75, Theorem 9], and [CI00, § 4, Remarks]). To see that the twisted
form is an eigenfunction of the Laplace operator, one notes that the Laplace operator commutes
with the slash operator (see [DFI02, § 4]). It is natural at this point to apply PNT for L-functions
on GL(2) to estimate the above sums. A famous result due to Hoffstein and Ramakrishnan [HR95,
Theorem C, part (3)] says the following.
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Theorem C. There is an effectively computable absolute constant c > 0 such that for any

primitive form f of some level q, spectral parameter r, and weight k, the L-function L(s, f) does

not vanish in the region

σ > 1− c

log(q(|t|+ |r|+ 2))
.

Now [IK04, Theorem. 5.13], more specifically formula (5.52), leads to the following, taking

into account the absence of the exceptional zero.

Theorem D. Let f be a primitive Maass cusp form of some level q, spectral parameter r, and

weight k. For any X > 2, we have

∑

p6X

λf (p) log p�
√
q(|r|+ 3)X exp

(
− c

2

√
logX

)
, (26)

where the implied constant is absolute and c is as in the previous theorem.

If f is a Hecke–Maass cusp form on SL(2,Z) and χ (mod q) is a primitive Dirichlet character,

then applying the above theorem to the twisted form f ⊗ χ we get the estimate

∑

p6X

λf (p)χ(p) log p� q
√

(|r|+ 3)X exp

(
− c

2

√
logX

)
, (27)

where the implied constant is absolute. Apparently, it is not possible to deduce from (27) a

similar bound for the sum
∑

16n6X λf (n)µ(n)χ(n) by the combinatorial device presented in the

proof of [IK04, Corollary 5.29]. So we shall prove from scratch the following theorem.

Theorem 4.1. Let f be any Hecke–Maass cusp form for the full modular group and let χ (mod q)

be any Dirichlet character. Let X > 2. Then we have,

∑

p6X

λf (p)χ(p) log p�f
√
qX exp(−c1

√
logX) (28)

and ∑

n6X

λf (n)µ(n)χ(n)�f
√
qX exp(−c1

√
logX), (29)

where the implied constant depends only on the form f and c1 =
√
c/10, where c is the same

absolute constant that appears in Theorem C.

4.2 Idea of the proof

We prove the second bound (29) only as this is the harder one and we follow the classical method

using the Perron formula and Dirichlet series. To prove it, we need to give a good bound for the

associated Dirichlet series M(s, f ⊗ χ) (see (52)) in the zero-free region. This is the content of

Lemma 4.5. To obtain this bound, we first relate it to the reciprocal of the L-function L(s, f⊗χ)

(see (54)). Now a suitable bound for the reciprocal of the L-function follows from a similar bound

for the logarithmic derivative of the L-function and this is done in the proof of Lemma 4.3. Thus

we are reduced to bounding the logarithmic derivative of the L-function which is done in the

proof of Lemma 4.1 using standard techniques from complex analysis. The proof of Lemma 4.1

also requires a uniform lower bound of the Euler factors and this is the content of Lemma 4.4.
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It is clear that the proof of (28) will be similar and the only difference will be that instead of
M(s, f ⊗ χ), we shall have to work with the logarithmic derivative of L(s, f ⊗ χ), the required
bound of which is established in Lemma 4.1. We prove the lemmas mentioned above in the next
subsection. First we introduce some notation valid for this section only. We shall write Ω to
denote the region in the complex plane given by

Ω =

{
σ + it : σ > 1− c

6L

}
,

and L to denote

L := log(q(|t|+ |r|+ 2)). (30)

4.3 Preparatory lemmas
First we start by estimating the logarithmic derivative of the L-function.

Lemma 4.1. Let f and χ be as in Theorem 4.1. Let c be the constant appearing in Theorem C.
Then, for every s ∈ Ω, we have

L′(s, f ⊗ χ)

L(s, f ⊗ χ)
�f L, (31)

where the implied constant depends only on the form f .

To prove this lemma, we first recall a consequence of the Borel–Carathéodory theorem (see
[Tit86, § 3.9, Lemma α]).

Lemma 4.2. Let s0 ∈ C, r > 0 and U an open set containing the disk {s : |s − s0| 6 r}. Let
M > 1 and h a holomorphic function on U , satisfying h(s0) 6= 0 and the inequality

∣∣∣∣
h(s)

h(s0)

∣∣∣∣ 6 eM ,

in the disk |s − s0| 6 r. Then, for every s satisfying the inequality |s − s0| 6 r/4, one has the
inequality ∣∣∣∣

h′(s)

h(s)
−

∑

ρ:h(ρ)=0
|s0−ρ|6r/2

1

s− ρ

∣∣∣∣ 6 48
M

r
.

Now we prove Lemma 4.1.

Proof. We consider two cases separately: χ is primitive and otherwise.

Case 1: χ is a primitive character. We first suppose that χ is a primitive character modulo q.
Then we know that f ⊗ χ is a primitive Maass cusp form of level q2. The L-function attached
to f is

L(s, f) =
∑

n

λf (n)

ns
=
∏

p

(1− λf (p)p−s + p−2s)−1,

and the L-function attached to the twisted form f ⊗ χ is

L(s, f ⊗ χ) =
∑

n

λf (n)χ(n)

ns
=
∏

p

Lp(s, f ⊗ χ)−1 (32)

where the local factor is

Lp(s, f ⊗ χ) = (1− λf (p)χ(p)p−s + χ2(p)p−2s). (33)
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By (22), the infinite series and the Euler product appearing in (32) are absolutely convergent for
σ > 1. We know from the theory of automorphic L-functions that the function L(s, f ⊗ χ) has
an analytic continuation to the whole complex plane and satisfies a functional equation relating
the values at s and 1−s and has a polynomial growth in the critical strip, i.e., for some absolute
constant A, one has the bound

L(s, f ⊗ χ) 6 eAL, (34)

uniformly for σ > 1/2 (see [IK04, (5.20)]). Taking the logarithmic derivatives of (32), we have
for σ > 1 the equality

−L
′(s, f ⊗ χ)

L(s, f ⊗ χ)
=
∑

p

λf (p)χ(p)(log p)p−s − 2χ2(p)(log p)p−2s

1− λf (p)χ(p)p−s + χ2(p)p−2s
. (35)

We take a point s = σ + it in the region Ω. We shall consider t as fixed and develop different
arguments according to the value of σ. We first assume that

<s = σ > 1 +
1

100
. (36)

Then, the inequality (22) (with q = 1) combined with (35) easily shows

L′(s, f ⊗ χ)

L(s, f ⊗ χ)
�f 1,

uniformly for s satisfying (36). We now suppose that s satisfies

1 +
c

10L 6 σ 6
101

100
. (37)

Since L′(s, f ⊗ χ)/L(s, f ⊗ χ) converges absolutely in the region <s > 1 (see (22) and (35)) we
expand it in Dirichlet series

−L
′(s, f ⊗ χ)

L(s, f ⊗ χ)
=
∑

n>1

Λf⊗χ(n)

ns
(38)

