Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T20:30:01.138Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2013

Andreas Recknagel
Affiliation:
King's College London
Volker Schomerus
Affiliation:
DESY Theory Group
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Abouelsaood, C. G., Callan, C. R., Nappi, S. A., Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599Google Scholar
[2] I., Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746Google Scholar
[3] I., Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995) 1869, cond-mat/9512099Google Scholar
[4] I., Affleck, A. W. W., Ludwig, Critical theory of overscreened Kondo fixed points, Nucl. Phys. B 360 (1991) 641; The Kondo effect, conformal field theory and fusion rules, Nucl. Phys. B 352 (1991) 849Google Scholar
[5] I., Affleck, A. W. W., Ludwig, Universal noninteger ‘groundstate degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161Google Scholar
[6] I., Affleck, A. W. W., Ludwig, Exact conformal field theory results on the multichannel Kondo effect: single-fermion Green's function, self-energy, and resistivity, Phys. Rev. B 48 (1993) 7297Google Scholar
[7] I., Affleck, M., Oshikawa, H., Saleur, Boundary critical phenomena in the three-state Potts model, cond-mat/9804117
[8] I., Affleck, Edge critical behaviour of the 2-dimensional tri-critical Ising model, J. Phys. A 33 (2000) 6473, cond-mat/0005286Google Scholar
[9] M., Aganagic, R., Gopakumar, S., Minwalla, A., Strominger, Unstable solitons in noncommutative gauge theory, J. High Energy Phys. 0104 (2001) 001, hep-th/0009142Google Scholar
[10] A. Yu., Alekseev, S., Fredenhagen, T., Quella, V., Schomerus, Non-commutative gauge theory of twisted D-branes, hep-th/0205123
[11] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Generalization of the Knizhnik–Zamolodchikov equations, Lett. Math. Phys. 41 (1997) 169, hep-th/9610066Google Scholar
[12] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Non-commutative world-volume geometries: branes on SU(2) and fuzzy spheres, J. High Energy Phys. 9909 (1999) 023, hep-th/9908040Google Scholar
[13] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Brane dynamics in background fluxes and non-commutative geometry, hep-th/0003187
[14] A. Yu., Alekseev, V., Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999) 061901, hep-th/9812193Google Scholar
[15] A. Yu., Alekseev, V., Schomerus, RR charges of D2-branes in the WZW model, hep-th/0007096
[16] A. Yu., Alekseev, S., Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys. 128 (1990) 197; Quantum groups and WZW models, Commun. Math. Phys. 133 (1990) 353Google Scholar
[17] L., Alvarez-Gaumé, D. Z., Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Commun. Math. Phys. 80 (1981) 443Google Scholar
[18] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Quantum group interpretation of some conformal field theories, Phys. Lett. B 220 (1989) 142Google Scholar
[19] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Topics in conformal field theory, in Physics and Mathematics of Strings, L., Brink, D., Friedan, A. M., Polyakov (eds.), World Scientific 1990Google Scholar
[20] C., Angelantonj, M., Bianchi, G., Pradisi, A., Sagnotti, Y. S., Stanev, Comments on Gepner models and type I vacua in string theory, Phys. Lett. B 387 (1996) 743, hep-th/9607229Google Scholar
[21] C., Angelantonj, A., Sagnotti, Open strings, Phys. Rept. 371 (2002) 1, Erratum: C. Angelantonj, A. Sagnotti, Open strings, Phys. Rept. 376 (2003) 339, hep-th/0204089Google Scholar
[22] I., Antoniadis, C., Bachas, Branes and the gauge hierarchy, Phys. Lett. B 450 (1999) 83, hep-th/9812093Google Scholar
[23] F., Ardalan, H., Arfaei, M. M., Sheikh-Jabbari, Noncommutative geometry from strings and branes, J. High Energy Phys. 9902 (1999) 016, hep-th/9810072Google Scholar
[24] S. K., Ashok, E., Dell'Aquila, D. E., Diaconescu, Fractional branes in Landau–Ginzburg orbifolds, hep-th/0401135
[25] P. S., Aspinwall, The Landau–Ginzburg to Calabi–Yau dictionary for D–branes, J. Math. Phys. 48 (2007) 082304, hep-th/0610209Google Scholar
[26] P. S., Aspinwall, M. R., Douglas, D-brane stability and monodromy, J. High Energy Phys. 0205 (2002) 031, hep-th/0110071Google Scholar
[27] C., Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37, hep-th/9511043Google Scholar
[28] C., Bachas, Lectures on D-branes, hep-th/9806199
[29] C., Bachas, On the symmetries of classical string theory, arXiv:0808.2777 [hep-th]
[30] C., Bachas, J., de Boer, R., Dijkgraaf, H., Ooguri, Permeable conformal walls and holography, J. High Energy Phys. 0206 (2002) 027, hep-th/0111210Google Scholar
[31] C., Bachas, M. R., Douglas, C., Schweigert, Flux stabilization of D-branes, J. High Energy Phys. 0005 (2000) 048, hep-th/0003037Google Scholar
[32] C., Bachas, M. R., Gaberdiel, Loop operators and the Kondo problem, J. High Energy Phys. 0411 (2004) 065, hep-th/0411067Google Scholar
[33] F. A., Bais, P., Bouwknegt, M., Surridge, K., Schoutens, Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants, Nucl. Phys. B 304 (1988) 348; Coset construction for extended Virasoro algebras, Nucl. Phys. B 304 (1988) 371Google Scholar
[34] V., Balasubramanian, R. G., Leigh, D-branes, moduli and supersymmetry, Phys. Rev. D 55 (1997) 6415, hep-th/9611165Google Scholar
[35] T., Banks, L. J., Dixon, D., Friedan, E., Martinec, Phenomenology and conformal field theory or Can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613Google Scholar
[36] P., Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998) 175, hep-th/9708120; Permutation orbifolds, Nucl. Phys. B 633 (2002) 365, hep-th/9910079Google Scholar
[37] M., Bauer, Aspects de I'invariance conformé, Universitè Paris VII, 1990Google Scholar
[38] M., Bauer, P., Di Francesco, C., Itzykson, J.-B., Zuber, Covariant differential equations and singular vectors in Virasoro representations, Nucl. Phys. B 362 (1991) 515Google Scholar
[39] M., Bauer, H., Saleur, On some relations between local height properties and conformal invariance, Nucl. Phys. B 320 (1989) 591Google Scholar
[40] K., Becker, M., Becker, D. R., Morrison, H., Ooguri, Y., Oz, Z., Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi–Yau 4-folds, Nucl. Phys. B 480 (1996) 225, hep-th/9608116Google Scholar
[41] K., Becker, M., Becker, A., Strominger, Fivebranes, membranes and non-perturbative string theory, Nucl. Phys. B 456 (1995) 130, hep-th/9507158Google Scholar
[42] R. E., Behrend, P. A., Pearce, J.-B., Zuber, Integrable boundaries, conformal boundary conditions and A–D–E fusion rules, J. Phys. A 31 (1998) 1763, hep-th/9807142Google Scholar
[43] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444 (1998) 163, hep-th/9809097Google Scholar
[44] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579 (2000) 525, 525 (2000) 707, hep-th/9908036Google Scholar
[45] A. A., Belavin, A. M., Polyakov, A. B., Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333Google Scholar
[46] L., Benoit, Y., Saint-Aubin, Degenerate conformal field theories and explicit expressions of some null vectors, Phys. Lett. B 215 (1988) 517Google Scholar
[47] O., Bergman, M. R., Gaberdiel, A non-supersymmetric open string theory and S-duality, Nucl. Phys. B 499 (1997) 183, hep-th/9701137Google Scholar
[48] O., Bergman, M. R., Gaberdiel, Stable non-BPS D-particles, Phys. Lett. B 441 (1998) 133, hep-th/9806155Google Scholar
[49] M., Berkooz, M. R., Douglas, R. G., Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265, hep-th/9606139Google Scholar
[50] M., Bershadsky, S., Cecotti, H., Ooguri, C., Vafa, Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311; hep-th/9309140Google Scholar
[51] M., Bertolini, P., Fré, F., Hussain, R., Iengo, C., Nuñez, C., Scrucca, Black hole – D-brane correspondence: an example, hep-th/9807209
[52] M., Bertolini, P., Fré, R., Iengo, C., Nuñez, C., Scrucca, Black holes as D3-branes on Calabi–Yau threefolds, Phys. Lett. B 431 (1998) 22, hep-th/9803096Google Scholar
[53] M., Bianchi, G., Pradisi, A., Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992) 365Google Scholar
[54] M., Bianchi, A., Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517Google Scholar
[55] M., Bianchi, A., Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519Google Scholar
[56] M., Bianchi, Y. S., Stanev, Open strings on the Neveu–Schwarz pentabrane, Nucl. Phys. B 523 (1998) 193, hep-th/9711069Google Scholar
[57] M., Billo, D., Cangemi, P., Di Vecchia, Boundary states for moving D-branes, Phys. Lett. B 400 (1997) 63, hep-th/9701190Google Scholar
[58] M., Billó, B., Craps, F., Roose, Orbifold boundary states from Cardy's condition, J. High Energy Phys. 0101 (2001) 038, hep-th/0011060Google Scholar
