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Level-raising and symmetric power
functoriality, I

Laurent Clozel and Jack A. Thorne

Abstract

As the simplest case of Langlands functoriality, one expects the existence of the
symmetric power Sn(π), where π is an automorphic representation of GL(2,A) and A
denotes the adeles of a number field F . This should be an automorphic representation
of GL(N,A) (N = n+ 1). This is known for n = 2, 3 and 4. In this paper we show how
to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur
representations’, combined with expected results on level-raising, as well as another case
(a particular tensor product) of Langlands functoriality. Our methods assume F totally
real, and the initial representation π of classical type.

1. Introduction

The purpose of this paper is to shed new light on functoriality for regular, algebraic automorphic
representations over CM fields which satisfy a self-duality condition. We formulate three
conjectures. The first, Conjecture 3.1, asserts that one can find congruences between algebraic
modular forms on unitary groups of a certain type. This is a natural generalization of several
results going back to a theorem of Ribet (see [Rib84]) concerning elliptic modular forms, and is
closely related to the conjectural ‘Ihara’s lemma’ of [CHT08].

The other two conjectures are specific instances of Langlands functoriality, essentially the
tensor product GL2×GLn→ GL2n and the symmetric power GL2→ GLn+1 for the automorphic
representations under consideration here; see Conjectures 3.2 and 3.3, respectively. Our main
theorem (Theorem 3.4) gives a specific relation between this family of conjectures. As a particular
application, we can prove the following theorem.

Theorem 1.1. Let π be a regular algebraic automorphic representation of GL2(AQ), which is
not automorphically induced from a quadratic extension. Then (cf. § 3.4 below):

(1) Assume Conjecture 3.1 below. Then for each odd integer 1 6 n 6 25, the nth symmetric
power lifting of π exists, as an automorphic representation of GLn+1(AQ).

(2) Assume Conjectures 3.1 and 3.2 below. Then for each integer n > 1, the nth symmetric
power lifting of π exists, as an automorphic representation of GLn+1(AQ).

We refer the reader to § 3 for a detailed description of our results. We begin in § 2 by
recalling some background material on automorphic representations and their attached Galois
representations. The proof of Theorem 3.4 occupies §§ 4–5.
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L. Clozel and J. A. Thorne

In a sequel to this paper [CT], we will prove some cases of level-raising, closely related to
Conjecture 3.1, and apply this to the automorphy of symmetric powers, following the program
outlined here. Since these two papers are essentially self-contained, the reader will find some
unavoidable duplication in the material. On the other hand, we have have also referred to some
proofs from the second paper, in particular in § 2. We apologise for the possible inconvenience.

2. Automorphic forms

2.1 GLn
Let p be a prime, and let K be a finite extension of Qp. Let Ω denote an algebraically closed
field of characteristic zero. Denote by AdmΩ GLn(K) the set of isomorphism classes of irreducible
admissible representations of this group over Ω, and by WDn

ΩWK the set of Frobenius-semisimple
Weil–Deligne representations (r,N) of WK valued in GLn(Ω). There is a bijection

recK : AdmC GLn(K)↔WDn
CWK ,

characterized by a certain equality of ε- and L-factors on either side; cf. [Hen02, HT01]. We define
recTK(π) = recK(π| · |(1−n)/2). This is the normalization of the local Langlands correspondence
with good rationality properties; in particular, for any σ ∈ Aut(C) and any π ∈ AdmC GLn(K)
there is an isomorphism

recTK(σπ) ∼= σrecTK(π).

This can be seen using, for example, the characterization of recK and the description given in
[Tat79, § 3] of the action of Galois on local ε- and L-factors. It follows that for any Ω we can
define a canonical bijection

recTK : AdmΩ GLn(K)↔WDn
ΩWK .

Suppose instead that K is a finite extension of R. Write AdmC GLn(K) for the set
of infinitesimal equivalence classes of irreducible admissible representations of GLn(K) and
RepnCWK for the set of continuous semisimple representations of WK into GLn(C). Then there
is a bijection (Langlands’ normalization):

recK : AdmC GLn(K)↔ RepnCWK .

We define recTK(π) = recK(π| · |(1−n)/2).
Now suppose that E is an imaginary CM field with totally real subfield F , and let

c ∈ Gal(E/F ) denote the non-trivial element.

Definition 2.1. (1) We say that an automorphic representation π of GLn(AE) is RACSDC
(regular algebraic, conjugate self-dual, cuspidal) if it satisfies the following conditions.

• It is conjugate self-dual: πc ∼= π∨.

• It is cuspidal.

• It is regular algebraic. By definition, this means that for each place v|∞ of E, the
representation recTEv(πv) is a direct sum of pairwise distinct algebraic characters.

(2) We say that a pair (π, χ) consisting of an automorphic representation π of GLn(AE) and
a character χ : F×\A×F → C× is RAECSDC (regular algebraic, essentially conjugate self-dual,
cuspidal) if it satisfies the following conditions.

• It is essentially conjugate self-dual: πc ∼= π∨ ⊗ χ ◦ NE/F .
• π is cuspidal.
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Level raising and symmetric power functoriality, I

• π is regular algebraic.

• χ is an algebraic character such that χv(−1) = (−1)n for each place v|∞.

(3) We say that a pair (π, χ) consisting of an automorphic representation π of GLn(AF ) and
a character χ : F×\A×F → C× is RAESDC (regular algebraic, essentially self-dual, cuspidal) if it
satisfies the following conditions.

• It is essentially self-dual: π ∼= π∨ ⊗ χ.

• π is cuspidal.

• π is regular algebraic. By definition, this means that for each place v|∞, the representation
recTFv(πv)|C× is a direct sum of pairwise distinct algebraic characters.

• χ is an algebraic character such that χv(−1) is independent of the place v|∞.

If π is a regular algebraic cuspidal automorphic representation of GLn(AE), then for each
embedding τ : E ↪→ C, we are given a representation rτ : C× → GLn(C), induced by recEv(πv),
where v is the infinite place induced by τ , and the isomorphism E×v

∼= C× induced by τ . There
exists (cf. [Clo90, Lemma 4.9]) an integer w ∈ Z such that this representation has the form

rτ (z) = (zaτ,1zw−aτ,1 , . . . , zaτ,nzw−aτ,n),

where aτ,i ∈ (n−1)/2 +Z and aτ,1 > · · · > aτ,n. (Note that w = 0 if and only if π is unitary; this
will be the case if π is conjugate self-dual.) We will refer to the tuple a = (aτ,1, . . . , aτ,n)τ∈Hom(E,C)

as the infinity type of π. We also define a tuple λ = (λτ )τ∈Hom(E,C) = (λτ,1, . . . , λτ,n)τ∈Hom(E,C),
which we call the weight of π, by the formula λτ,i = −aτ,n+1−i + (n − 1)/2 − (n − i). Then for
each τ : E ↪→ C, we have λτ,1 > · · · > λτ,n, and the irreducible admissible representation of
GLn(C) corresponding to rτ has the same infinitesimal character as the dual of the algebraic
representation of GLn(C) with highest weight λτ . If π is a regular algebraic cuspidal automorphic
representation of GLn(AF ), then for each embedding F ↪→ C, we get a representation rτ =
recFv(πv)|C× , where v is the place of F corresponding to τ . In this case we use the same formulae
to define the infinity type and the weight of π.