(see [IK04, (5.25)]). The support of the function Λf⊗χ is included in the set of powers of primes.
We deduce the inequality ∣∣∣∣−

L′(s, f ⊗ χ)

L(s, f ⊗ χ)

∣∣∣∣ 6
∑

p

|λf (p)| log p

pσ
+O(1),

the contribution from the higher powers of primes being absorbed in the O(1) term thanks to
the Kim–Sarnak bound (19). Applying (23) to the above sum via partial summation, we get the
inequalities

−L
′(s, f ⊗ χ)

L(s, f ⊗ χ)
�f

1

σ − 1
+ 1

�f L, (39)

uniformly for s satisfying (37) and thus the bound (31) for s in that region.
The imaginary part t being fixed all the time, we consider the three points

s = σ + it, s1 = 1 +
c

10L + it, s0 =
101

100
+ it, (40)

where σ satisfies
1− c

6L 6 σ < 1 +
c

10L := σ1. (41)
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We plan to apply Lemma 4.2 twice to the function h(s) = L(s, f ⊗ χ) at the point s0 and
r = 1/2. Note that, uniformly over t, one has h(s0) � 1 by the Dirichlet series and the Euler
product expression (32). By (34), we can choose M � L, where the implied constant is absolute.
So we can write the two equalities

L′(s, f ⊗ χ)

L(s, f ⊗ χ)
=

∑

|s0−ρ|<1/4
L(ρ,f⊗χ)=0

1

s− ρ +O(L), (42)

and
L′(s1, f ⊗ χ)

L(s1, f ⊗ χ)
=

∑

|s0−ρ|<1/4
L(ρ,f⊗χ)=0

1

s1 − ρ
+O(L), (43)

since we have |s1 − s0| 6 |s− s0| 6 1/8. Subtracting (42) from (43) and using (39) (at the point
s1) we deduce the equality

L′(s, f ⊗ χ)

L(s, f ⊗ χ)
=

∑

|s0−ρ|<1/4
L(ρ,f⊗χ)=0

1

s− ρ −
∑

|s0−ρ|<1/4
L(ρ,f⊗χ)=0

1

s1 − ρ
+Of (L).

Moreover, we have the inequalities

1

s− ρ −
1

s1 − ρ
� |s− s1|
|s− ρ|2

� 1

L|s− ρ|2

� < 1

s1 − ρ
,

since, by Theorem C and the definitions (40), we have the inequalities

|s− ρ| � |s1 − ρ| and <(s1 − ρ)� L−1,

valid uniformly. Now we sum over the zeros ρ of L(s, f ⊗ χ) with |s0 − ρ| < 1/4 and apply (43)
and (39) again to obtain

L′(s, f ⊗ χ)

L(s, f ⊗ χ)
�f L. (44)

This gives (31) when χ is primitive.

Case 2: χ is not primitive. We suppose that the Dirichlet character χ modulo q is induced by a
primitive character χ∗ modulo q∗. From the equality

L(s, f ⊗ χ) = L(s, f ⊗ χ∗)
∏

p|q,p-q∗
Lp(s, f ⊗ χ∗),

we deduce the following equality between logarithmic derivatives

−L
′(s, f ⊗ χ)

L(s, f ⊗ χ)
= −L

′(s, f ⊗ χ∗)
L(s, f ⊗ χ∗) +O

( ∑

p|q,p-q∗

|λf (p)| log p

pσ

)
+O(1),

where, for the second term on the right-hand side, we use a uniform lower bound for |Lp(s, f⊗χ∗)|
for σ > 99/100 and this will be proved in Lemma 4.4 below. Using (19) once more, we have
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the equality

−L
′(s, f ⊗ χ)

L(s, f ⊗ χ)
= −L

′(s, f ⊗ χ∗)
L(s, f ⊗ χ∗) +O

(∑

p|q

p−3/4

)
+O(1)

= −L
′(s, f ⊗ χ∗)
L(s, f ⊗ χ∗) +O(log1/4(q + 1)),

uniformly for σ > 99/100. Combining with (44), we complete the proof of Lemma 4.1 in all the
cases. 2

4.4 Bounds for L and L−1 inside Ω
From Lemma 4.1, we now deduce upper bounds for L, L−1 and some allied functions inside Ω.

Lemma 4.3. Under the conditions of Lemma 4.1, we have the uniform bound

L(s, f ⊗ χ) and L−1(s, f ⊗ χ)�f L,
for all s ∈ Ω where the implied constant depends only on f .

Proof. Let s and s1 be as in (40) and we first suppose that σ satisfies (41). Integrating the bound
given by Lemma 4.1 between s1 and s, we obtain the inequality

logL(σ1 + it, f ⊗ χ)− logL(σ + it, f ⊗ χ)�f 1. (45)

To bound |L(s1, f ⊗ χ)| from above, we use the Dirichlet series expression (32) to write

|L(s1, f ⊗ χ)| 6
∑

n>1

|λf (n)|
nσ1

�f L, (46)

using the estimate (22) and partial summation.
To bound |L(s1, f ⊗ χ)|−1 from above we introduce local factors Mp defined by

Mp(s, f ⊗ χ) := 1− λf (p)χ(p)

ps
(47)

for each prime p. If <s > 99/100 and p > 3, it easily follows from (19) that

Mp(s, f ⊗ χ) 6= 0 and Lp(s, f ⊗ χ) 6= 0. (48)

However, we shall obtain a more precise statement concerning Lp below; namely, Lemma 4.4.
Write the function L−1 as

L−1(s) = L2(s)

(∏

p>3

Mp(s)

)
G>3(s), (49)

with
G>3(s) :=

∏

p>3

(Lp(s)/Mp(s))

where we voluntarily dropped the symbol f ⊗ χ. Computing each of the local factors, we see
that the function G>3(s) has an expression as an infinite product absolutely convergent for
<s > 99/100; and hence G>3 is uniformly bounded in that region. In other words, uniformly
over characters χ and for <s > 99/100, we have

G>3(s) and G−1
>3(s)� 1. (50)
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É. Fouvry and S. Ganguly

For the second term in the right-hand side of (49), we may write
∣∣∣∣
∏

p>3

Mp(s1)

∣∣∣∣ =

∣∣∣∣
∑

2-n

µ(n)χ(n)λf (n)

ns1

∣∣∣∣ 6
∑

n>1

|λf (n)|
nσ1

�f L

by the multiplicativity of λf (n) on squarefree integers and (46). Furthermore, we have |L2(s1)|
6 3. Gathering all these remarks into (49), we deduce the inequality

|L−1(s1, f ⊗ χ)| �f L. (51)

Now (46) and (51) yield

|logL(σ1 + it, f ⊗ χ)| 6 logL+Of (1).