[59] L., Birke, J., Fuchs, C., Schweigert, Symmetry breaking boundary conditions and WZW orbifolds, Adv. Theor. Math. Phys. 3 (1999) 671, hep-th/9905038Google Scholar
[60] H. W. J., Bloete, J. L., Cardy and M. P., Nightingale, Conformal invariance, the central charge, and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742Google Scholar
[61] R., Blumenhagen, W., Eholzer, A., Honecker, K., Hornfeck, R., Hübel, Unifying W-algebras, Phys. Lett. B 332 (1994) 51, hep-th/9404113Google Scholar
[62] R., Blumenhagen, M., Flohr, A., Kliem, W., Nahm, A., Recknagel, R., Varnhagen, W-algebras with two and three generators, Nucl. Phys. B 361 (1991) 255Google Scholar
[63] R., Blumenhagen, E., Plauschinn, Introduction to conformal field theory, Lecture Notes in Physics, vol. 779, Springer 2000Google Scholar
[64] R., Blumenhagen, T., Weigand, Chiral supersymmetric Gepner model orientifolds, J. High Energy Phys. 0402 (2004) 041, hep-th/0401148Google Scholar
[65] R., Blumenhagen, A., Wisskirchen, Spectra of 4D, N = 1 type I string vacua on non-toroidal CY threefolds, Phys. Lett. B 438 (1998) 52, hep-th/9806131Google Scholar
[66] J., Böckenhauer, D. E., Evans, Modular invariants, graphs and α-induction for nets of subfactors I,II,II, Commun. Math. Phys. 197 (1998) 361, hep-th/9801171; Commun. Math. Phys. 200 (1999) 57, hep-th/9805023; Commun. Math. Phys. 205 (1999) 183, hep-th/9812110Google Scholar
[67] J., Böckenhauer, D. E., Evans, Y., Kawahigashi, On α-induction, chiral generators and modular invariants for subfactors, math.OA/9904109; Chiral structure ofmodular invariants for subfactors, math.OA/9907149
[68] R., Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Natl. Acad. Sci. USA 83 (1986) 3068; Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405Google Scholar
[69] P., Bouwknegt, V., Mathai, D-branes, B-fields and twisted K-theory, J. High Energy Phys. 0003 (2000) 007, hep-th/0002023Google Scholar
[70] P., Bouwknegt, K., Schoutens (eds.), W-Symmetry, World Scientific 1995
[71] I., Brunner, On orientifolds of WZW models and their relation to geometry, J. High Energy Phys. 0201 (2002) 007, hep-th/0110219Google Scholar
[72] I., Brunner, M. R., Douglas, A., Lawrence, C., Röomelsberger, D-branes on the quintic, J. High Energy Phys. 0008 (2000) 015, hep-th/9906200Google Scholar
[73] I., Brunner, R., Entin, C., Romelsberger, D-branes on T4/ℤ2 and T-Duality, J. High Energy Phys. 9906 (1999) 016, hep-th/9905078Google Scholar
[74] I., Brunner, M., Gaberdiel, Matrix factorisations and permutation branes, J. High Energy Phys. 0507 (2005) 012, hep-th/0503207Google Scholar
[75] I., Brunner, M. R., Gaberdiel, The matrix factorisations of the D-model, J. Phys. A A38 (2005) 7901, hep-th/0506208Google Scholar
[76] I., Brunner, M. R., Gaberdiel, C. A., Keller, Matrix factorisations and D-branes on K3, J. High Energy Phys. 0606 (2006) 015, hep-th/0603196Google Scholar
[77] I., Brunner, M., Herbst, W., Lerche, B., Scheuner, Landau–Ginzburg realization of open string TFT, J. High Energy Phys. 0611 (2006) 043, hep-th/0305133Google Scholar
[78] I., Brunner, M., Herbst, W., Lerche, J., Walcher, Matrix factorizations and mirror symmetry: the cubic curve, J. High Energy Phys. 0611 (2006) 006, hep-th/0408243Google Scholar
[79] I., Brunner, K., Hori, Notes on orientifolds of rational conformal field theories, J. High Energy Phys. 0407 (2004) 023, hep-th/0208141Google Scholar
[80] I., Brunner, K., Hori, K., Hosomichi, J., Walcher, Orientifolds of Gepner models, hep-th/0401137
[81] I., Brunner, D., Roggenkamp, B-type defects in Landau–Ginzburg models, J. High Energy Phys. 0708 (2007) 093, arXiv:0707.0922 [hep-th]Google Scholar
[82] I., Brunner, D., Roggenkamp, Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds, J. High Energy Phys. 0804 (2008) 001, arXiv:0712.0188 [hep-th]Google Scholar
[83] I., Brunner, V., Schomerus, D-branes at singular curves of Calabi–Yau compactifications, J. High Energy Phys. 0004 (2000) 020, hep-th/0001132Google Scholar
[84] I., Brunner, V., Schomerus, On superpotentials for D-branes in Gepner models, J. High Energy Phys. 0010 (2000) 016, hep-th/0008194Google Scholar
[85] A. O., Caldeira, A. J., Leggett, Influence of dissipation on quantum tunneling in macros, Phys. Rev. Lett. 46 (1981) 211; Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587; Quantum tunnelling in a dissipative system, Annals Phys. 149 (1983) 374Google Scholar
[86] C. G., Callan, J. A., Harvey, A., Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611; Worldbrane actions for string solitons, Nucl. Phys. B 367 (1991) 60Google Scholar
[87] C. G., Callan, I. R., Klebanov, D-Brane boundary state dynamics, Nucl. Phys. B 465 (1996) 473, hep-th/9511173Google Scholar
[88] C. G., Callan, I. R., Klebanov, A. W. W., Ludwig, J. M., Maldacena, Exact solution of a boundary conformal field theory, Nucl. Phys. B 422 (1994) 417, hep-th/9402113Google Scholar
[89] C. G., Callan, C., Lovelace, C. R., Nappi, S. A., Yost, Adding holes and crosscaps to the superstring, Nucl. Phys. B 293 (1987) 83; Loop corrections to superstring equations of motion, Nucl. Phys. B 308 (1988) 221Google Scholar
[90] C. G., Callan, J. M., Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591, hep-th/9602043Google Scholar
[91] C. G., Callan, L., Thorlacius, Open string theory as dissipative quantum mechanics, Nucl. Phys. B 329 (1990) 117Google Scholar
[92] C. G., Callan, L., Thorlacius, World sheet dynamics of string junctions, Nucl. Phys. B 534 (1998) 121, hep-th/9803097Google Scholar
[93] P., Candelas, X. C., de la Ossa, P. S., Green, L., Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds, Phys. Lett. B 258 (1991) 118; A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21Google Scholar
[94] P., Candelas, X. C., de la Ossa, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models I, Nucl. Phys. B 416 (1994) 481, hep-th/9308083Google Scholar
[95] P., Candelas, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models II, Nucl. Phys. B 429 (1994) 626, hep-th/94030187Google Scholar
[96] A., Cappelli, D., Friedan, J. I., Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616Google Scholar
[97] A., Cappelli, C., Itzykson, J.-B., Zuber, The ADE classification of minimal and conformal invariant theories, Commun. Math. Phys. 113 (1987) 1Google Scholar
[98] J. L., Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514Google Scholar
[99] J. L., Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186Google Scholar
[100] J. L., Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581Google Scholar
[101] J. L., Cardy, Conformal invariance and statistical mechanics, Lectures given at the Les Houches Summer School in Theoretical Physics, 1988Google Scholar
[102] J. L., Cardy, D. C., Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274Google Scholar
[103] S., Carlip, What we don't know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998) 3609, hep-th/9806026; Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017Google Scholar
[104] U., Carow-Watamura, S., Watamura, Noncommutative geometry and gauge theory on fuzzy sphere, Commun. Math. Phys. 212 (2000) 395, hep-th/9801195Google Scholar
[105] N., Carqueville, Matrix factorisations and open topological string theory, J. High Energy Phys. 0907 (2009) 005, arXiv:0904.0862 [hep-th]Google Scholar
[106] N., Carqueville, L., Dowdy, A., Recknagel, Algorithmic deformation of matrix factorisations, J. High Energy Phys. 1204 (2012) 014, arXiv:1112.3352 [hep-th]Google Scholar
[107] N., Carqueville, I., Runkel, Rigidity and defect actions in Landau–Ginzburg models, Commun. Math. Phys. 310 (2012) 135, arXiv:1006.5609 [hep-th]Google Scholar
[108] M., Caselle, G., Ponzano, F., Ravanini, Towards a classification of fusion rule algebras in rational conformal field theories, Int. J. Mod. Phys. B 6 (1992) 2075Google Scholar
[109] A. S., Cattaneo, G., Felder, A path integral approach to the Kontsevich quantization formula, math.QA/9902090
[110] A. H., Chamseddine, J., Fröohlich, Some elements of Connes' non-commutative geometry, and space-time geometry, in Chen Ning Yang, a Great Physicist of the Twentieth Century, C. S., Liu and S.-T., Yau (eds.), International Press 1995, hep-th/9307012Google Scholar
[111] Y.-K. E., Cheung, M., Krogh, Noncommutative geometry from D0-branes in a background B-field, Nucl. Phys. B 528 (1998) 185, hep-th/9803031Google Scholar
[112] L., Chim, Boundary S-matrix for the tricritical Ising model, Int. J. Mod. Phys. A 11 (1996) 4491, hep-th/9510008Google Scholar
[113] P., Christe, R., Flume, The four point correlations of all primary operators of the D = 2 conformally invariant SU(2) sigma model with Wess–Zumino term, Nucl. Phys. B 282 (1987) 466Google Scholar