We will also have cause to consider representations which are not cuspidal. Suppose that
σ1, σ2 are conjugate self-dual cuspidal automorphic representations of GLn1(AE),GLn2(AE),
respectively, and that Σ = σ1 � σ2 is regular algebraic. Then the representations σi| · |(ni−n)/2

are regular algebraic. We call a representation Σ arising in this way a RACSD sum of cuspidal
representations. In this case, define ai = (aiτ )τ∈Hom(E,C) by the requirement that (aiτ,1+(ni−n)/2,
. . . , aiτ,ni + (ni − n)/2) equal the infinity type of σi| · |(ni−n)/2, and define b = (bτ )τ∈Hom(E,C) by
the formula

(bτ,1, . . . , bτ,n) = (a1
τ,1, . . . , a

1
τ,n1

, a2
τ,1, . . . , a

2
τ,n2

).

Let Sn denote the symmetric group on {1, . . . , n}. There is a unique tuple w = (wτ )τ∈Hom(E,C) ∈
S

Hom(E,C)
n such that for each τ ∈ Hom(E,C),

bτ,wτ (1) > · · · > bτ,wτ (n).

The infinity type of Σ is defined to be (bτ,wτ (1), . . . , bτ,wτ (n))τ∈Hom(E,C).

Theorem 2.2. (1) Let π be a RACSD sum of cuspidals or a RAECSDC automorphic
representation of GLn(AE), and fix an isomorphism ι : Ql

∼= C. Then there exists a continuous
semisimple representation

rι(π) : GE → GLn(Ql)
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satisfying the following property: for every finite place v of E not dividing l, there is an
isomorphism

WD(rι(π)|GEv )F-ss ∼= recTEv(ι
−1πv).

For each place v of E dividing l, rι(π)|GEv is de Rham, and if τ : Ev ↪→ Ql is an embedding then
the Hodge–Tate weights with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

(2) Let (π, χ) be a RAESDC automorphic representation of GLn(AF ), and fix an isomorphism
ι : Ql

∼= C. Then there exists a continuous semisimple representation

rι(π) : GF → GLn(Ql)

satisfying the following property: for every finite place v of F not dividing l, there is an
isomorphism

WD(rι(π)|GFv )F-ss ∼= recTFv(ι
−1πv).

For each place v of F dividing l, rι(π)|GFv is de Rham, and if τ : Fv ↪→ Ql is an embedding then
the Hodge–Tate weights with respect to this embedding are

HTτ (rι(π)) = {−aι−1τ,1 + (n− 1)/2, . . . ,−aι−1τ,n + (n− 1)/2}.

Proof. This theorem is due to many people, including Kottwitz, L.C., Harris, Taylor and Shin.
We give references for the case of a RACSDC automorphic representation π, from which the
others can be deduced. In this case the existence of the representation rι(π) is proved in [CH13,
Theorem 3.2.3]. The strong form of local-global compatibility is proved in [Car12]. See also
[BGGT14, Theorem 2.1.1]. 2

Lemma 2.3. Let π be one of the above types of automorphic representations, and fix an
isomorphism ι : Ql

∼= C. Let σ be a continuous automorphism of Ql. Then ισι−1
π is defined,

by [Clo90, Theorem 3.13]. There are isomorphisms

rι(
ισι−1

π) ∼= rισ(π) ∼= σrι(π).

Proof. This follows from local-global compatibility, the rationality of the local Langlands
correspondence for GLn, and the Chebotarev density theorem. 2

We will use the following convention for residual representations. If L is a number field and
ρ : GL→ GLn(Ql) is a continuous representation, then after choosing an invariant lattice, defined
over a finite extension of Ql, we obtain by reduction modulo l a residual representation valued in
GLn(Fl). By the Brauer–Nesbitt principle, the semisimplification of this representation depends,
up to isomorphism, only on ρ, and will be denoted ρ : GL → GLn(Fl).

2.2 Ordinary forms
We recall that deformation theory in the context of ordinary, conjugate self-dual automorphic
representations has been studied by Geraghty [Ger]. Let L = E or F . If π is a regular
algebraic automorphic representation of GLn(AL) of infinity type a and weight λ, we define
Hecke operators U jλ,v as follows at primes v above l. They depend on a choice of isomorphism
ι : Ql

∼= C, which we fix for the rest of this section, as well as a choice of uniformizer $v

of OLv . Let Iwc(v) ⊂ GLn(OLv) be the subgroup of matrices whose reduction modulo $c
v is an
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Level raising and symmetric power functoriality, I

upper-triangular matrix with 1’s on the diagonal. Define a matrix

αjv = diag($v, . . . , $v︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

),

and set

U jλ,v =
∏
τ

ι−1τ($v)
−(λτ,n+···+λτ,n+1−j)[Iwc(v)αjv Iwc(v)].

Here the product runs over embeddings τ : L ↪→ C such that ι−1τ induces the place v of L. If
πv is an admissible representation of GLn(Lv) over C, then the operator U jλ,v acts on ι−1π

Iwc(v)
v .

We note that by [Ger, Lemma 2.3.3], the Hecke operators U jλ,v commute with the inclusions
ι−1π

Iwc(v)
v → ι−1π

Iwc′ (v)
v when c′ > c. It therefore makes sense to omit c from the notation

defining U jλ,v. We also write Tc(v) ⊂ Iwc(v) for the group of diagonal matrices with integral
entries which are congruent to 1 modulo $c

v, ev for the absolute ramification index of Lv, fv for
the absolute residue degree, and val : Q×l → Q for the valuation such that val(l) = 1.

Definition 2.4. Let π be a regular algebraic automorphic representation of GLn(AL) of weight
λ. We say that π is ι-ordinary if for each place v of L dividing l, there exist an integer c > 1 and a
line inside ι−1π

Iwc(v)
v which is invariant under each operator U jλ,v, and such that the eigenvalues

of these operators on this line are all l-adic units.

Lemma 2.5. Let π be a regular algebraic automorphic representation of GLn(AL), and let v be
a place of L dividing l.

(1) If L = E and π is RACSDC, then the eigenvalues of U jλ,v on ι−1π
Iwc(v)
v are integral.

(2) Let πv,N denote the normalized Jacquet module with respect to the standard Borel
subgroup, and suppose that π

Tc(v)
v,N 6= 0. Then ι−1πv is a subquotient of a representation σ =

n-IndGLn
B α1⊗· · ·⊗αn, for some characters αi : L×v → Q×l such that val(α1($v)) 6 val(α2($v)) 6

· · · 6 val(αn($v)). If π is ι-ordinary, then val(α1($v)) < · · · < val(αn($v)) and ι−1πv is the
unique generic subquotient of σ.

Conversely, if val(α1($v))< · · ·< val(αn($v)) and πv is generic, let ujλ,v denote an eigenvalue
of U jλ,v with smallest valuation. Then ujλ,v 6= 0 is unique and there is a unique line inside ι−1π

Iwc(v)
v

where U jλ,v acts with eigenvalue ujλ, j = 1, . . . , n. Finally, we have

val(αj($v)) = val(ujλ/u
j−1
λ )− 1/ev

∑
τ

aτ,j ,

the sum being over embeddings τ : L ↪→ C such that ι−1τ induces the place v of L.

Proof. The first part follows from Proposition 2.9, Theorem 2.7, and Lemma 2.10. For the second
part, we note as in the proof of [Ger, Lemma 5.1.3] that there is, for any admissible representation
σ of GLn(Lv) over Ql, a surjection pσ : σIwc(v)→ σ

Tc(v)
N , where σN denotes the normalized Jacquet

module. The kernel of this map is given by the subspace where some operator U jλ,v does not act
invertibly, and we have the formula for all x ∈ σIwc(v):

pσ(U jλ,vx) = q
∑j
i=1(n−1)/2−(i−1)

v

∏
τ

ι−1τ($v)
−

∑j
i=1 λτ,n+1−ipσ(x).