Combining this with (45) we complete the proof of Lemma 4.3 when σ satisfies (41). In the
remaining case, when σ > σ1, instead of using (45), we merely adapt the proof of (46) and (51)
as we are in the region of absolute convergence. 2

4.5 Extension to the M-function
The Dirichlet series attached to the arithmetical function appearing in the second part of
Theorem 4.1 is

M(s, f ⊗ χ) :=
∑

n

µ(n)λf (n)χ(n)

ns
. (52)

By (22), we know that this series converges for <s > 1. In that region, it admits an Euler product
expansion

M(s, f ⊗ χ) =
∏

p

Mp(s, f ⊗ χ), (53)

where Mp(s, f ⊗ χ) is defined in (47). The Dirichlet series M(s, f ⊗ χ) is not far from L−1(s).
More precisely, from (49) and from (53), we deduce the equality which is true for every s ∈ Ω

M(s, f ⊗ χ) = L2(s)−1L−1(s)M2(s)G−1
>3(s). (54)

By (50) and Lemma 4.3 we control all the terms but the first one in the region s ∈ Ω. Now none
of the local Euler factors Lp defined in (33) vanishes in the half plane {s : <s > 1}, otherwise
the global L-function would have a pole in this region, which it does not by the general theory
of automorphic L-functions. We shall now prove a uniform lower bound for these functions |Lp|,
in particular, for p = 2. We have the following lemma.

Lemma 4.4. There is an absolute constant C0 > 0 such that for any Hecke–Maass cusp form f
for the full modular group, any Dirichlet character χ (mod q) for any integer q > 1, any prime
p > 2, and for every s such that <s > 99/100, the bound

|Lp(s, f ⊗ χ)| > C0

holds.

Proof. When p > 3, one has the inequality

|Lp(s, f ⊗ χ)| > 1− 2 · p7/64

p99/100
− 1

p99/50

> 1− 2 · 3−1409/1600 − 3−99/50

> 1/8
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by a direct application of the definition (33) and of the inequality (19). The prime 2 requires a
more careful analysis. We write z := χ(2)/2σ+it, u := 1

2λf (2) and

L2(s, f ⊗ χ) = 1− 2uz + z2 := G(u, z).

By self-adjointness of Hecke operators, we know that the Hecke eigenvalues, in particular, λf (2)
and hence u, are real. The existence of C0 > 0 such that |L2(s, f ⊗ χ)| > C0 for all s with
<s > 99/100 is a consequence of the inequality

|G(u, z)| > C0, (55)

for all (u, z) belonging to the set

K := {(u, z) ∈ R× C : |u| 6 27/64, |z| 6 2−99/100},

(by an application of (19)). Since K is compact and G is a continuous function, the proof of (55)
is reduced to the proof of the non-vanishing of G(u, z) on K.

Let (u0, z0) ∈ K, satisfying G(u0, z0) = 0. We then have

u0 =
1

2

(
z0 +

1

z0

)
=

1

2

(
z0 +

z0

|z0|2
)
.

This implies that z0 is necessarily real, since |z0| 6= 1.
Finally, for z real such that |z| 6 2−99/100, we have

∣∣∣∣
1

2

(
z +

1

z

)∣∣∣∣ >
1

2
(299/100 + 2−99/100) = 1.24 · · · > 27/64 = 1.07 · · · .

This gives a contradiction. Hence G cannot vanish on K and (55) is proved. The proof of
Lemma 4.4 is now complete. 2

It remains to gather in (54) the upper bounds contained in the Lemmas 4.3 and 4.4, in
formula (50), and the bound |M2(s)| 6 3 for s ∈ Ω to obtain the following lemma.

Lemma 4.5. Under the conditions of Theorem 4.1, we have the bound

M(s, f ⊗ χ)�f L,

uniformly for s ∈ Ω.

We now have all the tools to give a sketch of the proof of Theorem 4.1.

4.6 Proof of Theorem 4.1
The idea of the proof is quite standard (see for instance [IK04, Theorem 5.13]). We apply the
Perron formula (see [Tit86, Lemma 3.12]) to the Dirichlet series M(s, f ⊗χ) defined in (52) and
move the contour inside the zero-free region where we can give a good estimate of the function
M . We use a smoothed version of the classical Perron formula using Mellin inversion. To this end,
we consider a function φ with support on [0, X + Y ], such that 0 6 φ(x) 6 1 for 0 6 x 6 X + Y
and φ(x) = 0 for x > X + Y . Here, Y (1 6 Y 6 X/2) is a parameter to be chosen later. To be
specific, we take

φ(x) = min

(
x

Y
, 1, 1 +

X − x
Y

)

for 0 6 x 6 X + Y and
φ(x) = 0
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elsewhere. Then the Mellin transform of φ satisfies (see [IK04, p. 111])

φ̂(s)� Xσ

|s| min

(
1,

X

|s|Y

)
(56)

for 1/2 6 <s 6 2. After these preliminaries, we now give the proof of the theorem.

Proof. We have

∑

n6X

λf (n)χ(n)µ(n) =
∑

n>1

λf (n)χ(n)µ(n)φ(n)

+O

( ∑

0<n6Y

|λf (n)|
)

+O

( ∑

X<n6X+Y

|λf (n)|
)
, (57)

and also ∑

0<n6Y

|λf (n)|,
∑

X<n6X+Y

|λf (n)| �f Y (58)

by Cauchy’s inequality and the asymptotic formula (20), provided Y > X3/5. By the Mellin

inversion formula, we can write

∑

n>1

λf (n)χ(n)µ(n)φ(n) =
1

2πi

∫

(2)
M(s, f ⊗ χ)φ̂(s) ds. (59)

Now we move the contour of the integral to the left and deform it so that it coincides with the

boundary of the region Ω. Since Ω is wholly contained in the zero-free region for L(s, f ⊗χ), we

do not encounter any pole of M and thus it remains to estimate the integral over the left edge

∂Ω of Ω. We assume that q is not very large, namely

q 6 exp(2c1

√
logX), (60)

otherwise (29) is a trivial consequence of (22). Let us write T := X/Y , a parameter to be chosen

later subject to 2 6 T 6 X1/4. By (56), (59) and Lemma 4.5, we deduce the inequalities

∑

n>1

λf (n)χ(n)µ(n)φ(n)�f

∫

∂Ω

∣∣∣∣L ·
Xσ

|s| min

(
1,

X

|s|Y

)∣∣∣∣d|s|

�f

{ ∫ T 2

1
LX

σ(t)

t
dt+

∫ ∞

T 2

LX
2

Y
· 1

t2
dt

}

�f (Xσ(T 2) + Y ) log2(q(T + |r|+ 2)), (61)

with

σ(t) := 1− c

6L
for t real. For the definition of L see (30). It remains to put this in (57), to use (58), to choose

T := exp(2c1

√
logX),
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and to recall the assumption (60) to finally write the inequalities

∑

n6X

λf (n)χ(n)µ(n)�f

(
Xσ(T 2) +

X

T

)
log2(q(T + |r|+ 2))

�f X

{
exp

(
− c logX

6 log(exp(7c1
√

logX))

)

+ exp
(
−2c1

√
logX

)}
log2(q(T + |r|+ 2))

�f X exp(−c1

√
logX),

by the definition of c1. This completes the proof of Theorem 4.1. 2

5. Hecke multiplicative functions

5.1 Hecke relation
The following relation satisfied by Hecke eigenvalues is well known. See [IK04, ch. 14] and
[Iwa95, ch. 8], for instance.