[114] C., Chu, P., Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151, hep-th/9812219Google Scholar
[115] A., Connes, Noncommutative Geometry, Academic Press 1994Google Scholar
[116] A., Coste, T., Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994) 316Google Scholar
[117] B., Craps, M. R., Gaberdiel, Discrete torsion orbifolds and D branes 2, J. High Energy Phys. 0104 (2001) 013, hep-th/0101143Google Scholar
[118] A., Dabholkar, Lectures on Orientifolds and Duality, hep-th/9804208
[119] J., Dai, R. G., Leigh, J., Polchinski, New connections between string theories, Mod. Phys. Lett. A 4 (1989) 2073Google Scholar
[120] U., Danielsson, G., Ferretti, B., Sundborg, D-particle dynamics and bound states, Int. J. Mod. Phys. A 11 (1996) 5463, hep-th/9603081Google Scholar
[121] P., Di Francesco, P., Mathieu, D., Sénéchal, Conformal Field Theory, Springer 1997Google Scholar
[122] P., Di Francesco, J.-B., Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B 338 (1990) 602Google Scholar
[123] P., Di Vecchia, M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Classical p-branes from boundary states, Nucl. Phys. B 507 (1997) 259, hep-th/9707068Google Scholar
[124] D. E., Diaconescu, M. R., Douglas, J., Gomis, Fractional branes and wrapped branes, J. High Energy Phys. 9802 (1998) 013, hep-th/9712230Google Scholar
[125] D.-E., Diaconescu, J., Gomis, Fractional branes and boundary states in orbifold theories, J. High Energy Phys. 0010 (2001) 001, hep-th/9906242Google Scholar
[126] D.-E., Diaconescu, Enhanced D-brane categories from string field theory, J. High Energy Phys. 0106 (2001) 016, hep-th/0104200Google Scholar
[127] D.-E., Diaconescu, C., Römelsberger, D-branes and bundles on elliptic fibrations, Nucl. Phys. B 574 (2000) 245, hep-th/9910172Google Scholar
[128] R., Dijkgraaf, Les Houches lectures on fields, strings and duality, in Les Houches 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki (eds.) Elsevier 1995, pp. 3–147, hep-th/ 9703136Google Scholar
[129] R., Dijkgraaf, J. M., Maldacena, G. W., Moore and E. P., Verlinde, A black hole farey tail, hep-th/0005003
[130] R., Dijkgraaf, C., Vafa, E., Verlinde, H., Verlinde, Operator algebra of orbifold models, Commun. Math. Phys. 123 (1989) 485Google Scholar
[131] R., Dijkgraaf, E., Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. B Proc. Suppl. 5B (1988) 87Google Scholar
[132] R., Dijkgraaf, E., Verlinde, H., Verlinde, C = 1 conformal field theories on Riemann surfaces, Commun. Math. Phys. 115 (1988) 649Google Scholar
[133] R., Dijkgraaf, E., Verlinde, H., Verlinde, Toplogical strings in D < 1, Nucl. Phys. B 352 (1991) 59Google Scholar
[134] J., Distler, B. R., Greene, Some exact results on the superpotential from Calabi–Yau compactifications, Nucl. Phys. B 309 (1988) 295Google Scholar
[135] L. J., Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, Lectures given at Trieste HEP Workshop 1987
[136] L. J., Dixon, J. A., Harvey, C., Vafa, E., Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678; Strings on orbifolds 2, Nucl. Phys. B 274 (1986) 285Google Scholar
[137] S., Doplicher, K., Fredenhagen, J. E., Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187, hep-th/ 0303037Google Scholar
[138] S., Doplicher, R., Haag, J. E., Roberts, Local observables and particle statistics I, II, Commun. Math. Phys. 23 (1971) 199, 35 (1974) 49Google Scholar
[139] S., Doplicher, J. E., Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989) 157; Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics?, Commun. Math. Phys. 131 (1990) 51Google Scholar
[140] P., Dorey, A., Pocklington, R., Tateo, G., Watts, TBA and TCSA with boundaries and excited states, Nucl. Phys. B 525 (1998) 641, hep-th/9712197Google Scholar
[141] P., Dorey, I., Runkel, R., Tateo, G., Watts, g-function flow in perturbed boundary conformal field theories, Nucl. Phys. B 578 (2000) 85, hep-th/9909216Google Scholar
[142] V. S., Dotsenko, V. A., Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312; Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c ≤ 1, Nucl. Phys. B 251 (1985) 691Google Scholar
[143] M. R., Douglas, Branes within branes, hep-th/9512077
[144] M. R., Douglas, Two lectures on D-geometry and noncommutative geometry, hep-th/9901146; Topics in D-geometry, hep-th/9910170; D-branes on Calabi–Yau manifolds, math.ag/0009209
[145] M. R., Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42, 2818 (2001), hep-th/0011017; D-branes and N = 1 supersymmetry, hep-th/0105014; Dirichlet branes, homological mirror symmetry, and stability, math.ag/0207021Google Scholar
[146] M. R., Douglas, B., Fiol, C., Röomelsberger, Stability and BPS branes, J. High Energy Phys. 0509 (2005) 006, hep-th/0002037; The spectrum of BPS branes on a noncompact Calabi-Yau manifold, J. High Energy Phys. 0509 (2005) 057 (2005), hep-th/0003263Google Scholar
[147] M. R., Douglas, B. R., Greene, D. R., Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84, hep-th/9704151Google Scholar
[148] M. R., Douglas, C., Hull, D-branes and the noncommutative torus, J. High Energy Phys. 9802 (1998) 008, hep-th/9711165Google Scholar
[149] M. R., Douglas, D., Kabat, P., Pouliot, S. H., Shenker, D-branes and short distances in string theory, Nucl. Phys. B 485 (1997) 85, hep-th/9608024Google Scholar
[150] M. R., Douglas, G. W., Moore, D-branes, quivers, and ALE instantons, hep-th/9603167
[151] M. R., Douglas, N. A., Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2002) 977, hep-th/0106048Google Scholar
[152] M. J., Duff, R. R., Khuri, J. X., Lu, String solitons, Phys. Rept. 259 (1995) 213, hep-th/9412184Google Scholar
[153] E., D'Hoker, String theory, Lecture Notes Princeton 1997; see http://www.math.ias.edu/QFT/spring /index.html
[154] T., Eguchi, S.-K. Yang, N = 2 superconformal models as topological field theories, Mod. Phys. Lett. A 5 (1990) 1693Google Scholar
[155] S., Elitzur, G., Sarkissian, D-branes on a gauged WZW model, Nucl. Phys. B 625 (2002) 166, hep-th/0108142Google Scholar
[156] H., Enger, A., Recknagel, D., Roggenkamp, Permutation branes and linear matrix factorisations, J. High Energy Phys. 0601 (2006) 087, hep-th/0508053Google Scholar
[157] D. E., Evans, Y., Kawahigashi, Orbifold subfactors from Hecke algebras, Commun. Math. Phys. 165 (1994) 445Google Scholar
[158] F., Falceto, K., Gawedzki, Lattice Wess–Zumino–Witten model and quantum groups, J. Geom. Phys. 11 (1993) 251, hep-th/9209076Google Scholar
[159] B. L., Feigin, D. B., Fuchs, Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114; Verma modules over the Virasoro algebra, in Lecture Notes in Mathematics, vol. 1060, Springer 1984, p. 230Google Scholar
[160] B. L., Feigin, T., Nakanishi, H., Ooguri, The annihilating ideals of minimal models, Int. J. Mod. Phys. A 7 Suppl. 1A (1992) 217Google Scholar
[161] G., Felder, BRST Approach to Minimal Models, Nucl. Phys. B 317 (1989) 215, Erratum: G. Felder, BRST Approach to Minimal Models, Nucl. Phys. B 324 (1989) 548Google Scholar
[162] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162, hep-th/9909030Google Scholar
[163] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys. Rev. Lett. 84 (2000) 1659, hep-th/9909140; Correlation functions and boundary conditions in RCFT and three-dimensional topology, Compos. Math. 131 (2002) 189, hep-th/9912239Google Scholar
[164] G., Felder, J., Fröhlich, G., Keller, On the structure of unitary conformal field theoryCommun. Math. Phys. 124 (1989) 417, 30 (1990) 1Google Scholar
[165] G., Felder, J., Fröhlich, G., Keller, Braid matrices and structure constants for minimal conformal models, Commun. Math. Phys. 124 (1989) 647Google Scholar
[166] G., Felder, K., Gawȩdzki, A., Kupiainen, Spectra of Wess–Zumino–Witten models with arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127; The spectrum of Wess–Zumino–Witten models, Nucl. Phys. B 299 (1988) 355Google Scholar
[167] P., Fendley, F., Lesage, H., Saleur, A unified framework for the Kondo problem and for an impurity in a Luttinger liquid, J. Stat. Phys. 85 (1996) 211, cond-mat/9510055Google Scholar
[168] P., Fendley, H., Saleur, N. P., Warner, Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430 (1994) 577, hep-th/9406125Google Scholar
[169] J. M., Figueroa-O'Farrill, S., Schrans, The spin 6 extended conformal algebra, Phys. Lett. B 245 (1990) 471Google Scholar
[170] J. M., Figueroa-O'Farrill, S., Stanciu, D-brane charge, flux quantization and relative (co)homology, J. High Energy Phys. 0101 (2001) 006, hep-th/0008038Google Scholar
[171] J., Fjelstad, J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 5: Proof of modular invariance and factorisation, Theor. Appl. Categor. 16 (2006) 342, hep-th/0503194Google Scholar