In particular, if π
Tc(v)
v,N 6= 0, as in the statement of the lemma, then ι−1πv is a subquotient

of a representation σ = n-IndGLn
B α1 ⊗ · · · ⊗ αn, and σss

N = ⊕w∈Snαw(1) ⊗ · · · ⊗ αw(n). The
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characters α1, . . . , αn are uniquely determined, up to permutation, and we suppose that they
have been chosen so that val(α1($)) 6 · · · 6 val(αn($)).

We may decompose ι−1π
Iwc(v)
v under the algebra Ql[U

1
λ,v, . . . , U

n
λ,v] as the direct sum of the

simultaneous generalized eigenspaces of these operators; the sum of the eigenspaces corresponding
to a tuple of non-zero eigenvalues is mapped isomorphically onto ι−1π

Tc(v)
v,N . The tuples appearing

in σss
N have the form( j∏

i=1

[
q(n−1)/2−(i−1)
v

∏
τ

ι−1τ($v)
−λτ,n+1−iαw(i)($v)

])n
j=1

,

the jth entry having valuation
∑j

i=1(val(αw(i)($v)) + 1/ev
∑

τ aτ,i). If π is ι-ordinary then there
exists w ∈ Sn such that

∑j
i=1(val(αw(i)($v)) + 1/ev

∑
τ aτ,i) = 0 for each j = 1, . . . , n, and

hence val(αw(j)($v)) = −1/ev
∑

τ aτ,j for each j = 1, . . . , n. This implies that w = 1 and the
val(αj($v)) are distinct.

Suppose now that π is not necessarily ι-ordinary, but that the val(αj($v)) are distinct. After
the Zelevinsky classification [Zel80], the Jordan–Hölder factors of the representation σ appear
with multiplicity one, and σ has a unique generic subquotient ρ, characterized by the following
condition: ρss

N is a direct sum of those characters αr1 ⊗ · · · ⊗ αrn such that if αri = | · |αrj , some
1 6 i, j 6 n, then i < j. If αi = | · |αj then val(αi($v)) = −fv + val(αj($v)), and hence i < j.
This certainly holds for the character α1 ⊗ · · · ⊗ αn, which shows that if π is ι-ordinary then
πv is generic. Conversely, if πv is generic then the character α1 ⊗ · · · ⊗ αn appears in ι−1πv,N .
It follows that there is a unique line inside ι−1π

Iwc(v)
v where the operators U jλ,v act with their

eigenvalue ujλ,v of minimal valuation

val(ujλ,v) =

j∑
i=1

(
val(αi($v))− 1/ev

∑
τ

aτ,i

)
.

This completes the proof of the lemma. 2

Lemma 2.6. Suppose that π1, π2 are cuspidal conjugate self-dual automorphic representations of
GLn1(AE) and GLn2(AE), respectively, where n1 + n2 = n. Suppose that Π = π1 � π2 is regular
algebraic. Then the representations πi| · |(ni−n)/2 are regular algebraic, and Π is ι-ordinary if
and only if π1| · |(n1−n)/2, π2| · |(n2−n)/2 are ι-ordinary and the following condition on infinity
types holds: let w = (wτ )τ∈Hom(E,C) ∈ S

Hom(E,C)
n be the element defined in the paragraph before

Theorem 2.2. Then wτ depends only on the place v of E dividing l induced by the embedding
ι−1τ : E ↪→ Ql.

Proof. We first establish some notation. Let v|l be a place of E. Suppose that ι−1π1,v is the

generic subquotient of the representation n-Ind
GLn1
B β1⊗· · ·⊗βn1 , and that ι−1π2,v is the generic

subquotient of the representation n-Ind
GLn2
B γ1⊗· · ·⊗γn2 , where val(β1($v))6 · · ·6 val(βn1($v))

and val(γ1($v)) 6 · · · 6 val(γn2($v)). Let δ1, . . . , δn = β1, . . . , βn1 , γ1, . . . , γn2 . Since π1,v and π2,v

are unitary and generic, Πv is the generic subquotient of a representation n-IndGLn
B α1⊗· · ·⊗αn,

val(α1($v)) 6 · · · 6 val(αn($v)) and {α1, . . . , αn} = {δ1, . . . , δn}.
Similarly, let b, c denote the infinity types of π1 and π2 respectively, and define d by dτ,1,

. . . , dτ,n = bτ,1, . . . , bτ,n1 , cτ,1, . . . , cτ,n2 . If τ : E ↪→ C is an embedding such that ι−1τ induces the
place v of E, then the Weyl group element wτ is defined by the condition that dτ,wτ (i) = aτ,i,
where a is the infinity type of Π.
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We now come to the proof of the lemma. Suppose first that Π is ι-ordinary. Then the

val(αi($v)) = −1/ev
∑

τ aτ,i are distinct. We can therefore define a permutation wv, uniquely

determined by π1 and π2, by the formula δwv(i) = αi. We show that wv = wτ for each τ as above.

Suppose for contradiction that wv 6= wτ for some τ , and let j be minimal with the property that

wv(j + 1) 6= wτ (j + 1) for some τ . Suppose that

{δwv(1), . . . , δwv(j)} = {β1, . . . , βr, γ1, . . . , γs}.

Since Π is ι-ordinary,

min(val(βr+1($v)), val(γs+1($v))) = val(δwv(j+1)) = −1/ev
∑
τ

dτ,wτ (j+1)

=−1/ev
∑
τ

max(bτ,r+1, cτ,s+1).

Suppose that val(βr+1($v)) < val(γs+1($v)). We have val(βi($v)) = −1/ev
∑

τ bτ,i for each

i = 1, . . . , r, so the previous lemma implies that val(βr+1($v)) > −1/ev
∑

τ bτ,r+1, and hence∑
τ max(bτ,r+1, cτ,s+1)6

∑
τ bτ,r+1. Since Π is regular algebraic, for each τ we have bτ,r+1 6= cτ,s+1

so equality holds and wτ (j + 1) = wv(j + 1) = r+ 1. Similarly, if val(βr+1($v)) > val(γs+1($v))

then we deduce that wτ (j + 1) = wv(j + 1) = s+ 1, a contradiction.

We therefore have wv = wτ for each τ , and val(βj($v)) = −1/ev
∑

τ bτ,j , j = 1, . . . , n1, and

val(γj($v)) = −1/ev
∑

τ cτ,j , j = 1, . . . , n2. This implies that π1| · |(n1−n)/2, π2| · |(n2−n)/2 are

ι-ordinary.

Suppose conversely that π1| · |(n1−n)/2, π2| · |(n2−n)/2 are ι-ordinary and that the condition

on infinity types holds. We see that for each j = 1, . . . , n, val(αj($v)) = val(δwv(j)) =

−1/ev
∑

τ dτ,wτ (j) = −1/ev
∑

τ aτ,j . It now follows from Lemma 2.5 that Π is also ι-ordinary. 2

2.3 Soluble base change for GLn
Let E be an imaginary CM field with totally real subfield F . We suppose that L/E is a soluble

CM extension. Recall that the base change πL of a cuspidal representation π of GLn(AE), an

automorphic representation, always exists. We also fix a prime l and an isomorphism ι : Ql
∼= C.

Theorem 2.7. (1) Let π be a RACSDC automorphic representation of GLn(AE), and suppose

that rι(π)|GL is irreducible. Then there exists a RACSDC automorphic representation πL of

GLn(AL) such that rι(π)|GL ∼= πL.

(2) Suppose that ρ : GE → GLn(Ql) is a continuous representation such that ρ|GL is irreducible,

and that there exists a RACSDC automorphic representation Π of GLn(AL) such that

ρ|GL ∼= rι(Π). Then there exists a RACSDC automorphic representation π of GLn(AE)

such that Π ∼= πL.

(3) Let π be a RACSDC automorphic representation of GLn(AE) such that πL is cuspidal.