Lemma 5.1. For every m and n > 1, we have

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
. (62)

Definition 1. We call a function λ : N −→ R Hecke multiplicative if λ(1) = 1 and λ satisfies
the relation

λ(m)λ(n) =
∑

d|(m,n)

λ

(
mn

d2

)
. (63)

Here we restrict ourselves to real valued functions as this is enough for our purpose and in
what follows we need positivity of λ2. Soundararajan [Sou10] had introduced a similar definition
in the context of his work on the quantum unique ergodicity conjecture. Note that a Hecke
multiplicative function is automatically multiplicative. From (63), we can easily deduce the dual
formula

λ(mn) =
∑

d|(m,n)

µ(d)λ

(
m

d

)
λ

(
n

d

)
. (64)

5.2 The λ∗ function
Given a Hecke multiplicative function λ, we introduce a new function λ∗ which can be thought
of as an analogue of (the square-root of) the divisor function.

Definition 2. Let λ : N → R be an arithmetic function. We define the arithmetical function λ∗

by declaring

λ∗(n) =

(∑

d|n

λ2(d)

)1/2

for n > 1. (65)

Note that in the trivial case λ ≡ 1 then we have λ∗(n) =
√
d(n) where d(n) is the number

of positive integers of the integer n. When λ is a Hecke multiplicative function, the associated
λ∗ inherits some regularity properties which justify its introduction. Here are some of these.

Lemma 5.2. Let λ be a Hecke multiplicative function. Let m and n be any positive integers.
Then the following hold:
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(a) λ∗(n) > 1;

(b) |λ(m)| 6 λ∗(m);

(c) if m|n, then λ∗(m) 6 λ∗(n);

(d) if (m,n) = 1 then λ∗(mn) = λ∗(m)λ∗(n);

(e) |λ(mn)| 6 λ∗(m)λ∗(n);

(f) λ∗(mn) 6 d1/2(m)d1/2(n)λ∗(m)λ∗(n);

(g) |λ(m)λ(n)| 6 d1/2((m,n))λ∗(mn).

Proof. The first three assertions are trivial since λ(1) = 1 and λ2(d) > 0, for all d. The part (d)
is a consequence of the fact that if d|mn, then d can be uniquely written as d = d1d2 where d1

and d2 respectively divide m and n. We also use the relation λ(ab) = λ(a)λ(b), when a and b are
coprime. For the part (e), we use (64) to write

|λ(mn)| 6
∑

d|(m,n)

∣∣∣∣λ
(
m

d

)
λ

(
n

d

)∣∣∣∣ 6
( ∑

d|(m,n)

λ2

(
m

d

))1/2

·
( ∑

d|(m,n)

λ2

(
n

d

))1/2

,

hence the result by extending summation. In the case of (f), we write

λ∗2(mn) =
∑

d|mn

λ2

(
mn

d

)

6
∑

d1|m

∑

d2|n

λ2

(
m

d1
· n
d2

)

6
∑

d1|m

∑

d2|n

λ∗2
(
m

d1

)
· λ∗2

(
n

d2

)

6
∑

d1|m

λ∗2(m) ·
∑

d2|n

λ∗2(n)

6 d(m)d(n)λ∗2(m)λ∗2(n),

by (e) and (c). For (g), we write by (63), the inequalities

|λ(m)λ(n)| 6
∑

d|(m,n)

∣∣∣∣λ
(
mn

d2

)∣∣∣∣

6

( ∑

d|(m,n)

1

)1/2

·
( ∑

d|(m,n)

λ2

(
mn

d2

))1/2

6 d1/2((m,n))λ∗(mn),

by the Cauchy–Schwarz inequality and extending summation. 2

5.3 Moments of λ∗(n)
The divisor function d(n) satisfies nice bounds if we sum its powers over an interval. Indeed, for
any positive integer A, we have, for X > 1,

∑

n6X

dA(n)�A X(logX)2A−1. (66)
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For this classical bound see [MV07, p. 61] for instance. The function λ∗ also displays similar
regularity and it is reasonable to expect that moments of λ∗ should be of the same size as
corresponding moments of λ (up to log factors). With a specific application in mind, we prove a
particular case of this regularity.

Proposition 5.1. Suppose a Hecke multiplicative function λ satisfies the bound
∑

m6M

λ6(m)�λ M(logM)4 (67)

uniformly for all M > 2. Then for any positive integer A, there is some integer A1 = A1(A), such
that, uniformly for X > 2, one has the estimate

∑

m6X

dA(m)λ∗4(m)� X(logX)A1 , (68)

where the implied constant depends only on λ and A.

Proof. Throughout the proof we denote by A1 some unspecified but effective function of A. The
value of A1 may be different in different occurrences. By the definition (65) of the function λ∗,
one has the equality

∑

m6X

dA(m)λ∗4(m) =
∑

m6X

dA(m)

(∑

d|m

λ2(d)

)2

=
∑ ∑

d1,d2

λ2(d1)λ2(d2)
∑

m6X
[d1,d2]|m

dA(m), (69)

where [d1, d2] is the least common multiple of d1 and d2. Using the inequality

d(ab) 6 d(a)d(b), (70)

and (66), we transform (69) into
∑

m6X

dA(m)λ∗4(m)� LA1
∑ ∑

d1,d2

dA(d1)dA(d2)λ2(d1)λ2(d2)
X

[d1, d2]
,

where L now has the meaning
L := log 2X.

Since [d1, d2] = d1d2(d1, d2)−1 we extend the summation over all the divisors δ of d1 and d2, to
obtain the series of inequalities

∑

m6X

dA(m)λ∗4(m)� XLA1
∑

δ6X

δ

( ∑

δ|d16X

dA(d1)
λ2(d1)

d1

)2

� XLA1
∑

δ6X

δ

( ∑

δ|d16X

λ4(d1)

d1

)
·
( ∑

δ|d16X

d2A(d1)

d1

)

6 XLA1
∑

δ6X

d2A(δ)

( ∑

δ|d16X

λ4(d1)

d1

)
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É. Fouvry and S. Ganguly

6 XLA1

(∑

d16X

d2A+1(d1)
λ4(d1)

d1

)

6 XLA1

(∑

d16X

λ6(d1)

d1

)2/3(∑

d16X

d6A+3(d1)

d1

)1/3

� XLA1 ,

where we used the Cauchy–Schwarz inequality, the inequalities (70) and (66), Hölder’s inequality,
and finally the assumption (67) combined with Abel summation. 2

6. Additive twists and Miller’s theorem

6.1 GL(2)
For later applications in the estimation of Type I sums we prove the following lemma.

Lemma 6.1. Let f be a cusp form on SL(2,Z). Then uniformly for N an integer > 1, for X > 1
and for α ∈ R one has the inequality

∑

n6X

λf (Nn)e(αn)�f

√
X log(2X) d(N)1/2λ∗f (N).