[172] S., Förste, D., Ghoshal, S., Panda, An orientifold of the solitonic fivebrane, Phys. Lett. B 411 (1997) 46, hep-th/9706057Google Scholar
[173] A., Font, L. E., Ibañez, D., Luüst, F., Quevedo, Strong–weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249 (1990) 35Google Scholar
[174] E. S., Fradkin, A. A., Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 160 (1985) 69Google Scholar
[175] M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Scattering of closed strings from many D-branes, Phys. Lett. B 400 (1997) 52, hep-th/9702037Google Scholar
[176] K., Fredenhagen, K.-H., Rehren, B., Schroer, Superselection sectors with braid group statistics and exchange algebras I, II, Commun. Math. Phys. 125 (1989) 201, Rev. Math. Phys. Special issue (1992) 111Google Scholar
[177] S., Fredenhagen, Dynamics of D-branes in curved backgrounds, Ph.D. thesis (2002), available via http://www.slac.stanford.edu/spires/find/hep/www?irn=5331455
[178] S., Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436, hep-th/0301229Google Scholar
[179] S., Fredenhagen, M. R., Gaberdiel, C. A., Keller, Bulk induced boundary perturbations, J. Phys. A 40 (2007) F17, hep-th/0609034Google Scholar
[180] S., Fredenhagen, M. R., Gaberdiel, C., Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403, arXiv:0907.2560 [hep-th]Google Scholar
[181] S., Fredenhagen, V., Schomerus, Branes on group manifolds, gluon condensates, and twisted K-theory, J. High Energy Phys. 0104 (2001) 007, hep-th/0012164Google Scholar
[182] S., Fredenhagen, V., Schomerus, Brane dynamics in CFT backgrounds, hep-th/0104043
[183] S., Fredenhagen, V., Schomerus, D-branes in coset models, J. High Energy Phys. 0202 (2002) 005, hep-th/0111189Google Scholar
[184] D., Friedan, The space of conformal boundary conditions for the c = 1 Gaussian model, unpublished note (1999), http://www.physics.rutgers.edu/pages/friedan/
[185] D., Friedan, A., Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402, hep-th/0312197Google Scholar
[186] D., Friedan, E., Martinec, S. H., Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93Google Scholar
[187] D., Friedan, Z., Qiu, S. H., Shenker, Conformal invariance, unitarity and two-dimensional critical exponents, Phys. Rev. Lett. 52 (1984) 1575Google Scholar
[188] J., Frohlich, New superselection sectors (‘soliton states’) in two-dimensional Bose quantum field theories, Commun. Math. Phys. 47 (1976) 269Google Scholar
[189] J., Fröhlich, Statistics of fields, the Yang–Baxter equation and the theory of knots and links, in Non-perturbative Quantum Field Theory, G.t', Hooftet al. (eds.), Plenum 1988Google Scholar
[190] J., Fröhlich, The non-commutative geometry of two-dimensional supersymmetric conformal field theory, in PASCOS, Proceedings of the Fourth International Symposium on Particles, Strings and Cosmology, K. C., Wali (ed.), World Scientific 1995Google Scholar
[191] J., Fröhlich, J., Fuchs, I., Runkel, C., Schweigert, Kramers–Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601, cond-mat/0404051; Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [math-ph]Google Scholar
[192] J., Fröhlich, F., Gabbiani, Braid statistics in local quantum theory, Rev. Math. Phys. 2 (1990) 251Google Scholar
[193] J., Fröhlich, K., Gawȩdzki, Conformal field theory and the geometry of strings, CRM Proceedings and Lecture Notes, Vol. 7, CRM 1994, 57, hep-th/9310187Google Scholar
[194] J., Fröhlich, O., Grandjean, A., Recknagel, Supersymmetric quantum theory, non-commutative geometry, and gravitation, in Les Houches 1995, Elsevier 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki (eds.), hep-th/9706132
[195] J., Fröhlich, O., Grandjean, A., Recknagel, V., Schomerus, Fundamental strings in Dp–Dq brane systems, Nucl. Phys. B 583 (2000) 381, hep-th/9912079Google Scholar
[196] J., Fröhlich, T., Kerler, Quantum groups, quantum categories and quantum field theory, Lecture Notes in Mathematics, vol. 1542, Springer 1993Google Scholar
[197] J., Fröhlich, C., King, The Chern–Simons theory and knot polynomials, Commun. Math. Phys. 126 (1989) 167; Two-dimensional conformal field theory and three-dimensional topology, Int. J. Mod. Phys. A 4 (1989) 5321Google Scholar
[198] J., Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory, Cambridge University Press 1992Google Scholar
[199] J., Fuchs, Fusion rules in conformal field theory, Fortsch. Phys. 42 (1994) 1, hep-th/9306162Google Scholar
[200] J., Fuchs, A., Klemm, C., Scheich, M. G., Schmidt, Gepner models with arbitrary affine invariants and the associated Calabi–Yau spaces, Phys. Lett. B 232 (1989) 317; Spectra and symmetries of Gepner models compared to Calabi–Yau compactifications, Ann. Phys. 204 (1990) 1Google Scholar
[201] J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 1: Partition functions, Nucl. Phys. B 646 (2002) 353, hep-th/0204148; TFT construction of RCFT correlators. 2: Unoriented world sheets, Nucl. Phys. B 678 (2004) 511, hep-th/0306164;TFT construction of RCFT correlators. 3: Simple currents, Nucl. Phys. B 694 (2004) 277, hep-th/0403157; TFT construction of RCFT correlators 4: Structure constants and correlation functions, Nucl. Phys. B 715 (2005) 539, hep-th/ 0412290Google Scholar
[202] J., Fuchs, A. N., Schellekens, C., Schweigert, A matrix S for all simple current extensions, Nucl. Phys. B 473 (1996) 323, hep-th/9601078Google Scholar
[203] J., Fuchs, C., Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, Cambridge University Press 1997Google Scholar
[204] J., Fuchs, C., Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414 (1997) 251, hep-th/9708141Google Scholar
[205] J., Fuchs, C., Schweigert, Branes: from free fields to general conformal field theories, Nucl. Phys. B 530 (1998) 99, hep-th/9712257Google Scholar
[206] J., Fuchs, C., Schweigert, Completeness of boundary conditions for the critical three-state Potts model, Phys. Lett. B 441 (1998) 141, hep-th/9806121Google Scholar
[207] J., Fuchs, C., Schweigert, Orbifold analysis of broken bulk symmetriesPhys. Lett. B 447 (1999) 266, hep-th/9811211; Symmetry breaking boundaries I. General theory, Nucl. Phys. B 558 (1999) 419, hep-th/9902132; Symmetry breaking boundaries II. More structures; examples, Nucl. Phys. B 568 (2000) 543, hep-th/9908025Google Scholar
[208] J., Fuchs, C., Schweigert, J., Walcher, Projections in string theory and boundary states for Gepner models, Nucl. Phys. B 588 (2000) 110, hep-th/0003298Google Scholar
[209] P., Furlan, G. M., Sotkov, I. T., Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim. 12 (1989) 1Google Scholar
[210] F., Gabbiani, J., Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys. 155 (1993) 569Google Scholar
[211] M. R., Gaberdiel, Fusion in conformal field theory as the tensor product of the symmetry algebra, Int. J. Mod. Phys. A 9 (1994) 4619, hep-th/9307183Google Scholar
[212] M. R., Gaberdiel, An introduction to conformal field theory, Rept. Prog. Phys. 63 (2000) 607, hep-th/9910156Google Scholar
[213] M. R., Gaberdiel, Discrete torsion orbifolds and D branes, J. High Energy Phys. 0011 (2000) 026, hep-th/0008230Google Scholar
[214] M. R., Gaberdiel, P., Goddard, Axiomatic conformal field theory, Commun. Math. Phys. 209 (2000) 549, hep-th/9810019Google Scholar
[215] M. R., Gaberdiel, A., Recknagel, Conformal boundary states for free bosons and free fermions, J. High Energy Phys. 0111 (2001) 016, hep-th/0108238Google Scholar
[216] M. R., Gaberdiel, A., Recknagel, G. M. T., Watts, The conformal boundary states for SU(2) at level 1, Nucl. Phys. B 626 (2002) 344, hep-th/0108102Google Scholar
[217] M. R., Gaberdiel, A., Konechny, C., Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009) 105402, arXiv:0811.3149 [hep-th]Google Scholar
[218] T., Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys. 161 (1994) 233, hep-th/9212060; The classification of SU(3) modular invariants revisited, Annales Henri Poincaré: Phys. Theor. 65 (1996) 15, hep-th/9404185; The level 2 and 3 modular invariants of SU(n), Lett. Math. Phys. 39 (1997) 289, hep-th/9511040Google Scholar
[219] T., Gannon, Integers in the open string, Phys. Lett. B 473 (2000) 80, hep-th/9910148Google Scholar
[220] T., Gannon, Boundary conformal field theory and fusion ring representations, Nucl. Phys. B 627 (2002) 506, hep-th/0106105Google Scholar
[221] M. R., Garousi, R. C., Myers, Superstring scattering from D-branes, Nucl. Phys. B 475 (1996) 193, hep-th/9603194Google Scholar
[222] E., Gava, J. F., Morales, K. S., Narain, G., Thompson, Bound states of type I D-strings, Nucl. Phys. B 528 (1998) 95, hep-th/9801128Google Scholar