Then π is ι-ordinary if and only if πL is ι-ordinary.

Proof. For the first part, the existence of πL follows from [AC89, Theorem 4.2]. To see that πL
is cuspidal, we reduce to the case L/E cyclic of prime order. If πL fails to be cuspidal then there

is an isomorphism π⊗ ε ∼= π, where ε is an Artin character associated to L/E. This implies that

rι(π)|GL is reducible, a contradiction. The second part follows from [BGHT11, Lemma 1.4]. The

third part follows from [Ger, Lemma 5.1.6]. 2
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2.4 Definite unitary groups
Let E be an imaginary CM field with totally real subfield F . We now suppose that E/F is
everywhere unramified and that [F : Q] is even. Let G be a unitary group in n variables associated
to the extension E/F , quasi-split at every finite place, such that G(R) is compact. Such a group
exists since [F : Q] is even, and is uniquely determined up to isomorphism. We can choose the
matrix algebra B = Mn(E) and an involution † of B of the second kind, so that G is defined by

G(R) = {g ∈ (B ⊗F R) | g†g = 1}

for any F -algebra R. We may choose an order OB ⊂ B, stable under †, so that OB,w is maximal
for any place w of E split over F . This defines an integral model of G over OF , and for any place
v of F split as v = wwc in E, we can choose an isomorphism

OB ⊗OF OFv ∼= Mn(OEw)×Mn(OEwc ),

such that † acts as (g1, g2) 7→ (g2,
tg1). Projection onto the first factor induces an isomorphism

ιw : G(Fv) → GLn(Ew) such that ιw(G(OFv)) = GLn(OEw).
Let l be a prime, and suppose that every prime of F above l splits in E. Let Sl denote the

set of primes of F above l. We choose a prime ṽ of E above v for each v ∈ Sl, and let S̃l denote
the set of these primes. Then, as above, we are given an isomorphism ιṽ : G(Fv) → GLn(Eṽ). We
write Il for the set of embeddings F ↪→ Ql, and Ĩl for the set of embeddings E ↪→ Ql inducing
an element of S̃l. These two sets are therefore in canonical bijection.

Let K ⊂ Ql be a finite extension of Ql, with ring of integers O and residue field k. We
suppose that K contains the image of E under every embedding E ↪→ Ql. To a tuple λ =
(λτ,1, . . . , λτ,n)

τ∈Ĩl of dominant weights of GLn, we associate a representation Mλ of the group∏
v∈Sl G(OFv) as in [Ger, Definition 2.2.3]. It is an O-lattice inside the representation Wλ =
⊗
τ∈Ĩl(Wλτ ⊗Fv ,τ K), where Wλτ is the algebraic representation of GLn(Fv) of highest weight λτ ,

and v is the place of F induced by τ .
Fix λ and an open compact subgroup U =

∏
v Uv ⊂ G(A∞F ), such that Uv ⊂ G(OFv) for

each v ∈ Sl. Let A be an O-algebra. We can then define a space of automorphic forms with A-
coefficients as follows. By definition, Sλ(U,A) is the set of functions f : G(F )\G(A∞F )→Mλ⊗OA
such that for all u ∈ U , we have f(gu) = u−1

l · f(g). Here ul denotes the projection of u to its∏
v∈Sl G(OFv)-component. The relation with classical automorphic forms is given by the following

result. Let A denote the space of automorphic forms on G(F )\G(A), and let ι : Ql
∼= C be an

isomorphism. There is an algebraic representation Wιλ of G(F ⊗Q R), defined by the formula
⊗
τ∈ĨlWλτ ⊗Fv ,ιτ C.

Proposition 2.8. There is a canonical isomorphism(
lim−→
U

Sλ(U,K)

)
⊗K,ι C ∼= HomG(F⊗QR)(W

∨
ιλ,A).

In particular, for any irreducible subrepresentation σ ⊂ A, we have a canonical subspace
ι−1(σ∞)U ⊂ Sλ(U,Ql).

Proof. This can be proved exactly as in the proof of [CHT08, Proposition 3.3.2]. 2

If π is an automorphic representation of GLn(AE) and σ is an automorphic representation
of G(AF ), we say that π is the base change of σ if for any finite place w of E, the following
condition is satisfied.
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• If w is split over the place v of F , then πw = σv ◦ ιw is the standard base change of σv.

• If w is inert over the place v of F and σv is unramified, then πw is the standard unramified

base change of σv; cf. [Mı́n11, § 4.1].

Proposition 2.9. (1) Suppose that σ is an automorphic representation of G(AF ). Then there

exist a partition n = n1 + · · · + ns and, for each i = 1, . . . , s, a discrete, conjugate self-dual

representation πi of GLni(AE) such that π = π1 � · · ·� πs is the base change of σ in the above

sense.

(2) Suppose that π is a RACSDC automorphic representation of GLn(AE) such that if πw
is ramified, then w is split over F . Then there exists an automorphic representation σ of G(AF )

such that π is the base change of σ in the above sense.

(3) Suppose that π = πa � πb is a RACSD automorphic representation of GLn(AE), where

πa, πb are cuspidal, conjugate self-dual automorphic representations of GLa(AE) and GLb(AE),

respectively. We assume the following hypotheses.

• Let w = (wτ )τ∈Hom(E,C) denote the Weyl group element associated to the infinity types of

πa, πb. For each place v|∞ of F , choose an embedding τ(v) : E ↪→ C inducing v. Then∏
v sgn(wτ(v)) = 1.

• ab is even and a 6= b.

• If πw is ramified then w is split over F .

Then there exists an automorphic representation σ of G(AF ) such that π is the base change of

σ in the above sense.

Proof. The first part follows from [Lab11, Corollaire 5.3]. The second part follows from [Lab11,

Théorème 5.4]. We now prove the third part. We will use arguments given in more detail in the

companion paper [CT], to which we refer in part.

First consider the quasi-split inner form G∗ of G. By [Mok, Theorem 2.5.2], there are

representations σ = ⊗vσv of G∗(AF ) occurring in L2
disc(G

∗(F )\G∗(AF )) such that at any finite

place σv is associated (by standard, i.e. stable, base change) to πv = ⊗w|vπw. Each such

representation σ occurs with multiplicity 1.

In fact, note that π∞ = ⊗w|∞πw determines, for each place v|∞ of F , an L-packet Πv of

discrete series of G∗(Fv). On the other hand, the datum (πa, πb) defines a parameter ψ in the

sense of Arthur and Mok [Mok, § 2.3]. There is an associated finite group Sψ (see [Mok, Definition

1.4.8]); in our case, it is equal to {±1}. There is a pairing, at all Archimedean primes v, between

Sψ and Πv, which determines a sign εψ(σv), σv ∈ Πv (see [Mok, Theorem 2.5.1]).

Now σ = σ∞ ⊗ σ∞ occurs, with multiplicity 1, if and only if∏
v|∞

εψ(σv) = 1.

(We have used the fact that εψ(σv) = 1 for v finite and σv unramified; cf. [Mok, Theorem 2.5.1].

Recall that E/F is, by assumption, everywhere unramified.)
We now want to transfer (some) σ to G(A). The proof is similar to the proof of [CT, Theorem

3.11], but simpler as we do not have to obtain specific local components (different from the
unramified ones) at finite places. Let f∗ = ⊗vf∗v , f = ⊗vfv be decomposed, smooth, compactly
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supported functions on G∗(AF ), G(AF ). By [Art03], we have identities

TG
∗

disc(f
∗) =

∑
E
ι(G∗, E)ST Edisc(f

∗
E ), (1)

TGdisc(f) =
∑
E
ι(G, E)ST Edisc(fE), (2)

where E runs over the endoscopic data for G and G∗. Recall that these are simply the products
U(n1)×U(n2) where n = n1 + n2 and U(m) is the quasi-split unitary group of rank m. In fact,
by a simple argument of separation of eigenvalues for the Hecke algebra, only the groups G∗ and
H = U(a)× U(b) intervene in the calculation; cf. [CT, § 3.8].

