We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.
Most read
This page lists the top ten most read articles for this journal based on the number of full text views and downloads recorded on Cambridge Core over the last 30 days. This list is updated on a daily basis.
We prove a generalization of the author’s work to show that any subset of the primes which is ‘well distributed’ in arithmetic progressions contains many primes which are close together. Moreover, our bounds hold with some uniformity in the parameters. As applications, we show there are infinitely many intervals of length $(\log x)^{{\it\epsilon}}$ containing $\gg _{{\it\epsilon}}\log \log x$ primes, and show lower bounds of the correct order of magnitude for the number of strings of $m$ congruent primes with $p_{n+m}-p_{n}\leqslant {\it\epsilon}\log x$.
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus 1 curves over function fields admit no points over the perfect closure of the base field) and use it to show that any non-Jacobian elliptic structure on a very general supersingular K3 surface has no purely inseparable multisections. We also describe specific examples of genus 1 fibrations on supersingular K3 surfaces without purely inseparable multisections.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
We prove the Kawamata–Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic $p>5$. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic $p>5$ are rational. We show that these theorems are sharp by providing counterexamples in characteristic $5$.
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a consequence, we give a local proof of the $l \neq p$ Breuil–Mézard conjecture of the author, in the tame case.
We show that the maximum likelihood degree of a smooth very affine variety is equal to the signed topological Euler characteristic. This generalizes Orlik and Terao’s solution to Varchenko’s conjecture on complements of hyperplane arrangements to smooth very affine varieties. For very affine varieties satisfying a genericity condition at infinity, the result is further strengthened to relate the variety of critical points to the Chern–Schwartz–MacPherson class. The strengthened version recovers the geometric deletion–restriction formula of Denham et al. for arrangement complements, and generalizes Kouchnirenko’s theorem on the Newton polytope for nondegenerate hypersurfaces.
Let $G$ be a connected split reductive group over a finite field $\mathbb{F}_{q}$ and $X$ a smooth projective geometrically connected curve over $\mathbb{F}_{q}$. The $\ell$-adic cohomology of stacks of $G$-shtukas is a generalization of the space of automorphic forms with compact support over the function field of $X$. In this paper, we construct a constant term morphism on the cohomology of stacks of shtukas which is a generalization of the constant term morphism for automorphic forms. We also define the cuspidal cohomology which generalizes the space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined by V. Lafforgue.
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero non-archimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy with the use of generic points in scheme theory. As an application, we develop a six-functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-behaved theory of perverse sheaves.