[223] K., Gawȩdzki, Quadrature of conformal field theories, Nucl. Phys. B 328 (1989) 733; Coulomb gas representation of the SU(2) WZW correlators at higher genera, Lett. Math. Phys. 33 (1995) 335, hep-th/9404012; SU(2) WZW theory at higher genera, Commun. Math. Phys. 169 (1995) 329, hep-th/9402091Google Scholar
[224] K., Gawȩdzki, Lectures on conformal field theory, Lecture Notes Princeton 1996; see http://www.math.ias.edu/QFT/fall/index.html
[225] K., Gawȩdzki, Conformal field theory: a case study, hep-th/9904145
[226] K., Gawȩdzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincarée 3 (2002) 847, hep-th/0108044Google Scholar
[227] K., Gawȩdzki, A., Kupiainen, G/H conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119; Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625Google Scholar
[228] D., Gepner, Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys. B 296 (1988) 757Google Scholar
[229] D., Gepner, Lectures on N=2 string theory, Lectures at the Trieste Spring School on Superstrings 1989Google Scholar
[230] D., Gepner, Z., Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987) 423Google Scholar
[231] D., Gepner, E., Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986) 493Google Scholar
[232] A. A., Gerasimov, S. L., Shatashvili, On exact tachyon potential in open string field theory, J. High Energy Phys. 0010 (2000) 034, hep-th/0009103Google Scholar
[233] G. W., Gibbons, N. S., Manton, Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B 274 (1986) 183Google Scholar
[234] E. G., Gimon, J., Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D 54 (1996) 1667, hep-th/9601038Google Scholar
[235] P., Ginsparg, Applied conformal field theory, Lectures given at the Les Houches Summer School in Theoretical Physics 1988Google Scholar
[236] P., Ginsparg, Curiosities at c = 1, Nucl. Phys. B 295 (1988) 153Google Scholar
[237] V., Ginzburg, Lectures on Noncommutative Geometry, math.AG/0506603
[238] A., Giveon, D., Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983, hep-th/9802067Google Scholar
[239] P., Goddard, Meromorphic conformal field theory, in Infinite-dimensional Lie Algebras and Lie Groups, V. G., Kac (ed.), World Scientific 1989Google Scholar
[240] P., Goddard, A., Kent, D. I., Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88; Unitary representations of the Virasoro and Supervirasoro algebras, Commun. Math. Phys. 103 (1986) 105Google Scholar
[241] P., Goddard, D. I., Olive, Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303Google Scholar
[242] J., Gomis, D-branes on orbifolds with discrete torsion and topological obstruction, J. High Energy Phys. 0005 (2000) 006, hep-th/0001200Google Scholar
[243] R., Gopakumar, S., Minwalla, A., Strominger, Noncommutative solitons, J. High Energy Phys. 0005 (2000) 020, hep-th/0003160Google Scholar
[244] S., Govindarajan, J., Majumder, Crosscaps in Gepner models and type IIA orientifolds, J. High Energy Phys. 0402 (2004) 026, hep-th/0306257Google Scholar
[245] K., Graham, I., Runkel, G. M. T., Watts, Minimal model boundary flows and c = 1 CFT, Nucl. Phys. B 608 (2001) 527, hep-th/0101187Google Scholar
[246] K., Graham, G. M. T., Watts, Defect lines and boundary flows, J. High Energy Phys. 0404 (2004) 019, hep-th/0306167Google Scholar
[247] M. B., Green, A gas of D-instantons, Phys. Lett. B 354 (1995) 271, hep-th/9504108Google Scholar
[248] M. B., Green, M., Gutperle, Symmetry breaking at enhanced symmetry points, Nucl. Phys. B 460 (1996) 77, hep-th/9509171Google Scholar
[249] M. B., Green, M., Gutperle, Light-cone supersymmetry and D-branes, Nucl. Phys. B 476 (1996) 484, hep-th/9604091Google Scholar
[250] M. B., Green, M., Gutperle, D-instanton partition functions, Phys. Rev. D 58 (1998) 046007, hep-th/9804123Google Scholar
[251] M. B., Green, J. A., Harvey, G., Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47, hep-th/9605033Google Scholar
[252] M. B., Green, J. H., Schwarz, E., Witten, Superstring Theory I, II, Cambridge University Press 1987Google Scholar
[253] B. R., Greene, String theory on Calabi–Yau manifolds, TASI lectures, hep-th/9702155
[254] B. R., Greene, M. R., Plesser, Duality in Calabi–Yau moduli spaces, Nucl. Phys. B 338 (1990) 14Google Scholar
[255] B. R., Greene, C., Vafa, N. P., Warner, Calabi–Yau manifolds and renormalization group flows, Nucl. Phys. B 324 (1989) 371Google Scholar
[256] M. T., Grisaru, A. E. M., van de Ven, D., Zanon, Four loop beta function for the N =1 and N = 2 supersymmetric nonlinear sigma model in two dimensions, Phys. Lett. B 173 (1986) 423; Two-dimensional supersymmetric sigma models on Ricci flat Kahler manifolds are not finite, Nucl. Phys. B 277 (1986) 388Google Scholar
[257] D. J., Gross, N. A., Nekrasov, Monopoles and strings in noncommutative gauge theory, J. High Energy Phys. 0007 (2000) 034, hep-th/0005204Google Scholar
[258] H., Grosse, C., Klimčík, P., Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231, hep-th/9505175; Field theory on a supersymmetric lattice, Commun. Math. Phys. 185 (1997) 155, hep-th/9507074; Simple field theoretical models on noncommutative manifolds, Lecture Notes Clausthal 1995, hep-th/9510177Google Scholar
[259] S. S., Gubser, A., Hashimoto, I. R., Klebanov, J. M., Maldacena, Gravitational lensing by p-branes, Nucl. Phys. B 472 (1996) 231, hep-th/9601057Google Scholar
[260] S. S., Gubser, I. R., Klebanov, A. M., Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105, hep-th/9802109Google Scholar
[261] S., Gukov, I. R., Klebanov, A. M., Polyakov, Dynamics of (n, 1) strings, Phys. Lett. B 423 (1998) 64, hep-th/9711112Google Scholar
[262] M., Gutperle, Aspects of D-instantons, hep-th/9712156
[263] M., Gutperle, Y., Satoh, D-branes in Gepner models and supersymmetry, Nucl. Phys. B 543 (1999) 73, hep-th/9808080Google Scholar
[264] M., Gutperle, Y., Satoh, D0-branes in Gepner models and N = 2 black holes, Nucl. Phys. B 555 (1999) 477, hep-th/9902120Google Scholar
[265] R., Haag, Local Quantum Physics, Springer 1992Google Scholar
[266] M., Hamermesh, Group Theory and its Applications to Physical Problems, Addison-Wesley 1962Google Scholar
[267] A., Hanany, E., Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152, hep-th/9611230Google Scholar
[268] J. A., Harvey, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076
[269] J. A., Harvey, P., Kraus, F., Larsen, Exact noncommutative solitons, J. High Energy Phys. 0012 (2000) 024, hep-th/0010060Google Scholar
[270] R., Harvey, H. B., Lawson, Calibrated geometries, Acta Math. 148 (1982) 47Google Scholar
[271] A., Hashimoto, I. R., Klebanov, Decay of excited D-branes, Phys. Lett. B 381 (1996) 437, hep-th/9604065; Scattering of strings from D-branes, Nucl. Phys. B Proc. Suppl. 55B (1997) 118, hep-th/9611214Google Scholar
[272] K., Hashimoto, K., Krasnov, D-brane solutions in non-commutative gauge theory on fuzzy sphere, Phys. Rev. D 64 (2001) 046007, hep-th/0101145Google Scholar
[273] M., Herbst, K., Hori, D., Page, Phases of N = 2 theories in 1+1 dimensions with boundary, arXiv:0803.2045 [hep-th]
[274] M., Herbst, C. I., Lazaroiu, Localization and traces in open–closed topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005) 044, hep-th/0404184Google Scholar
[275] M., Herbst, C. I., Lazaroiu, W., Lerche, Superpotentials, A-infinity relations and WDVV equations for open topological strings, J. High Energy Phys. 0502 (2005) 071, hep-th/0402110Google Scholar
[276] Y., Hikida, M., Nozaki, Y., Sugawara, Formation of spherical D2-brane from multiple D0-branes, Nucl. Phys. B 617 (2001) 117, hep-th/0101211Google Scholar
[277] C., Hofman, On the open–closed B-model, J. High Energy Phys. 0311 (2003) 069, hep-th/0204157Google Scholar
[278] J., Hoppe, Diffeomorphism groups, quantization and SU(∞), Int. J. Mod. Phys. A 4 (1989) 5235Google Scholar
[279] P., Horava, E., Witten, Heterotic and type I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506, hep-th/9510209; Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94, hep-th/9603142Google Scholar
[280] K., Hori, Boundary RG flows of N = 2 minimal models, hep-th/0401139
[281] K., Hori, A., Iqbal, C., Vafa, D-branes and mirror symmetry, hep-th/0005247
[282] K., Hori, S., Katz, A., Klemm, R., Pandharipande, R., Thomas, C., Vafa, R., Vakil, E., Zaslow (eds.), Mirror Symmetry, Clay Mathematics Monographs 2003
[283] K., Hori, J., Walcher, F-term equations near Gepner points, J. High Energy Phys. 0501 (2005) 008, hep-th/0404196Google Scholar
[284] G. T., Horowitz, The origin of black hole entropy in string theory, gr-qc/9604051
[285] G. T., Horowitz, A., Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197Google Scholar
[286] S., Hosono, A., Klemm, S., Theisen, Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301, hep-th/9308122; Lectures on Mirror Symmetry, hep-th/9403096Google Scholar