The terms on the right are stable traces; the functions f, f∗ determine functions fG∗ , fH and
f∗H on G∗, H. Again, after separation of the Hecke eigenvalues associated to ψ, it is easy to see
that the left-hand side of (1) reduces to the trace in the (ψ-part of) L2

disc(G
∗(F )\G∗(AF )); this

is trivial for the R-anisotropic form.
Since G(Fv) ∼= G∗(Fv) at finite places, we of course take fv = f∗v = (fG∗)v at these places.

The assignments f∗ ; f∗H , f ; fH depend on a choice of transfer factors. At a finite place v,
in order to use Mok’s results, we must use the ‘Whittaker-normalized’ factors; see [Mok] as well
as [CT, § 3.5]. These are the Langlands–Shelstad factors of [LS87], multiplied by a sign ε(V, ψ).
Here (see [CT, § 3.5]), V = VG − VH is a virtual representation of Gal(F v/Fv). If ab is even it is
easy to see that VG = VH . The functions fH , f∗H coincide at finite places.

Consider now the functions fH,∞ and f∗H,∞. The datum (πa, πb) determines by descent an
L-packet Πv(H) of discrete series for H(Fv), for each v|∞; after separation of Hecke eigenvalues,
only representations of H(F∞) of this type occur in the right-hand side of (1) and (2).

Since G(F∞) is compact, the datum of (πa, πb) (with πa � πb RACSD) also determines a
unique irreducible representation σ′∞ = ⊗vσ′v of G(F∞). Let f∞ be a coefficient of σ′∞, with
trσ′(f∞) = 1; let σ = ⊗vσv be a representation of G∗(F∞) in the pertinent L-packet, and fσ a
pseudo-coefficient of σ. As [F : Q] is even, f∞ and ⊗v|∞fσ are associated. Moreover, the functions
fH,∞, f

∗
H,∞ satisfy the identities

〈tr Π∞(H), fH,∞〉 =
∏
v

sgn(wτ(v))〈trσ′∞, f∞〉 = 1,

by our first assumption in the third part of the proposition. This follows from [Clo11] (cf. [CT,
§ 3.6]), on checking that the product of the Langlands–Shelstad transfer factors coincides with
the product of the Kottwitz transfer factors: use the fact that ab and [F : Q] are even.

The other identity is
〈tr Π∞(H), f∗H,∞〉 =

∏
v

εψ(σv);

see [Mok, Theorem 3.2.1]. Now assume that σ∞ = ⊗vσv is a possible factor for G∗. In the
spaces cut out by ψ, the right-hand sides of (1), (2) then coincide term by term, and therefore
σG = σ′∞ ⊗ (⊗v-∞σv) occurs for G. 2

Let U =
∏
v Uv be an open compact subgroup as above, and suppose that there exists an

integer c > 1 such that for each v ∈ Sl, Uv = ι−1
ṽ Iwc(ṽ). For each prime v ∈ Sl, fix a uniformizer

$ṽ of OEṽ , and define the matrix

αjv = diag($ṽ, . . . , $ṽ︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

).
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We define an endomorphism U jλ,v of the space Sλ(U,O) by the formula

U jλ,v =
∏
τ

ι−1τ($ṽ)
−(λτ,n+···+λτ,n+1−j)ι−1

ṽ [Iwc(ṽ)αjv Iwc(ṽ)],

the product running over the embeddings τ : E ↪→ C such that ι−1τ induces the place ṽ of E.
These operators obviously act on Sλ(U,K). In fact, they preserve the integral lattice Sλ(U,O),
by the remark after [Ger, Definition 2.3.1].

Lemma 2.10. If σ is an irreducible subrepresentation of A such that (σ∞)U 6= 0 and σ∞ ∼= W∨ιλ,
then the eigenvalues of U jλ,v on ι−1(σ∞)U are integral.

Proof. This follows immediately from the above remarks. 2

3. Congruences and functoriality

In this section we formulate some conjectures about automorphic forms which are related to
conjugate self-dual Galois representations. Since we mostly take the point of view of Galois
representations, rather than automorphic forms, we formulate these using a Galois-theoretic
language, rather than, for example, the automorphic language of [Clo90].

The conjectures below are stated in the context of an imaginary CM field E with totally real
subfield F , and automorphic representations π1, π2, . . . . When we state later that we will assume
that a given conjecture holds, we mean that it holds for all choices of E/F and automorphic
representations satisfying the given conditions.

3.1 Level raising
We put ourselves in the situation of § 2.4. Thus G is a definite unitary group in n variables
associated to a CM extension E/F . Fix an irreducible G(AF )-subrepresentation σ of the space
A with σ∞ ∼= W∨ιλ for some dominant weight λ and isomorphism ι : Ql

∼= C. By [Gue11, Theorem
2.3], there exists a continuous semisimple representation rι(σ) : GE → Ql satisfying the relation
WD(rι(σ)|GEw )F-ss ∼= recTEw(ι−1σv ◦ ιw) for every place w of E split over F . Let w0 be such a
place, and let v0 be the place of F below it. If σv0 ◦ ιw0 has an Iwahori-fixed vector and w0 does
not divide l, then rι(σ)|ssGEw0

is unramified. We say that σ satisfies the level-raising congruence
at w0 if the eigenvalues α1, . . . , αn of rι(σ)|ssGEw0

(Frobw0) satisfy αi ≡ α1q
n−i
w0

mod mZl , up to
reordering, where mZl ⊂ Zl is the unique maximal ideal.

Conjecture 3.1 (LRn). Suppose that σ is ι-ordinary and that the irreducible constituents
of the residual representation rι(σ) have pairwise distinct dimensions. Suppose further that σ
satisfies the level-raising congruence at the place w0.

Let U =
∏
v Uv ⊂ G(A∞F ) be an open compact subgroup with (σ∞)U 6= 0, and such that for

some finite place v of F , Uv contains no non-trivial elements of finite order. Then there exists a
second automorphic representation σ1 of G(AF ) satisfying the following.

• σ1,∞ ∼= W∨ιλ.

• rι(σ) ∼= rι(σ1).

• σ1 is ι-ordinary and (σ∞1 )U 6= 0.

• σ1,v0 ◦ ιw0 is an unramified twist of the Steinberg representation.

This conjecture is closely related to Ihara’s lemma (see, for example, [CHT08, Conjecture
B]). It is known in some cases when n 6 3, or when l is a banal characteristic for GLn(Ew0);
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cf. [Thob]. We have chosen to restrict the statement to ι-ordinary representations since this is all
we require here for the application to symmetric power functoriality, and since we believe that
this may be easier than the most general case. In fact, it would even suffice for our purposes to
treat the case where qw0 ≡ 1 mod l, σv0 is unramified, and rι(σ)|GEw0

is trivial.

3.2 Automorphic tensor product
Let n > 1 be a positive integer, and suppose that E is an imaginary CM field with totally
real subfield F , and that (π1, ψ1) and (π2, ψ2) are RAECSDC automorphic representations of
GL2(AE) and GLn(AE), respectively. We will state here a version of the conjectural GL2×GLn→
GL2n lifting that we hope will be accessible through Galois-theoretic methods.

Conjecture 3.2 (TPn). Fix a prime l and an isomorphism ι : Ql
∼= C. Suppose that the

representation rι(π1) ⊗ rι(π2) is irreducible and Hodge–Tate regular. Then there exists a
RAECSDC automorphic representation (π, χ) of GL2n(AE) such that rι(π) ∼= rι(π1)⊗ rι(π2).