Proof. We use (64) and (1) to write

∑

n6X

λf (Nn)e(αn) =
∑

d|N

µ(d)λf (N/d)
∑

k6X/d

λf (k)e(αdk)

�
√
X(log 2X)

∑

d|N

µ2(d)|λf (N/d)|d−1/2.

It remains to apply the Cauchy–Schwarz inequality and to refer to the definition (65) to conclude
the proof. 2

6.2 GL(3)
We recall the main theorem in [Mil06] already mentioned in (11) above. Miller’s theorem depends
crucially on the Voronoi summation formula for GL(3) which was first established by Miller and
Schmidt [MS06] (see also [GL06] for a different treatment). A concrete introduction to the theory
of higher degree automorphic forms is the book [Gol06].

Theorem E. Let ar,n denote the Fourier coefficients of a cusp form f on

GL(3,Z)\GL(3,R).

Then for every ε > 0, for every integer r, and for every T > 1, one has the inequality
∑

n6T

ar,ne(nα)�f,r,ε T
(3/4)+ε,

where the implied constant depends only on the form f , r, and ε.

Applying this theorem to the symmetric square lift of a Hecke–Maass cusp form f of level one
and noting that we can write the coefficients of L(s, sym2f) as convolutions from the expression

L(s, sym2f) = ζ(2s)

∞∑

n=1

λf (n2)

ns
,

we obtain the following corollary. See [MS04, pp. 434–435] for details.
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Corollary 6.1. For every Hecke–Maass cusp form f of level one and for every ε > 0, there
exists a function C(f, ε) such that, for every T > 1 one has the inequality

∣∣∣∣
∑

n6T

( ∑

n=md2

λf (m2)

)
e(nα)

∣∣∣∣ 6 C(f, ε)T (3/4)+ε.

6.3 Application of Miller’s theorem
We have the following lemma.

Lemma 6.2. For every Hecke–Maass cusp form f of level one and for every positive ε, we have
∑

n6T

λf (n2)e(nα)�ε,f T
(3/4)+ε,

uniformly for T > 1.

Proof. Let
M(T, α) :=

∑

n6T

( ∑

n=md2

λf (m2)

)
e(nα),

and let
S(T, α) :=

∑

n6T

λf (n2)e(nα).

We claim the equality
S(T, α) =

∑

r6
√
T

µ(r)M

(
T

r2
, r2α

)
, (71)

and Lemma 6.2 directly follows from Proposition 6.1 after a summation over r. To prove (71),
we write

S(T, α) =
∑

m6
√
T

(∑

r|m

µ(r)

)
S

(
T

m2
,m2α

)

=
∑

r6
√
T

µ(r)
∑

`6
√
T/r

∑

k6T/(`2r2)

λf (k2)e(kr2`2α).

The proof now follows by making the change of variables n = k`2. 2

Let us denote, for a positive integer A,

S(T,A, α) :=
∑

n6T

λf (An2)e(nα).

By (64) and the observation that for a squarefree `, `|n2 if and only if `|n, we have

S(T,A, α) =
∑

`|A

µ(`)λf (A/`)S(T/`, `, `α), (72)

for any integer A. Now we prove a key lemma.

Lemma 6.3. Let f be a Hecke–Maass cusp form of level one and let ε be any positive real
number. Then we have the bound

S(T,A, α)�ε,f (1 + ω(A))d3(A)|λf (A)|T (3/4)+ε, (73)

uniformly for T > 1, for squarefree A > 1 and for real α.
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Proof. We shall prove this lemma for every squarefree A by induction on T , with the same
implicit constant as the one contained in the statement of Lemma 6.2. For T0 6 1, formula (73)
is correct for any A. Similarly, (73) is correct for any T when A = 1, with the same constant as
in Lemma 6.2. Suppose now that there exists T0 > 1, such that (73) is true for any T 6 T0 and
any A squarefree. We now prove that the same holds for any T 6 2T0.

We start with the relation (72). The first term corresponding to ` = 1 is λf (A)S(T, 1, α) and
S(T, 1, α) = Oε(T

(3/4)+ε) by Lemma 6.2. For ` > 1, we use the induction hypothesis. Since A is
squarefree, for `|A we have (`, A/`) = 1 (hence λf (A) = λf (A/`)λf (`)) and also 1 +ω(`) 6 ω(A)
for ` 6= A. Thus we have,

S(T,A, α)� |λf (A)|T (3/4)+ε

{
1 + ω(A)

∑

`|A
1<`<A

|µ(`)| d3(`)

`(3/4)+ε
+
d3(A)(1 + ω(A))

A(3/4)+ε

}

6 |λf (A)|T (3/4)+ε

{
1 + ω(A)

∏

p|A

(
1 +

3

p(3/4)+ε

)
+

d3(A)

A(3/4)+ε

}
.

Now we note that ∏

p|A

(
1 +

3

p3/4

)
< d3(A),

as 3/p3/4 < 2 for all primes p. Since we also have 1+d3(A)/A3/4 < d3(A) for all A > 2, we deduce

S(T,A, α)� λf (A)T (3/4)+ε

{
1 + ω(A)d3(A) +

d3(A)

A3/4

}

� (1 + ω(A))d3(A)λf (A)T (3/4)+ε. 2

Now we generalize this to all integers A, squarefree or not, by using the function λ∗f defined
in (65).

Lemma 6.4. Let f be a Hecke–Maass cusp form of level one and let ε > 0 be any real number.
Then we have the inequality

S(T,A, α)�ε,f (1 + ω(A))d3(A)λ∗f
2(A)T (3/4)+ε,

uniformly for T > 1, for A > 1 and for real α.

Proof. We start from (72). Applying (73), we obtain

S(T,A, α)� (1 + ω(A))d3(A)T (3/4)+ε
∑

`|A

|λf (`)| |λf (A/`)|

� (1 + ω(A))d3(A)λ∗f
2(A)T (3/4)+ε,

by the Cauchy–Schwarz inequality and the definition (65). 2

7. The proof of Theorem 1.1

We assume throughout the rest of the paper that f is a Hecke–Maass cusp form of level one.
There is no loss of generality in doing so as the space of Maass cusp forms is spanned by the Hecke
forms. Recall that for such a form, the Fourier coefficients νf (n) and the Hecke eigenvalues λf (n)
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coincide up to multiplication by the non-zero constant νf (1). We prove only the bound (7) for
the sum involving the Möbius function. The proof of the bound (6) is structurally identical and,
in fact, simpler as explained in the introduction. Throughout the rest of the paper, f denotes a
Hecke–Maass cusp form for the group SL(2,Z).

7.1 Initial steps
Let us write

T (X,α) =
∑

16n6X

λf (n)µ(n)e(nα).