[287] B.-Y., Hou, K.-J., Shi, P., Wang, R.-H., Yue, The crossing matrices of WZW SU(2) model and minimal models with the quantum 6j symbols, Nucl. Phys. B 345 (1990) 659Google Scholar
[288] P. S., Howe, P. C., West, N = 2 Superconformal models, Landau–Ginzburg Hamiltonians and the epsilon expansion, Phys. Lett. B 223 (1989) 377Google Scholar
[289] Y. Z., Huang, Vertex operator algebras and the Verlinde conjecture, math.qa/0406291; Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. USA 102 (2005) 5352, math.qa/0412261; Rigidity and modularity of vertex tensor categories, math.qa/0502533; Vertex operator algebras, fusion rules and modular transformations, math.qa/0502558
[290] T., Hubsch, Calabi–Yau Manifolds: A Bestiary for Physicists, World Scientific 1992Google Scholar
[291] L. R., Huiszoon, A. N., Schellekens, N., Sousa, Klein bottles and simple currents, Phys. Lett. B 470 (1999) 95, hep-th/9909114Google Scholar
[292] F., Hussain, R., Iengo, C., Nuñez, C. A., Scrucca, Interaction of moving D-branes on orbifolds, Phys. Lett. B 409 (1997) 101, hep-th/9706186; Interaction of D-branes on orbifolds and massless particle emission, hep-th/9711021; Aspects of D-brane dynamics on orb-ifolds, hep-th/9711020; Closed string radiation from moving D-branes, Nucl. Phys. B 517 (1998) 92, hep-th/9710049Google Scholar
[293] K. A., Intriligator, Bonus symmetry in conformal field theory, Nucl. Phys. B 332 (1990) 541Google Scholar
[294] N., Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989) 251Google Scholar
[295] N., Ishibashi, T., Onogi, Conformal field theories on surfaces with boundaries and cross-caps, Mod. Phys. Lett. A 4 (1989) 161Google Scholar
[296] C., Itzykson, H., Saleur, J.-B., Zuber (eds.), Conformal Invariance and Applications to Statistical Mechanics, World Scientific 1988
[297] C., Itzykson, J. B., Zuber, Two-dimensional conformal invariant theories on a torus, Nucl. Phys. B 275 (1986) 580Google Scholar
[298] R. A., Janik, Exceptional boundary states at c = 1, Nucl. Phys. B 618 (2001) 675, hep-th/0109021Google Scholar
[299] D. P., Jatkar, G., Mandal, S. R., Wadia, K. P., Yogendran, Matrix dynamics of fuzzy spheres, J. High Energy Phys. 0201 (2002) 039, hep-th/0110172Google Scholar
[300] D., Kabat, P., Pouliot, A comment on zero-brane quantum mechanics, Phys. Rev. Lett. 77 (1996) 1004, hep-th/9603127Google Scholar
[301] S., Kachru, J., McGreevy, Supersymmetric three-cycles and (super)symmetry breaking, Phys. Rev. D 61 (2000) 026001, hep-th/9908135Google Scholar
[302] A., Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2000) 127, hep-th/9909089Google Scholar
[303] A., Kapustin, Y., Li, D-branes in Landau–Ginzburg models and algebraic geometry, J. High Energy Phys. 0312 (2003) 005, hep-th/0210296Google Scholar
[304] A., Kapustin, Y., Li, Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2004) 727, hep-th/0305136Google Scholar
[305] A., Kapustin, Y., Li, D-branes in topological minimal models: the Landau–Ginzburg approach, J. High Energy Phys. 0407 (2004) 045, hep-th/0306001Google Scholar
[306] A., Kapustin, D., Orlov, Remarks on A branes, mirror symmetry, and the Fukaya category, J. Geom. Phys. 48 (2003) 84, hep-th/0109098Google Scholar
[307] A., Kapustin, D., Orlov, Lectures on mirror symmetry, derived categories, and D-branes, math.AG/0308173
[308] P., Kaste, W., Lerche, C. A., Lütken, J., Walcher, D-branes on K3-fibrations, Nucl. Phys. B 582 (2000) 203, hep-th/9912147Google Scholar
[309] H., Kausch, G. M. T., Watts, A study of W-algebras using Jacobi identities, Nucl. Phys. B 354 (1991) 740Google Scholar
[310] Y., Kazama, H., Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232Google Scholar
[311] R., Kedem, T. R., Klassen, B. M., McCoy, E., Melzer, Fermionic quasiparticle representations for characters of, Phys. Lett. B 304 (1993) 263, hep-th/9211102; Fermionic sum representations for conformal field theory characters, Phys. Lett. B 307 (1993) 68, hep-th/9301046Google Scholar
[312] R., Kedem, B. M., McCoy, Construction of modular branching functions from Bethe's equations in the 3-state Potts chain, hep-th/9210129
[313] B., Keller, Introduction to A-infinity algebras and modules, Homology, Homotopy Appl. 3 (2001) 1, math.RA/9910179Google Scholar
[314] A. N., Kirillov, N. Y., Reshetikhin, Representations of the algebra U(q)(sl(2), q-orthogonal polynomials and invariants of links, in New Developments in the Theory of Knots, T., Kohno (ed.), World Scientific 1990Google Scholar
[315] C., Klimčík, A nonperturbative regularization of the supersymmetric Schwinger model, Commun. Math. Phys. 206 (1999) 567, hep-th/9903112Google Scholar
[316] J., Knapp, H., Omer, Matrix factorizations, minimal models and Massey products, J. High Energy Phys. 0605 (2006) 064, hep-th/0604189Google Scholar
[317] V. G., Knizhnik, A. B., Zamolodchikov, Current algebra and Wess–Zumino model in two dimensions, Nucl. Phys. B 247 (1984) 83Google Scholar
[318] A., Konechny, g function in perturbation theory, Int. J. Mod. Phys. A 19 (2004) 2545, hep-th/0310258Google Scholar
[319] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353, hep-th/0012145Google Scholar
[320] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Part II, Phys. Rept. 360 (2002) 353, hep-th/0107251Google Scholar
[321] M., Kontsevich, Homological algebra of mirror symmetry, alg-geom/9411018
[322] M., Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66 (2003) 157, q-alg/9709040Google Scholar
[323] M., Kontsevich, Y., Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041
[324] D., Kutasov, M., Marino, G. W., Moore, Some exact results on tachyon condensation in string field theory, J. High Energy Phys. 0010 (2000) 045, hep-th/0009148; Remarks on tachyon condensation in superstring field theory, hep-th/0010108Google Scholar
[325] O. A., Laudal, Matric Massey products and formal moduli I, in Lecture Notes in Mathematics, vol. 1183, Springer 1986, p. 218Google Scholar
[326] C. I., Lazaroiu, On the structure of open–closed topological field theory in two dimensions, Nucl. Phys. B 603 (2001) 497, hep-th/0010269Google Scholar
[327] C. I., Lazaroiu, On the boundary coupling of topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005) 037, hep-th/0312286Google Scholar
[328] R. G., Leigh, Dirac–Born–Infeld action from Dirichlet sigma model, Mod. Phys. Lett. A 4 (1989) 2767Google Scholar
[329] W., Lerche, Recent developments in string theory, hep-th/9710246
[330] W., Lerche, B., Schellekens, N. P., Warner, Lattices and strings, Phys. Rept. 177 (1989) 1Google Scholar
[331] W., Lerche, C., Vafa, N. P., Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427Google Scholar
[332] F., Lesage, H., Saleur, Boundary conditions changing operators in non conformal theories, Nucl. Phys. B 520 (1998) 563, hep-th/9801089Google Scholar
[333] F., Lesage, H., Saleur, P., Simonetti, Boundary flows in minimal models, Phys. Lett. B 427 (1998) 85, hep-th/9802061Google Scholar
[334] D. C., Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992) 654Google Scholar
[335] M., Li, Boundary states of D-branes and Dy-strings, Nucl. Phys. B 460 (1996) 351, hep-th/9510161Google Scholar
[336] A. W. W., Ludwig, Field theory approach to critical quantum impurity problems and applications to the multi-channel Kondo effect, Int. J. Mod. Phys. B 8 (1994) 347; Methods of conformal field theory in condensed matter physics: an introduction to nonabelian bosonization, in: Low-dimensional Quantum Field Theories for Condensed Matter Physicists, S. Lundqvist, G. Morandi, Y. Lu (eds.), World Scientific 1995Google Scholar
[337] D., Lüst, S., Theisen, Lectures on string theory, Lecture Notes in Physics, vol. 346, Springer 1989Google Scholar
[338] G., Mack, V., Schomerus, Quasi-Hopf quantum symmetry in quantum theory, Nucl. Phys. B 370 (1991) 185; Action of truncated quantum groups on quasi-quantum planes and a quasi-associative differential geometry and calculus, Commun. Math. Phys. 149 (1992) 513Google Scholar
[339] J., Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69Google Scholar
[340] J., Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press 1999Google Scholar
[341] J., Majumder, A., Sen, ‘Blowing up’ D-branes on non-supersymmetric cycles, J. High Energy Phys. 9909 (1999) 004, hep-th/9906109Google Scholar
[342] J. M., Maldacena, Black holes in string theory, hep-th/9607235
[343] J. M., Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200Google Scholar
[344] J. M., Maldacena, G. W., Moore, N., Seiberg, Geometrical interpretation of D-branes in gauged WZW models, J. High Energy Phys. 0107 (2001) 046, hep-th/0105038Google Scholar