This conjecture is known to be true if n = 2 or if n = 3 (see [Ram00, KS02], respectively). In
addition, a ‘potential’ version of this conjecture follows in many cases from potential automorphy
theorems; cf. [BGGT14].

3.3 Automorphic symmetric power
Now suppose that F is a totally real field, and that (π, χ) is a RAESDC automorphic
representation of GL2(AF ), without CM, i.e. not induced from an algebraic Grössencharacter of
a CM quadratic extension of F . Let n > 2 be an integer, and let K = {K1, . . . ,Ks} be a set of
finite Galois extensions of Q.

Conjecture 3.3 (SPn+1(K)). Suppose that F does not contain Ki, for any i = 1, . . . , s. Then
the nth symmetric power lifting of π exists, in the following sense: there exists a RAESDC
automorphic representation (Π, ψ) of GLn+1(AF ) such that for any isomorphism ι : Ql

∼= C,
there is an isomorphism Symn rι(π) ∼= rι(Π).

We remark that if K ⊂ K′, then SPn+1(K) ⇒ SPn+1(K′). This conjecture is known to be
true with K = ∅ if n = 2, 3 or 4 (see [GJ78, Kim03, KS02], respectively). The ‘potential’ version
follows from potential automorphy theorems. (See [BGG11] for the final result, following earlier
work by L.C., Harris, Shepherd-Barron and Taylor. The reason for introducing the set K here is
that the automorphy lifting theorems to be used later require supplementary hypotheses on the
presence of roots of unity in the base field F .)

3.4 Main theorem
Let K = {K1, . . . ,Ks} be a set of finite Galois extensions of Q. We write Q(ζl)

+ for the totally
real subfield of Q(ζl).

Theorem 3.4. Let l > 5 be prime, and let 0 < r < l be an integer. Suppose that Q(ζl)
+ ∈ K.

Then the following implication holds:

SPl−r(K) + SPr(K) + TPr + LRl+r ⇒ SPl+r(K).

The proof of this theorem will be given in §§ 4–5.

Corollary 3.5. Suppose that TPr and LRr+1 hold for all integers r > 1. Let F be a totally real
field, and let (π, χ) be a RAESDC automorphic representation of GL2(AF ), not automorphically
induced from a quadratic CM extension.
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Suppose that if l > 5 is prime, then [F (ζl) : F ] > 2. Then the symmetric rth power lifting of
π exists for all integers r > 1.

Proof of Corollary 3.5. If r > 1 is an integer, let Kr denote the set of fields Q(ζl)
+, as l runs

over primes 5 6 l 6 r. Under the assumption of hypotheses TPr and LRr+1, the above theorem
simply gives the implication (whenever l > 5 is prime and 0 < s < l, and Q(ζl)

+ ∈ K)

SPl−s(K) + SPs(K)⇒ SPl+s(K).

To prove the corollary, it suffices to prove SPr+1(Kr) for all r > 1. We prove this by induction on
r > 1. It is already known to hold for 1 6 r 6 4. For general r, note that by Bertrand’s postulate
there exists a prime l satisfying (r+1)/2 < l < r+1, and hence l < r+1 < 2l. Writing r+1 = l+s,
we therefore have 0 < s < l. The above implication now implies that SPl+s(Kr) = SPr+1(Kr)
holds.

Corollary 3.6. Suppose that LRr+1 holds for all 1 6 r 6 26. Then SPr+1(K25) holds for all
integers 1 6 r 6 9, and for all odd integers 1 6 r 6 25.

Proof of Corollary 3.6. The deduction of this corollary is similar, using the fact that TPr and
SPr(∅) are already known to hold for 1 6 r 6 3. Indeed, we now have the implications (under
LRr+1, and Q(ζl)

+ ∈ K)

SPl−1(K)⇒ SPl+1(K), SPl−2(K)⇒ SPl+2(K) and SPl−3(K)⇒ SPl+3(K).

The result follows on using the primes 5, 7, . . . , 23. 2

3.5 Lemmas about ordinariness
In certain situations, the functorial operations above preserve the property of being ordinary.
This is the content of the results of this section.

Lemma 3.7. In the situation of conjecture TPn, suppose the following.

• π1 and π2 are ι-ordinary.

• Let a and b denote the infinity types of π1 and π2, respectively. Then aτ and bτ depend
only on the place of E induced by the embedding ι−1τ : E ↪→ Ql.

Then π is ι-ordinary.

Proof. Let v|l be a place of E, and suppose that ι−1π1,v is a subquotient of n-IndGL2
B α1 ⊗ α2

and ι−1π2,v is a subquotient of n-IndGLn
B β1 ⊗ · · · ⊗ βn, where val(α1($v)) < val(α2($v)) and

val(β1($v)) < · · · < val(βn($v)). Since π1 and π2 are ι-ordinary, we have by Lemma 2.5 the
equalities

val(αi($v)) = −1/ev
∑
τ

aτ,i and val(βj($v)) = −1/ev
∑
τ

bτ,j ,

the sum being over embeddings τ : E ↪→ C such that ι−1τ induces the place v. In particular,
since rι(π1)⊗ rι(π2) is Hodge–Tate regular, the quantities val(αi($v)βj($v)) are distinct as i, j
vary, and the permutation required to put these quantities in strictly increasing order is the same
as the permutation required, for each τ , to put the quantities aτ,i + bτ,j in strictly decreasing
order. The same argument as in the proof of Lemma 2.6 now gives the conclusion. 2

Lemma 3.8. In the situation of conjecture SPn+1(K), suppose that π is ι-ordinary. Then Π is
ι-ordinary.

Proof. The proof is essentially the same as the proof of Lemma 3.7. 2
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4. Construction of a special automorphic representation

Let E be an imaginary CM field with totally real subfield F such that E/F is everywhere
unramified and [F : Q] is even. Suppose that π is a RACSDC automorphic representation of
GL2(AE) of weight λ = 0. Let l > 5 be a prime, and let 0 < r < l. Set n = l + r.

We fix a choice of isomorphism ι : Ql
∼= C. In order to reduce notation, we now write ρ= rι(π).

We suppose that the following hypotheses are in effect.

• Every prime of F dividing l or above which π is ramified is split in E.

• π is ι-ordinary.

• The residual representation ρ : GE →GL2(Fl) is irreducible, and its image contains SL2(Fla)
up to conjugation, for some a > 1.

• There exist RACSDC automorphic representations Π1, Π2 of the groups GLr(AE) and
GLl−r(AE), respectively, such that rι(Π1) ∼= Symr−1 ρ and rι(Π2) ∼= Syml−r−1 ρ. (These
Galois representations are irreducible, by the previous hypothesis.)

• There exists a place w0 of E, split over F and coprime to l, such that πw0 is an unramified
twist of the Steinberg representation. We write v0 for the place of F below w0.

In this case we note that there is an isomorphism of residual representations

(Syml+r−1 ρ)ss ∼= (ϕρ⊗ Symr−1 ρ)⊕ χr Syml−r−1 ρ,

where ϕ denotes a lift to Ql of the arithmetic Frobenius, and χ = det ρ. (This follows from the
corresponding identity of representations of GL2(Fl), which can be seen by calculating the trace
on either side of an upper-triangular element.) The two summands here are irreducible, and each
of different dimension, prime to l. We remark that ϕρ is already the residual representation of
a RACSDC automorphic representation of GL2(AE) of weight zero, by Lemma 2.3 and [Clo90,
Proposition 4.12], which describes the action of Galois on infinity types.