We fix a parameter Q to be optimized later. Now, Dirichlet’s theorem on Diophantine
approximation ensures that given any α ∈ [0, 1), there is always a rational number a/q, (a, q) = 1
such that

1 6 q 6 Q and

∣∣∣∣α−
a

q

∣∣∣∣ 6
1

qQ
. (74)

By partial summation, we have

|T (X,α)| �
∣∣∣∣T
(
X,

a

q

)∣∣∣∣+

∫ X

1

∣∣∣∣
(
α− a

q

)
T

(
x,
a

q

)∣∣∣∣dx+ 1. (75)

We now plan a general study of the sum T (x, a/q). We first write the equality

T

(
x,
a

q

)
=

∑

b(mod q)

e

(
ab

q

) ∑

n≡b(mod q)
n6x

λf (n)µ(n). (76)

To detect the congruence n ≡ b mod q by Dirichlet characters, we must first ensure the
coprimality of the class and the modulus. So we introduce

d = (b, q), b1 = b/d, q1 = q/d, and χd, the principal character modulo d.

This gives the equalities

∑

n≡b(mod q)
n6x

λf (n)µ(n) =
∑

n1≡b1(mod q1)
n16x/d

λf (dn1)µ(dn1)

= λf (d)µ(d)
∑

n1≡b1(mod q1)
n16x/d

λf (n1)µ(n1)χd(n1)

=
λf (d)µ(d)

ϕ(q1)

∑

χ(mod q1)

χ(b1)
∑

n16x/d

λf (n1)µ(n1)(χχd)(n1). (77)

Since χχd is a character of modulus dq1, we can apply Theorem 4.1 with q := dq1 to the
inner sum. This gives

∑

n16x/d

λf (n1)µ(n1)(χχd)(n1)�
√
dq1

X

d
exp(−c1

√
log(X/d)).

Bounding λf (d) by (19), we finally have

T

(
x,
a

q

)
� q3/2X exp(−c1

√
log(X/q)). (78)

Now the proof will proceed differently depending on the size of q compared to X.
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7.2 Major arcs

By (78), (75) and (74), we have

T (X,α)� q3/2X exp(−c1

√
log(X/q))

(
1 +

∣∣∣∣α−
a

q

∣∣∣∣X
)

� √qX exp(−c1

√
log(X/q))

(
q +

X

Q

)
. (79)

Now we choose

Q = X exp

(
−c1

3

√
logX

)
. (80)

If

q 6
X

Q
= exp

(
c1

3

√
logX

)
, (81)

then by (79),

T (X,α)� X exp

(
− c1

10

√
logX

)
.

Therefore, we have proved Theorem 1.1 if α admits a good enough rational approximation a/q,

(a, q) = 1, satisfying (74) with Q as above, and q satisfies the bound (81). On the other hand, if α

is such that (81) is true for no rational number a/q, (a, q) = 1, satisfying (74), then this method

does not work and we apply the Vinogradov method as explained in the next few subsections.

7.3 Minor arcs

After the pioneering work of Vinogradov, Gallagher, Vaughan and others, we know how to

quickly enter into the combinatorial structure of the functions Λ and µ. In our situation we use

the following proposition (see [IK04, Proposition 13.5] for instance).

Proposition 7.1. Let y, z > 1. Then for any m > max{y, z}, we have

µ(m) = −
∑

bc|m
b6y,c6z

µ(b)µ(c) +
∑

bc|m
b>y,c>z

µ(b)µ(c). (82)

Accordingly, we decompose the sum T (X,α) as

T (X,α) = −T1(X,α) + T2(X,α) +O(y + z), (83)

where

T1(X,α) =
∑

b6y

µ(b)
∑

c6z

µ(c)
∑

k6X/bc

λf (kbc)e(kbcα), (84)

and

T2(X,α) =
∑

b>y

µ(b)
∑

c>z

µ(c)
∑

k6X/bc

λf (kbc)e(kbcα) (85)

are called sums of type I and type II respectively. The parameters y > 1 and z > 1 will be chosen

later optimally (they will be of size about O(X1/5)). The error term in (83) comes from the

contribution of the m 6 max{y, z} and is handled with the inequality (22).
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7.4 Type I sums
A direct application of Lemma 6.1 to the inner sum of (84) leads to the upper bound

∑

k6X/bc

λf (kbc)e(kbcα)�ε (bc)2ελ∗f (bc)

(
X

bc

)(1/2)+ε

,

after using standard bounds for the arithmetical functions involved. Inserting this bound in (84)
and writing m := bc we obtain

T1(X,α)�ε X
(1/2)+ε(yz)ε

∑

m6yz

d(m)λ∗f (m)

m1/2

�ε (Xyz)(1/2)+ε (86)

by Theorem A, Proposition 5.1, and partial summation.

7.5 Type II sum
Now we come to the most delicate part of the proof which is the estimation of the type II sum.
Introducing the notation

β` :=
∑

b|`
b>y

µ(b),

we see that
T2(X,α) =

∑

`

β`
∑

c>z
`c6X

µ(c)λf (c`)e(αc`)

and β` satisfies the bound
|β`| 6 d(`). (87)

Now we introduce two parameters L and C which will be chosen later subject to

L > y, C > z and LC 6 X. (88)

We split the sum T2(X,α) into O((logX)2) many dyadic pieces of the form

T2(C,L, α) =
∑

`∼L
β`
∑

c∼C
µ(c)λf (c`)e(αc`),

where the variables ` and c satisfy the extra condition

c` 6 X. (89)

This extra condition is sometimes superfluous but allows us to suppress the dependence on X
in the notation. By the Cauchy–Schwarz inequality we have

|T2(C,L, α)|2 6

(∑

`∼L
|β`|2

)
A(C,L, α), (90)

where
A(C,L, α) :=

∑

`∼L

∣∣∣∣
∑

c∼C
µ(c)λf (c`)e(αc`)

∣∣∣∣
2

,

with the extra constraint (89). By (87) and (66),
∑

`∼L
|β`|2 � L(log 2L)3, (91)
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where the implied constant is absolute. Now it remains to estimate A(C,L, α) and we can give
a non-trivial bound as long as α is not close to rationals with small denominators. Precisely, we
prove the following theorem.

Theorem 7.1. Let f be a Hecke–Maass cusp form of level one. Suppose α is a real number and
a/q is any rational number written as a reduced fraction such that

∣∣∣∣α−
a

q

∣∣∣∣ 6
1

q2
. (92)

Then there are absolute constants K and K ′ > 0, and for all ε > 0 a constant C(ε), such that

A(C,L, α) 6 C(ε)C2L5/6(CL)ε +K ′(C3/2L+ C2Lq−1/2 + C3/2L1/2q1/2)(log(2CL))K ,

uniformly for all C, L and X > 1.

Remark. To test the strength of Theorem 7.1, we first give a trivial bound of A(C,L, α). By L,
we now denote

L := log 2CL(� log 2X).

We have

A(C,L, α) 6 C
∑

`∼L

∑

c∼C
|λf (c`)|2

� C
∑

CL<m64CL

d(m)λ2
f (m)

�f C
2LL2,

by Cauchy’s inequality, (21) and (66). Hence the theorem is useful if we have C, L and q satisfying
the inequalities: C and L > (CL)ε and LK1 6 q 6 (CL)L−K1 , where K1 is an explicit constant.
Now we give a proof of Theorem 7.1.