[345] J. M., Maldacena, G. W., Moore, N., Seiberg, D-brane instantons and K-theory charges, J. High Energy Phys. 0111 (2001) 062, hep-th/0108100Google Scholar
[346] N. S., Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54Google Scholar
[347] D., Matalliotakis, H. P., Nilles, S., Theisen, Matching the BPS spectra of heterotic – type I–type I' strings, Phys. Lett. B 421 (1998) 169, hep-th/9710247Google Scholar
[348] K., Matsubara, V., Schomerus, M., Smedbäack, Open strings in simple current orbifolds, Nucl. Phys. B 626 (2002) 53, hep-th/0108126Google Scholar
[349] G., Moore, N., Reshetikhin, A comment on quantum group symmetry in conformal field theory, Nucl. Phys. B 328 (1989) 557Google Scholar
[350] G., Moore, N., Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988) 451; Classical and conformal quantum field theory, Commun. Math. Phys. 123 (1989) 177; Lectures on rational conformal field theory, http://www.physics.rutgers.edu/~gmoore/LecturesRCFT.pdfGoogle Scholar
[351] J. E., Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99Google Scholar
[352] R. C., Myers, Dielectric-branes, J. High Energy Phys. 9912 (1999) 022, hep-th/9910053Google Scholar
[353] W., Nahm, Lie group exponents and SU(2) current algebras, Commun. Math. Phys. 118 (1988) 171Google Scholar
[354] W., Nahm, Quantum field theories in one and two dimensions, Duke Math. J. 54 (1987) 579; Chiral algebras of two-dimensional chiral field theories and their normal ordered products, Proceedings of the Trieste Conference on Recent Developments in Conformational Field Theories, Trieste, October 1989Google Scholar
[355] W., Nahm, A proof of modular invariance, Int. J. Mod. Phys. A 6 (1991) 2837Google Scholar
[356] W., Nahm, Quasi-rational fusion products, Int. J. Mod. Phys. B 8 (1994) 3693, hep-th/9402039Google Scholar
[357] W., Nahm, Conformal quantum field theories in two dimensions, in preparation
[358] W., Nahm, A., Recknagel, M., Terhoeven, Dilogarithm identities in conformal field theory, Mod. Phys. Lett. A 8 (1993) 1835, hep-th/9211034Google Scholar
[359] W., Nahm, K., Wendland, A Hiker's guide to K3: aspects of N = (4, 4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85, hep-th/9912067Google Scholar
[360] M., Naka, M., Nozaki, Boundary states in Gepner models, J. High Energy Phys. 0005 (2000) 027, hep-th/0001037Google Scholar
[361] N., Nekrasov, A., Schwarz, Instantons on noncommutative ℝ4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198 (1998) 689, hep-th/9802068Google Scholar
[362] N. A., Obers, B., Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113, hep-th/9809039; Eisenstein series and string thresholds, Commun. Math. Phys. 209 (2000) 275, hep-th/9903113Google Scholar
[363] A., Ocneanu, Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications II, London Mathematical Society, Cambridge University Press 1989; Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45, recorded by Y. Kawahigashi, July 1990Google Scholar
[364] H., Ooguri, Y., Oz, Z., Yin, D-branes on Calabi–Yau spaces and their mirrors, Nucl. Phys. B 477 (1996) 407, hep-th/9606112Google Scholar
[365] H., Ooguri, Z., Yin, TASI lectures on perturbative string theories, hep-th/9612254
[366] D., Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, vol. II, Birkhäauser 2009, math.AG/0503632Google Scholar
[367] M., Oshikawa, I., Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys B 495 (1997) 533, condmat/9612187Google Scholar
[368] B., Ovrut, N =1 supersymmetric vacua in heterotic M-theory, hep-th/9905115
[369] V., Pasquier, Operator content of the ADE lattice models, J. Phys. A 20 (1987) 5707; Two-dimensional critical systems labeled by Dynkin diagrams, Nucl. Phys. B 285 (1987) 162; Etiology of IRF models, Commun. Math. Phys. 118 (1988) 355Google Scholar
[370] V. B., Petkova, J.-B., Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438 (1995) 347, hep-th/9410209Google Scholar
[371] V. B., Petkova, J.-B., Zuber, From CFT to graphs, Nucl. Phys. B 463 (1996) 161, hep-th/9510175; Conformal field theory and graphs, hep-th/9701103Google Scholar
[372] V. B., Petkova, J.-B., Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157, hep-th/0011021Google Scholar
[373] V. B., Petkova, J.-B., Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001) 449, hep-th/0101151Google Scholar
[374] J., Polchinski, Combinatorics of boundaries in string theory, Phys. Rev. D 50 (1994) 6041, hep-th/9407031Google Scholar
[375] J., Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017Google Scholar
[376] J., Polchinski, TASI lectures on D-branes, hep-th/9611050
[377] J., Polchinski, String Theory I, II, Cambridge University Press 1998Google Scholar
[378] J., Polchinski, Y., Cai, Consistency of open superstring theories, Nucl. Phys. B 296 (1988) 91Google Scholar
[379] J., Polchinski, S., Chaudhuri, C. V., Johnson, Notes on D-Branes, hep-th/9602052
[380] J., Polchinski, L., Thorlacius, Free fermion representation of a boundary conformal field theory, Phys. Rev. D 50 (1994) 622, hep-th/9404008Google Scholar
[381] A. P., Polychronakos, Flux tube solutions in noncommutative gauge theories, Phys. Lett. B 495 (2000) 407, hep-th/0007043Google Scholar
[382] G., Pradisi, A., Sagnotti, Open string orbifolds, Phys. Lett. B 216 (1989) 59Google Scholar
[383] G., Pradisi, A., Sagnotti, Y. S., Stanev, Planar duality in SU(2) WZW models, Phys. Lett. B 354 (1995) 279, hep-th/9503207; The open descendants of non-diagonal SU(2) WZW models, Phys. Lett. B 356 (1995) 230, hep-th/9506014Google Scholar
[384] G., Pradisi, A., Sagnotti, Y. S., Stanev, Completeness conditions for boundary operators in 2d conformal field theory, Phys. Lett. B 381 (1996) 97, hep-th/9603097Google Scholar
[385] A., Pressley, G., Segal, Loop Groups, Clarendon 1988Google Scholar
[386] A., Recknagel, Permutation branes, J. High Energy Phys. 0304 (2003) 041, hep-th/0208119Google Scholar
[387] A., Recknagel, On Permutation branes, Fortsch. Phys. 51 (2003) 824Google Scholar
[388] A., Recknagel, D., Roggenkamp, V., Schomerus, On relevant boundary perturbations in unitary minimal models, Nucl. Phys. B 588 (2000) 552, hep-th/0003110Google Scholar
[389] A., Recknagel, V., Schomerus, D-branes in Gepner models, Nucl. Phys. B 531 (1998) 185, hep-th/9712186Google Scholar
[390] A., Recknagel, V., Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999) 233, hep-th/9811237Google Scholar
[391] A., Recknagel, V., Schomerus, Moduli spaces of D-branes in CFT-backgrounds, Fortsch. Phys. 48 (2000) 195, hep-th/9903139Google Scholar
[392] K.-H., Rehren, Markov traces as characters for local algebras, Nucl. Phys. B Proc. Suppl. 18B (1990) 259; Braid group statistics and their superselection rules, in The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, D. Kastler (ed.), World Scientific 1990; Quantum symmetry associated with braid group statistics, in Lecture Notes in Physics, vol. 370, Springer 1990; Quantum symmetry associated with braid group statistics II, in: Quantum Symmetries Doebner et al. (eds.), World Scientific 1993Google Scholar
[393] K.-H., Rehren, B., Schroer, Einstein causality and Artin braids, Nucl. Phys. B 312 (1989) 715Google Scholar
[394] S.-J., Rey, The confining phase of superstrings and axionic strings, Phys. Rev. D 43 (1991) 526Google Scholar
[395] A., Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, in Vertex Operators in Mathematics and Physics, J., Lepowskyet al. (eds.), Springer 1985Google Scholar
[396] D., Roggenkamp, K., Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004) 589, hep-th/0308143Google Scholar
[397] I., Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563, hep-th/9811178Google Scholar
[398] I., Runkel, Structure constants for the D-series Virasoro minimal models, Nucl. Phys. B 579 (1999) 561, hep-th/9908046Google Scholar
[399] A., Sagnotti, Open strings and their symmetry groups, in Non-perturbative Methods in Field Theory, G., Macket al. (eds.), Lecture Notes Cargese 1987Google Scholar
[400] A., Sagnotti, Some properties of open string theories, hep-th/9509080
[401] A., Sagnotti, Surprises in open-string perturbation theory, Nucl. Phys. B Proc. Suppl. 56B (1997) 332, hep-th/9702093Google Scholar
[402] E., Scheidegger, D-branes on some one- and two-parameter Calabi–Yau hypersurfaces, J. High Energy Phys. 0004 (2000) 003, hep-th/9912188Google Scholar
[403] E., Scheidegger, D0-branes in Gepner models, J. High Energy Phys. 0208 (2002) 001, hep-th/0109013Google Scholar
[404] E., Scheidegger, D-branes on Calabi–Yau spaces, Ph.D. thesis, Ludwig-Maximilians-Universität, Munich (2001), available at http://edoc.ub.uni-muenchen.de/archive/00000445Google Scholar
[405] A. N., Schellekens, S., Yankielowicz, Extended chiral algebras and modular invariant partition functions, Nucl. Phys. B 327 (1989) 673; Modular invariants from simple currents: an explicit proof, Phys. Lett. B 227 (1989) 387Google Scholar