Proposition 4.1. Suppose that conjecture TPr holds. Then there exist cuspidal conjugate
self-dual automorphic representations σ1, σ2 of GL2r(AE) and GLl−r(AE), respectively, and
satisfying the following.

• Σ = σ1 � σ2 is regular algebraic and ι-ordinary of weight zero.

• The representation Σw0 has an Iwahori-fixed vector.

• There is an isomorphism of residual representations

rι(Σ) ∼= (Syml+r−1 ρ)ss.

• If Σw is ramified then πw is ramified.

Proof. Consider the following conditions on a RAECSDC automorphic representation
(π′, | · |1−l).
• (π′, | · |1−l) is ι-ordinary.

• rι(π′) ∼= ρ.

• rι(π′)c ∼= rι(π
′)∨ε−l.

• π′w0
has an Iwahori fixed vector.

• If π′w is ramified then πw is ramified.

• For all embeddings τ : E ↪→ Ql, we have HTτ (rι(π
′)) = {0, l}.
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By [Tho12, Theorem 10.2], the deformation ring R associated to the corresponding local
conditions on a representation of GE is a finite O-module. By [CHT08, Corollary 2.1.5], its
Krull dimension is strictly positive. Thus there is a homomorphism R → Ql, and hence a lift
of ρ satisfying these local conditions. By applying [Tho12, Theorem 9.1] we see that this lift is
automorphic, and conclude that there exists a ι-ordinary RAECSDC automorphic representation
(π′, | · |1−l) of GL2(AE) satisfying the specified conditions.

By TPr, there exists a RAECSDC automorphic representation (Π′2, χ
′) of GL2r(AE) such

that rι(Π
′
2) ∼= ϕrι(π

′)⊗rι(Π2). In fact, we have χ′ = | · |(r−l), and Π′2 is ι-ordinary, by Lemma 3.7.
Let σ2 = Π′2| · |(l−r)/2. Then σ2 is conjugate self-dual and cuspidal, and σ2,w0 has an Iwahori
fixed vector. Let ψ = (εχ)r. Then ψψc = 1 and σ1 = Π1 ⊗ ιψ is RACSDC, ι-ordinary, and has
an Iwahori-fixed vector.

We claim that Σ = σ1�σ2 is regular algebraic. To see this it suffices to calculate the infinity
types of the constituent cuspidal representations at each embedding τ : E ↪→ C. These are
independent of τ ; for σ2 we have the infinity type ((l − r − 1)/2, . . . , (r + 1 − l)/2), and for σ1

we have

((l + r − 1)/2, . . . , (l − r + 1)/2, (r − l − 1)/2, . . . , (1− r − l)/2).

The representation Σw0 has an Iwahori-fixed vector, and is ι-ordinary by Lemma 2.6. It satisfies
the third and last points by construction. This concludes the proof. 2

Theorem 4.2. With hypotheses as above, assume conjectures TPr and LRl+r. Then there exists
a RACSDC automorphic representation Π of GLl+r(AE) satisfying the following.

• Π is ι-ordinary.

• The representation Πw0 is an unramified twist of the Steinberg representation.

• There is an isomorphism

rι(Π) ∼= (Syml+r−1 ρ)ss.

Proof. Let Σ denote the automorphic representation constructed in Proposition 4.1. Let G be
the definite unitary group of § 2.4, with n = l+r. By Proposition 2.9, there exists an automorphic
representation Σ1 of G(AF ) such that Σ is the base change of Σ1. Applying conjecture LRl+r

to Σ1, we deduce the existence of an ι-ordinary automorphic representation Σ2 of G(AF ) of the
same weight, such that Σ2,v0 ◦ ιw0 is an unramified twist of the Steinberg representation. Let Π
denote the base change of Σ2 to GLl+r(AE), which exists, again by Proposition 2.9. Since Πw0

is an unramified twist of the Steinberg representation, Π must be cuspidal. This completes the
proof. 2

5. Proof of Theorem 3.4

In this section we give the proof of Theorem 3.4. We therefore suppose throughout that l > 5 is
a prime, and that 0 < r < l. We fix a set K = {K1, . . . ,Ks} of finite Galois extensions of Q, and
suppose that Q(ζl)

+ ∈ K. We also assume that conjectures SPl−r(K), SPr(K), LRl+r, and TPr
hold. The linchpin in the proof is the following special case, which asserts that we can deduce
the existence of the (l+r−1)th symmetric power lifting of a Hilbert modular form when certain
local hypotheses are in play.

Let Sd denote the standard representation of SL2(Fl) on F2
l . By [Gur, Theorem 1.2], there

exists an integer a > 1 such that the representations ϕSd⊗Symr−1 Sd and Syml−r−1 Sd of SL2(Flb)
are adequate (in the sense of [Tho12, § 2]) whenever b > a. We recall that by [Gur, Lemma 1.4],
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any finite subgroup of GL2(Fl) containing an adequate subgroup as a normal subgroup of index

prime to l is adequate.

Proposition 5.1. Let F be a totally real field, and fix an isomorphism ι : Ql
∼= C. Suppose that

(π, χ) is a RAESDC automorphic representation of GL2(AF ) satisfying the following hypotheses.

• π is ι-ordinary of weight λ = 0. (In more classical language, π has parallel weight two.)

• The image of the residual representation rι(π) contains SL2(Flb) for some integer b > a.

• There exists a place v0 - l of F such that πv0 is an unramified twist of the Steinberg

representation.

Then the (l + r − 1)th symmetric power lifting of π exists: there exists an ι-ordinary RAESDC

automorphic representation Π of GLl+r(AF ) such that rι(Π) ∼= Syml+r−1 rι(π).

Proof. We deduce the theorem from [Thoa, Theorem 7.1]. After replacing F by a soluble

extension not containing any Ki, we can assume that there exists a quadratic CM imaginary

extension E/F , linearly disjoint over F from the extension of F (ζl) cut out by rι(π) and satisfying

the hypotheses of § 4. Arguing as in the proof of [CHT08, Theorem 4.4.3], we see that there exists

an algebraic character ψ : GE → Q×l such that χ|GE = ψψc, and (if πE denotes the base change

of π to E) π′ = πE⊗ψ−1 is RACSDC. Replacing F again by a soluble extension, we can arrange

that the hypotheses of § 4 apply to π′, so by Theorem 4.2 there exists a RACSDC automorphic

representation Π of GLl+r(AE) such that

rι(Π) ∼= (Syml+r−1 rι(π′))
ss,

and moreover that Π is ι-ordinary and Πw0 is an unramified twist of the Steinberg representation,

for some place w0 of E above v0. The result follows from [Thoa, Theorem 7.1] and Theorem 2.7,

on checking the following remaining hypotheses of [Thoa, Theorem 7.1].

• The element ζl is not fixed by ker ad rι(Π).

• Each irreducible constituent of rι(Π)|GE(ζl)
is adequate.

The first point holds because, on the one hand, [E(ζl) : E] > 2 and the extension of E cut

out by ad rι(Π) is contained inside the extension cut out by ad rι(π), while, on the other hand,

the projective image of rι(π) contains a simple normal subgroup of index at most 2 (by the

classification of finite subgroups of PGL2(Fl)). The second point follows from our hypothesis on

the image of rι(π) and [Gur, Lemma 1.4]. 2

We now reduce the general case of SPl+r(K) to this one by using a chain of congruences.

Let F be a totally real field not containing Ki, i = 1, . . . , s, and let (π, χ) denote a RAESDC

automorphic representation of GL2(AF ) without CM. We must show that the symmetric (l +

r − 1)th power lifting of π exists.

Proposition 5.2. There exist a prime p 6= l, an isomorphism ιp : Qp
∼= C, a soluble totally real

extension F ′/F linearly disjoint from the extension of F (ζp) cut out by rιp(π) and not containing

any field Ki, and a RAESDC automorphic representation π′ of GL2(AF ′) satisfying the following.