Proof. Throughout the proof, K will denote an unspecified but effective constant the value of
which may change in different occurrences. Expanding squares and inverting summations, we
can write

A(C,L, α) =
∑ ∑

c1,c2∼C
µ(c1)µ(c2)

∑

`∼L
λf (c1`)λf (c2`)e(α(c1 − c2)`), (93)

where ` satisfies the extra inequality

` 6 min{X/c1, X/c2}. (94)

We first consider the diagonal Adiag(C,L, α) corresponding to the contribution of the terms
satisfying c1 = c2 in (93). The argument in the above remark shows that there exists an absolute
and positive constant K such that

Adiag(C,L, α)� CLLK , (95)

uniformly for α real, C, L and X > 1.
The off-diagonal part of the sum A(C,L, α) (see (93)) is given by

Aoffdiag(C,L, α) :=
∑∑

c1,c2∼C
c1 6=c2

µ(c1)µ(c2)
∑

`∼L
λf (`c1)λf (`c2)e(α(c1 − c2)`),
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where ` satisfies (94). Let γ = (c1, c2). We apply (63) with the choice m = c1`, n = c2`. This
gives the equality

Aoffdiag(C,L, α) =
∑

γ62C

∑∑

c1,c2∼C
c1 6=c2

(c1,c2)=γ

µ(c1)µ(c2)
∑

`∼L

∑

d|`γ

λf (`2c1c2/d
2)e(α(c1 − c2)`),

where ` satisfies (94). Let us further factorize the variables by introducing

c′1 = c1γ
−1 and c′2 = c2γ

−1,

and
(γ, d) := δ, d := δd′ and ` := d′ν. (96)

Note also the equivalences

d|`γ ⇐⇒ d

(γ, d)

∣∣∣∣
γ

(γ, d)
· ` ⇐⇒ d

(γ, d)

∣∣∣∣`.

Thus we have,

Aoffdiag(C,L, α) =
∑

γ

µ2(γ)
∑ ∑

1<c′1,c
′
2∼Cγ−1

(γ,c′1c
′
2)=(c′1,c

′
2)=1

µ(c′1c
′
2)

×
∑

δ|γ

∑

(d′,γδ−1)=1

∑

ν∼Ld′−1

λf

(
c′1c
′
2γ

2

δ2
· ν2

)
e(αγd′(c′1 − c′2)ν), (97)

where ν satisfies the inequality

ν 6 min{X/(γc′1d′), X/(γc′2 d′)}. (98)

Let D′ = D′(C,L)(< L) be a parameter to be fixed later. We split the sum Aoffdiag(C,L, α) into

Aoffdiag(C,L, α) = Aoffdiag
<D′ (C,L, α) +Aoffdiag

>D′ (C,L, α), (99)

according to whether d′ < D′ or d′ > D′ in the sum (97). By Lemma 6.4, we obtain the upper
bound

Aoffdiag
<D′ (C,L, α)� (CL)ε

∑

γ

µ2(γ)
∑ ∑

1<c′1,c
′
2∼Cγ−1

(γ,c′1c
′
2)=(c′1,c

′
2)=1

µ2(c′1c
′
2)

×
∑

δ|γ

∑

(d′,γδ−1)=1
d′<D′

λ∗f
2

(
c′1c
′
2γ

2

δ2

)
(L/d′)3/4+ε. (100)

By Lemma 5.2(c), we know that λ∗f
2(c′1c

′
2γ

2/δ2) 6 λ∗f
2(c′1c

′
2γ

2). Furthermore, each c 6 4C2 has
O(Cε) ways of being written as c = c′1c

′
2γ

2, with c′1, c′2 squarefree and coprime. Using these
remarks, we simplify (100) into

Aoffdiag
<D′ (C,L, α)� D′

1/4
L3/4(CL)ε

∑

c64C2

d(c)λ∗f
2(c). (101)

It remains to note the inequality λ∗f
2(m) 6 λ∗f

4(m) to apply (68) to finally deduce the following
bound valid for every ε > 0,

Aoffdiag
<D′ (C,L, α)�ε C

2D′
1/4
L3/4(CL)ε, (102)
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É. Fouvry and S. Ganguly

uniformly for C, D′, L and X > 1. The above bound is useful when D′ is small. When D′ is

very close to L, we recover the trivial bound Aoffdiag(C,L, α) � C2LLK . In that situation we

will benefit from the cancellation of additive characters in a long sum over the variable d′.
The goal now is to give an upper bound for Aoffdiag

>D′ (C,L, α). We start from the
expressions (97) and (99) and rewrite as

Aoffdiag
>D′ (C,L, α) =

∑

γ

µ2(γ)
∑ ∑

1<c′1,c
′
2∼Cγ−1

(γ,c′1c
′
2)=(c′1,c

′
2)=1

µ(c′1c
′
2)

×
∑

δ|γ

∑

ν

λf

(
c′1c
′
2γ

2

δ2
· ν2

) ∑

(d′,γδ−1)=1
d′>D′,d′∼L/ν

e(αγ d′(c′1 − c′2)ν) (103)

where d′ now verifies the extra condition (see (89))

d′ 6 min{X/(γνc′1), X/(γνc′2)}. (104)

In the expression (103), the variable d′ is not smooth completely, because of the coprimality
condition (d′, γδ−1) = 1. Capturing the coprimality condition by the Möbius function, we write
(103) as

Aoffdiag
>D′ (C,L, α) =

∑

γ

µ2(γ)
∑ ∑

1<c′1,c
′
2∼Cγ−1

(γ,c′1c
′
2)=(c′1,c

′
2)=1

µ(c′1c
′
2)

×
∑

δ|γ

∑

ν

λf

(
c′1c
′
2γ

2

δ2
· ν2

) ∑

u|γδ−1

µ(u)
∑

d′′>D′/u
d′′∼L/νu

e(αγν(c′1 − c′2)ud′′), (105)

where now (104) is replaced by

d′′ 6 min{X/(γνc′1u), X/(γνc′2u)}. (106)

Taking absolute values, extending the summation over all u|γ and changing δ 7→ γδ−1, we deduce
from (105) the inequality

|Aoffdiag
>D′ (C,L, α)|6

∑

γ

µ2(γ)
∑ ∑

1<c′1,c
′
2∼Cγ−1

(γ,c′1c
′
2)=(c′1,c

′
2)=1

µ2(c′1c
′
2)
∑

u|γ

µ2(u)

×
∑

δ|γ

∑

ν

|λf (c′1c
′
2δ

2ν2)|
∣∣∣∣
∑

d′′>D′/u
d′′∼L/νu

e(αγν(c′1 − c′2)ud′′)

∣∣∣∣, (107)

with the constraint (106) for the variable d′′. We now split the ranges of variations of the variables

γ, c′1, c′2, u and ν in the right-hand side of (107) into dyadic segments,

γ ∼ Γ, c′1 ∼ C ′1, c′2 ∼ C ′2, u ∼ U and ν ∼ N . (108)
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We denote by A(Γ, C ′1, C
′
2, U,N ) the corresponding contribution. The number of these subsums

is O(L5). Note that we have

ΓC ′1 � ΓC ′2 � C, U 6 Γ, L/N > D′/2. (109)

To condense the notation, we define

m := γνu(c′1 − c′2). (110)

Using the well-known bound for sums of additive characters, we have

A(Γ, C ′1, C
′
2, U,N )�

∑

16|m|6M

g(m) min

(
L

NU , ‖αm‖
−1

)
, (111)

where
M = 16ΓC ′1UN , (�CUN ), (112)

and g(m) is the weight function

g(m) :=
∑

γ

∑

c′1

∑

c′2

µ2(c′1c
′
2γ)
∑

u|γ

∑

δ|γ

∑

ν

|λf (c′1c
′
2δ

2ν2)|, (113)

where the variables (γ, c′1, c
′
2, u, ν) also satisfy (108) and (110). Now we recall the following

classical lemma (see [IK04, p. 346], for instance).