[406] A. N., Schellekens, S., Yankielowicz, Simple currents, modular invariants and fixed points, Int. J. Mod. Phys. A 5 (1990) 2903Google Scholar
[407] A. N., Schellekens, S., Yankielowicz, Field identification fixed points in the coset construction, Nucl. Phys. B 334 (1990) 67Google Scholar
[408] V., Schomerus, Construction of field algebras with quantum symmetry from local observables, Commun. Math. Phys. 169 (1995) 193, hep-th/9401042Google Scholar
[409] V., Schomerus, Non-compact string backgrounds and non-rational CFT, Phys. Rept. 431 (2006) 39, hep-th/0509155.Google Scholar
[410] V., Schomerus, D-branes and deformation quantization, J. High Energy Phys. 9906 (1999) 030, hep-th/9903205Google Scholar
[41l] M., Schottenloher (ed.), A mathematical introduction to conformal field theory, Lecture Notes in Physics, vol. 759, Springer 2008, p. 1
[412] J. H., Schwarz, Superstring theory, Phys. Rept. 89 (1982) 223Google Scholar
[413] A., Schwimmer, N., Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two dimensions, Phys. Lett. B 184 (1987) 191Google Scholar
[414] G., Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, K., Bleuler, M., Werner (eds.), Kluwer 1988Google Scholar
[415] N., Seiberg, E., Witten, String theory and noncommutative geometry, J. High Energy Phys. 9909 (1999) 032, hep-th/9908142Google Scholar
[416] A., Sen, Tachyon condensation on the brane antibrane system, J. High Energy Phys. 9808 (1998) 012, hep-th/9805170; Stable non-BPS bound states of BPS D-branes, J. High Energy Phys. 9808 (1998) 010, hep-th/9805019; Stable non-BPS states in string theory, J. High Energy Phys. 9806 (1998) 007, hep-th/9803194Google Scholar
[417] A., Sen, SO(32) spinors of type I and other solitons on brane–antibrane pair, J. High Energy Phys. 9809 (1998) 023, hep-th/9808141Google Scholar
[418] A., Sen, Developments in superstring theory, hep-ph/9810356
[419] A., Sen, Type I D-particle and its interactions, J. High Energy Phys. 9810 (1998) 021, hep-th/9809111Google Scholar
[420] A., Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14 (1999) 4061, hep-th/9902105Google Scholar
[421] A., Sen, Non-BPS states and branes in string theory, hep-th/9904207
[422] A., Sen, Moduli space of unstable D-branes on a circle of critical radius, J. High Energy Phys. 0403 (2004) 070, hep-th/0312003Google Scholar
[423] A., Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513, hep-th/0410103Google Scholar
[424] S. L., Shatashvili, Comment on the background independent open string theory, Phys. Lett. B 311 (1993) 83, hep-th/9303143; On the problems with background independence in string theory, Alg. Anal. 6 (1994) 215, hep-th/9311177.Google Scholar
[425] M. M., Sheikh-Jabbari, Classification of different branes at angles, Phys. Lett. B 420 (1998) 279, hep-th/9710121; More on mixed boundary conditions and D-branes bound states, Phys. Lett. B 425 (1998) 48, hep-th/9712199Google Scholar
[426] S. H., Shenker, Another length scale in string theory?, hep-th/9509132
[427] S., Stanciu, D-branes in Kazama–Suzuki models, Nucl. Phys. B 526 (1998) 295, hep-th/9708166Google Scholar
[428] S., Stanciu, D-branes in group manifolds, J. High Energy Phys. 0001 (2000) 025, hep-th/9909163Google Scholar
[429] S., Stanciu, A note on D-branes in group manifolds: flux quantization and D0-charge, J. High Energy Phys. 0010 (2000) 015, hep-th/0006145Google Scholar
[430] S., Stanciu, A., Tseytlin, D-branes in curved spacetime: Nappi–Witten background, J. High Energy Phys. 9806 (1998) 010, hep-th/9805006Google Scholar
[431] Y. S., Stanev, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998. http://www.desy.de/~jfuchs/CftD-s.html
[432] K. S., Stelle, Lectures on supergravity p-branes, hep-th/9701088; BPS branes in super-gravity, hep-th/9803116
[433] A., Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44, hep-th/9512059Google Scholar
[434] A., Strominger, C., Vafa, Microscopic origin of the Bekenstein–Hawking entropy, Phys. Lett. B 379 (1996) 99, hep-th/9601029Google Scholar
[435] W., Taylor, D2-branes in B-fields, J. High Energy Phys. 0007 (2000) 039, hep-th/0004141Google Scholar
[436] J., Teschner, Remarks on Liouville theory with boundary, hep-th/0009138; Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153, hep-th/0104158Google Scholar
[437] P. K., Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184, hep-th/9501068Google Scholar
[438] A. A., Tseytlin, Ambiguity in the effective action in string theories, Phys. Lett. B 176 (1986) 92Google Scholar
[439] A. A., Tseytlin, Born–Infeld action, supersymmetry and string theory, hep-th/9908105
[440] C., Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592Google Scholar
[441] E., Verlinde, Fusion rules and modular transformations in 2-d conformal field theory, Nucl. Phys. B 300 (1988) 360Google Scholar
[442] N. P., Warner, N = 2 Supersymmetric integrable models and topological field theories, Lectures at the Trieste Summer School on High Energy Physics and Cosmology, 1992, hep-th/9301088Google Scholar
[443] N. P., Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995) 663, hep-th/9506064Google Scholar
[444] G. M. T., Watts, unpublished TCSA computations (February 2000)
[445] K., Wendland, Orbifold constructions of K3: a link between conformal field theory and geometry, hep-th/0112006
[446] H., Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1Google Scholar
[447] E. T., Whittaker, G. N., Watson, A Course of Modern Analysis, Cambridge University Press 2002Google Scholar
[448] E., Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455Google Scholar
[449] E., Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353; Topological sigma models, Commun. Math. Phys. 118 (1988) 411Google Scholar
[450] E., Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351Google Scholar
[451] E., Witten, On background independent open string field theory, Phys. Rev. D 46 (1992) 5467, hep-th/9208027; Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405, hep-th/9210065Google Scholar
[452] E., Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159, hep-th/9301042Google Scholar
[453] E., Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85, hep-th/9503124Google Scholar
[454] E., Witten, Bound states of strings and D-branes, Nucl. Phys. B 460 (1996) 335, hep-th/9510135Google Scholar
[455] E., Witten, Solutions of four-dimensional field theories via M theory, Nucl. Phys. B 500 (1997) 3, hep-th/9703166Google Scholar
[456] E., Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150Google Scholar
[457] E., Witten, D-branes and K-theory, J. High Energy Phys. 9812 (1998) 019, hep-th/9810188Google Scholar
[458] E., Wong, I., Affleck, Tunneling in quantum wires: a boundary conformal field theory approach, Nucl. Phys. B 417 (1994) 403Google Scholar
[459] S. T., Yau (ed.), Essays on Mirror Manifolds, International Press 1992
[460] S. A., Yost, Bosonized superstring boundary states and partition functions, Nucl. Phys. B 321 (1989) 629Google Scholar
[461] A. B., Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205Google Scholar
[462] A. B., Zamolodchikov, “Irreversibility” of the flux of the renormalization group in a 2-d field theory, JETP Lett. 43 (1986) 730Google Scholar
[463] A. B., Zamolodchikov, V. A., Fateev, Operator algebra and correlation functions in the two-dimensional Wess–Zumino SU(2) × SU(2) chiral model, Sov. J. Nucl. Phys. 43 (1986) 657Google Scholar
[464] Y., Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237Google Scholar
[465] J.-B., Zuber, Graphs, algebras, conformal field theories and integrable lattice models, Nucl. Phys. B Proc. Suppl. 18B (1990) 313; C-algebras and their applications to reflection groups and conformal field theories, hep-th/9707034Google Scholar
[466] J.-B., Zuber, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andreas Recknagel, King's College London, Volker Schomerus
  • Book: Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
  • Online publication: 05 November 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806476.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andreas Recknagel, King's College London, Volker Schomerus
  • Book: Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
  • Online publication: 05 November 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806476.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andreas Recknagel, King's College London, Volker Schomerus
  • Book: Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
  • Online publication: 05 November 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806476.010
Available formats
×