• The image of the residual representation rιp(π) contains SL2(Fp), up to conjugation.

• π′ has weight zero, and for every prime v|l, π′v is an unramified twist of the Steinberg

representation.
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• There exists a place v0 of F ′, not dividing pl, and such that π′v0 is an unramified twist of
the Steinberg representation.

• The symmetric (l+r−1)th power lifting of π exists if and only if the symmetric (l+r−1)th
power lifting of π′ exists.

Proof. By [Dim05, Proposition 3.8], all but finitely many pairs (p, ιp) satisfy the first bullet
point. We can therefore choose p > 2(l+ r+ 1) and ιp such that the first bullet point is satisfied
and p is unramified in F . We can, moreover, assume that for every embedding τ : F ↪→ Qp, the
Hodge–Tate weights HTτ (rιp(π)) differ by at most p − 2. For each place v|p of F , rιp(π)|GFv is
potentially diagonalizable, by [BGGT14, Lemma 1.4.1]. Let F ′ be a soluble totally real extension
of F , linearly disjoint from the extension of F (ζp) cut out by rιp(π), not containing any Ki, and
such that for every prime v|l of F ′, rιp(π)|GF ′v is trivial and qv ≡ 1 mod p. Choose a place v0 - lp
of F ′ such that rιp(π)|GF ′v0 is trivial, and qv0 ≡ 1 mod p. By [Gee11, Corollary 3.1.7], there exists
a second RAESDC automorphic representation π′ of GL2(AF ′) such that rιp(π)|GF ′ ∼= rιp(π

′),
such that rιp(π

′)|GF ′v is potentially diagonalizable of weight zero at every prime v of F ′ dividing
p, and such that the representations π′v0 and π′v for each place v|l of F ′ are each an unramified
twist of the Steinberg representation. Here we note [GK, Lemma 4.4.1], which states that a
potentially Barsotti–Tate representation is also potentially diagonalizable.

It now follows that both representations Syml+r−1 rιp(π)|GF ′ and Syml+r−1 rιp(π
′) are

potentially diagonalizable on restriction to any decomposition group at a place v|p of F ′.
Moreover, their residual representations are irreducible and isomorphic, and adequate, even on
restriction to GF ′(ζp), since p > 2(l+r+1) (see the appendix to [Tho12]). We deduce immediately
from [BGGT14, Theorem 4.2.1] that the automorphy of either one of these Galois representations
is equivalent to that of the other. The final bullet point for π′ now follows on combining this
with soluble base change [BGHT11, Lemma 1.3]. 2

After replacing F by F ′ and π by π′, we can suppose without loss of generality that the
following hypotheses are in effect.

(1) π has weight zero.

(2) For each place v|l, πv is an unramified twist of the Steinberg representation.

(3) There exists a place v0 of F , not dividing l, such that πv0 is an unramified twist of the
Steinberg representation.

With these assumptions, we have the following result.

Proposition 5.3. There exists a RAESDC automorphic representation π′ of GL2(AF ) satisfying
the following hypotheses.

• π′ has weight zero, and for every prime v|l, π′v is an unramified twist of the Steinberg
representation.

• π′v0 is an unramified twist of the Steinberg representation.

• For every isomorphism ι : Ql
∼= C, the image of the residual representation rι(π′) contains

SL2(Flb), up to conjugation, for some b > a.

• The symmetric (l+r−1)th power lifting of π exists if and only if the symmetric (l+r−1)th
power lifting of π′ exists.

Proof. We use a trick inspired by Khare and Wintenberger’s use of so-called ‘good-dihedral’
primes, in their proof of Serre’s conjecture; cf. [KW09, Lemma 8.2]. Let E ⊂ C denote the
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coefficient field of π. As in the proof of Proposition 5.2, we choose a prime p > max(2(l +
r + 1),#GL2(Fla)) split in E(

√
−1) and such that F and π are unramified above p. We fix

an isomorphism ιp : Qp
∼= C. After conjugating we can assume that the image of the residual

representation ρ = rιp(π) is contained in GL2(Fp); we assume also that p has been chosen so that
the residual image contains SL2(Fp).

Let K/F denote the maximal abelian extension of exponent 2 which is ramified only at
primes of F where π is ramified. Let M/F denote the extension inside F cut out by Pρ, the
projective representation associated to ρ. Thus Gal(M/F ) is isomorphic to either PGL2(Fp) or
PSL2(Fp), the index 2 simple subgroup. Let L = M ∩ F (ζp). Then M and F (ζp) are linearly
disjoint over L, and L/F is an extension of degree at most 2. Let v be an infinite place of F , and
let cv ∈ GF denote a complex conjugation at this place. Since p ≡ 1 mod 4, ρ(cv) ∈ Gal(M/L).
By linear disjointness, we can therefore choose a prime u of F coprime to p at which ρ is
unramified and such that Pρ(Frobu) = Pρ(cv), up to conjugation, and such that u is split in L
and qu ≡ −1 mod p. We can, moreover, assume that u is split in K.

Applying [Gee11, Corollary 3.1.7] once more, we can find a RAESDC automorphic
representation π′ of GL2(AF ) such that rιp(π

′) ∼= ρ, such that the representations π′v0 and π′v for
v|l are each an unramified twist of the Steinberg representation, and such that π′ is of weight
zero and rιp(π

′) is potentially diagonalizable on restriction to any decomposition group at a place
v|p of F , and moreover such that there is an isomorphism

rιp(π
′)|IFu ∼=

(
ψ 0

0 ψqu

)
,

with ψ : IFu → Z×p a character of order p. In particular, rιp(π
′)|GFu is irreducible, and induced

from a character. Moreover, we can suppose that, away from u, π′ is ramified only at those places
of F where π is also ramified.

The representation π′ satisfies the final point above. This is proved in exactly the same
manner as the same point for the representation π′ of Proposition 5.2. It remains to show that π′

satisfies the penultimate bullet point. Fix an isomorphism ι : Ql
∼= C, and consider the residual

representation rι(π′). It is irreducible, since its restriction to GFu is already irreducible, being
induced from a character whose restriction to IFu has order p - qu−1. Since the projective image
of rι(π′) contains an element of order p > 5, either rι(π′) contains a conjugate of SL2(Flb) for
some b > 1, or rι(π′) is induced from a character. In the first case, by choice of p we obtain a
conjugate with b > a.

It therefore remains to rule out the possibility that rι(π′) ∼= IndFK0
α, for some quadratic

extension K0/F and some character α : GK0 → F×l . The extension K0/F is ramified only at
those places where rι(π′) is also ramified, hence at the places dividing l, u, or where π is ramified.
Since rι(π′)|GFu is induced from a character of the unramified quadratic extension of Fu by
construction, we see that K0 is unramified at u, and hence K0 ⊂ K. But u is split in K, hence
in K0, which implies that the representation rι(π′)|GFu is a direct sum of two characters. This
contradiction shows that rι(π′) must in fact have residual image containing SL2(Flb), for some
b > a, and therefore concludes the proof. 2

After replacing π by π′ we may therefore suppose that π satisfies, in addition to the above
three points, the following hypothesis.

(4) For every isomorphism ι : Ql
∼= C, the image of the residual representation rι(π) contains

SL2(Flb), up to conjugation, for some b > a.
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We claim that π now satisfies the hypotheses of Theorem 5.1. Indeed, it remains to check only
that π is ι-ordinary, for some choice of ι. This follows immediately from points (1) and (2) above,
by [Ger, Lemma 5.1.5]. We deduce that the (l + r − 1)th symmetric power lifting of π exists.
This concludes the proof.
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