Lemma 7.1. The inequality
∑

|m|6M

min(N, ‖αm‖−1)� (M +N +MNq−1 + q) log 2q

holds uniformly for M and N > 1, α real, and any rational number a/q satisfying (92).

To apply Lemma 7.1 to (111), we first apply the Cauchy–Schwarz inequality with the view
to taking advantage of the fact that although the size of the coefficients g(m) may be difficult
to control, the ‖ · ‖2-norm of this sequence can still be estimated by the results of § 5. By the
Cauchy–Schwarz inequality we obtain

A(Γ, C ′1, C
′
2, U,N )

�
(

L

NU

)1/2

·
( ∑

16|m|6M

g2(m)

)1/2

·
(
M +

L

NU +
LM

qNU + q

)1/2

(log(2q))1/2. (114)

By Lemma 5.2 and the coprimality conditions of the variables c′1 and c′2, we get the inequalities

|λf (c′1c
′
2δ

2ν2)| 6 λ∗f (c′1c
′
2)λ∗f (δ2ν2)

6 λ∗f (c′1)λ∗f (c′2)λ∗f (γ2ν2)

6 d(γν)λ∗f (c′1)λ∗f (c′2)λ∗f
2(γν).

Inserting this bound into the definition (113), we obtain the inequality

g(m) 6
∑∑∑

u,γ,ν
uγν|m

d(γν)λ∗f
2(γν)

∑

c′1

λ∗f (c′1)λ∗f (c′1 +m/(uγν)).
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By the Cauchy–Schwarz inequality applied to the sum in c′1 (recall that we have |m/(uγν)| � C ′2)

and by (68), we get the upper bound

g(m)� C ′1LK
∑∑∑

u,γ,ν
uγν|m

d(γν)λ∗f
2(γν)

� λ∗f
2(m)C ′1LK

∑∑∑

u,γ,ν
uγν|m

d(γν)

� d5(m)λ∗f
2(m)C ′1LK ,

by using Lemma 5.2(c) and trivial bound on the divisor functions. By the above inequality, we

have

∑

16|m|6M

g2(m)� C ′21 LK
∑

16|m|6M

d10(m)λ∗f
4(m)

� C ′21 MLK

� C ′31 UΓNLK , (115)

the last lines being consequences of Proposition 5.1 and the definition (112) of M . Inserting (115)

in (114), we get the inequality

A(Γ, C ′1, C
′
2, U,N )� C ′1

3/2
L1/2Γ1/2 ·

(
M +

L

NU +
LM

qNU + q

)1/2

LK . (116)

We must take the supremum of the right-hand side of (116) under the constraints (109) and (112).

We easily obtain

A(Γ, C ′1, C
′
2, U,N )� (C3LΓ−2)1/2

(
CUN + L+

CL

q
+ q

)1/2

LK

� (C3LΓ−2)1/2

(
CLD′−1Γ + L+

CL

q
+ q

)1/2

LK .

By summing over all these subsums we have that if α satisfies (92), then there exists an absolute

constant K > 0 such that

Aoffdiag
>D′ (C,L, α)� (C2LD′−1/2 + C3/2L+ C2Lq−1/2 + C3/2L1/2q1/2)LK , (117)

uniformly for C, L > 1 and 1 6 D′ 6 L.

Recall that we had divided the sum A(C,L, α) into

A(C,L, α) = Adiag(C,L, α) +Aoffdiag
<D′ (C,L, α) +Aoffdiag

>D′ (C,L, α). (118)

Using (95), (102) and (117) in (118) and giving the value L1/3 to the parameter D′ we complete

the proof of Theorem 7.1. 2
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7.6 The finishing touches
By (90), (91), and Theorem 7.1, we have the inequalities

|T2(C,L, α)|2 � LL3A(C,L, α)

�ε C
2L11/6(CL)ε + (C3/2L2 + C2L2q−1/2 + C3/2L3/2q1/2)LK ,

for any ε > 0 and for some absolute constant K > 0. Therefore, we have the inequality

T2(X,α)�ε y
−1/12X1+ε + (z−1/4X + q−1/4X + q1/4X3/4)(logX)K , (119)

by summing over the dyadic segments (see (88)). Recall that here we are considering only those
α for which any rationals a/q, (a, q) = 1 satisfying (74), also satisfy X/Q < q 6 Q, where
Q = X exp(−(c1/3)

√
logX). To be precise, we make the choices y = z = X1/5, and this gives

the upper bound
T2(X,α)� X exp

(
− c1

13

√
logX

)
,

where the implied constant is absolute. This, together with (83) and (86), proves Theorem 1.1.
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MA, 2004), 419–440.

MS06 S. D. Miller and W. Schmid, Automorphic distributions, L-functions, and Voronoi summation
for GL(3), Ann. of Math. (2) 164 (2006), 423–488.

MV07 H. L. Montgomery and R. C. Vaughan, Multiplicative number theory I. Classical theory,
Cambridge Studies in Advanced Mathematics, vol. 97 (Cambridge University Press, Cambridge,
2007).

Mur85 M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1985),
431–446.

MS02 M. R. Murty and A. Sankaranarayanan, Averages of exponential twists of the Liouville functions,
Forum Math. 14 (2002), 273–291.

Per82 A. Perelli, On the prime number theorem for the coefficients of certain modular forms, in
Elementary and analytic theory of numbers, Banach Center Publications, vol. 17 (PWN, Warsaw,
1982), 405–410.

Ran39 R. A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical
functions. I. The zeros of the function

∑∞
n=1 τ(n)/ns on the line <s = 13/2. II. The order of the

Fourier coefficients of integral modular forms, Math. Proc. Cambridge Philos. Soc. 35 (1939),
357–372.

796

https://doi.org/10.1112/S0010437X13007732 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007732


Strong orthogonality and cusp forms

Ran73 R. A. Rankin, An Ω result for coefficients of cusp forms, Math. Ann. 103 (1973), 239–250.

Ran85 R. A. Rankin, Sum of powers of cusp form coefficients. II, Math. Ann. 272 (1985), 593–600.
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