Skip to main content Accessibility help
×
  • Cited by 37
Publisher:
Cambridge University Press
Online publication date:
November 2013
Print publication year:
2013
Online ISBN:
9780511806476

Book description

Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.

Reviews

'… comprehensive …'

Source: CERN Courier

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] A., Abouelsaood, C. G., Callan, C. R., Nappi, S. A., Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599
[2] I., Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746
[3] I., Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995) 1869, cond-mat/9512099
[4] I., Affleck, A. W. W., Ludwig, Critical theory of overscreened Kondo fixed points, Nucl. Phys. B 360 (1991) 641; The Kondo effect, conformal field theory and fusion rules, Nucl. Phys. B 352 (1991) 849
[5] I., Affleck, A. W. W., Ludwig, Universal noninteger ‘groundstate degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161
[6] I., Affleck, A. W. W., Ludwig, Exact conformal field theory results on the multichannel Kondo effect: single-fermion Green's function, self-energy, and resistivity, Phys. Rev. B 48 (1993) 7297
[7] I., Affleck, M., Oshikawa, H., Saleur, Boundary critical phenomena in the three-state Potts model, cond-mat/9804117
[8] I., Affleck, Edge critical behaviour of the 2-dimensional tri-critical Ising model, J. Phys. A 33 (2000) 6473, cond-mat/0005286
[9] M., Aganagic, R., Gopakumar, S., Minwalla, A., Strominger, Unstable solitons in noncommutative gauge theory, J. High Energy Phys. 0104 (2001) 001, hep-th/0009142
[10] A. Yu., Alekseev, S., Fredenhagen, T., Quella, V., Schomerus, Non-commutative gauge theory of twisted D-branes, hep-th/0205123
[11] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Generalization of the Knizhnik–Zamolodchikov equations, Lett. Math. Phys. 41 (1997) 169, hep-th/9610066
[12] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Non-commutative world-volume geometries: branes on SU(2) and fuzzy spheres, J. High Energy Phys. 9909 (1999) 023, hep-th/9908040
[13] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Brane dynamics in background fluxes and non-commutative geometry, hep-th/0003187
[14] A. Yu., Alekseev, V., Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999) 061901, hep-th/9812193
[15] A. Yu., Alekseev, V., Schomerus, RR charges of D2-branes in the WZW model, hep-th/0007096
[16] A. Yu., Alekseev, S., Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys. 128 (1990) 197; Quantum groups and WZW models, Commun. Math. Phys. 133 (1990) 353
[17] L., Alvarez-Gaumé, D. Z., Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Commun. Math. Phys. 80 (1981) 443
[18] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Quantum group interpretation of some conformal field theories, Phys. Lett. B 220 (1989) 142
[19] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Topics in conformal field theory, in Physics and Mathematics of Strings, L., Brink, D., Friedan, A. M., Polyakov (eds.), World Scientific 1990
[20] C., Angelantonj, M., Bianchi, G., Pradisi, A., Sagnotti, Y. S., Stanev, Comments on Gepner models and type I vacua in string theory, Phys. Lett. B 387 (1996) 743, hep-th/9607229
[21] C., Angelantonj, A., Sagnotti, Open strings, Phys. Rept. 371 (2002) 1, Erratum: C. Angelantonj, A. Sagnotti, Open strings, Phys. Rept. 376 (2003) 339, hep-th/0204089
[22] I., Antoniadis, C., Bachas, Branes and the gauge hierarchy, Phys. Lett. B 450 (1999) 83, hep-th/9812093
[23] F., Ardalan, H., Arfaei, M. M., Sheikh-Jabbari, Noncommutative geometry from strings and branes, J. High Energy Phys. 9902 (1999) 016, hep-th/9810072
[24] S. K., Ashok, E., Dell'Aquila, D. E., Diaconescu, Fractional branes in Landau–Ginzburg orbifolds, hep-th/0401135
[25] P. S., Aspinwall, The Landau–Ginzburg to Calabi–Yau dictionary for D–branes, J. Math. Phys. 48 (2007) 082304, hep-th/0610209
[26] P. S., Aspinwall, M. R., Douglas, D-brane stability and monodromy, J. High Energy Phys. 0205 (2002) 031, hep-th/0110071
[27] C., Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37, hep-th/9511043
[28] C., Bachas, Lectures on D-branes, hep-th/9806199
[29] C., Bachas, On the symmetries of classical string theory, arXiv:0808.2777 [hep-th]
[30] C., Bachas, J., de Boer, R., Dijkgraaf, H., Ooguri, Permeable conformal walls and holography, J. High Energy Phys. 0206 (2002) 027, hep-th/0111210
[31] C., Bachas, M. R., Douglas, C., Schweigert, Flux stabilization of D-branes, J. High Energy Phys. 0005 (2000) 048, hep-th/0003037
[32] C., Bachas, M. R., Gaberdiel, Loop operators and the Kondo problem, J. High Energy Phys. 0411 (2004) 065, hep-th/0411067
[33] F. A., Bais, P., Bouwknegt, M., Surridge, K., Schoutens, Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants, Nucl. Phys. B 304 (1988) 348; Coset construction for extended Virasoro algebras, Nucl. Phys. B 304 (1988) 371
[34] V., Balasubramanian, R. G., Leigh, D-branes, moduli and supersymmetry, Phys. Rev. D 55 (1997) 6415, hep-th/9611165
[35] T., Banks, L. J., Dixon, D., Friedan, E., Martinec, Phenomenology and conformal field theory or Can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613
[36] P., Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998) 175, hep-th/9708120; Permutation orbifolds, Nucl. Phys. B 633 (2002) 365, hep-th/9910079
[37] M., Bauer, Aspects de I'invariance conformé, Universitè Paris VII, 1990
[38] M., Bauer, P., Di Francesco, C., Itzykson, J.-B., Zuber, Covariant differential equations and singular vectors in Virasoro representations, Nucl. Phys. B 362 (1991) 515
[39] M., Bauer, H., Saleur, On some relations between local height properties and conformal invariance, Nucl. Phys. B 320 (1989) 591
[40] K., Becker, M., Becker, D. R., Morrison, H., Ooguri, Y., Oz, Z., Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi–Yau 4-folds, Nucl. Phys. B 480 (1996) 225, hep-th/9608116
[41] K., Becker, M., Becker, A., Strominger, Fivebranes, membranes and non-perturbative string theory, Nucl. Phys. B 456 (1995) 130, hep-th/9507158
[42] R. E., Behrend, P. A., Pearce, J.-B., Zuber, Integrable boundaries, conformal boundary conditions and A–D–E fusion rules, J. Phys. A 31 (1998) 1763, hep-th/9807142
[43] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444 (1998) 163, hep-th/9809097
[44] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579 (2000) 525, 525 (2000) 707, hep-th/9908036
[45] A. A., Belavin, A. M., Polyakov, A. B., Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333
[46] L., Benoit, Y., Saint-Aubin, Degenerate conformal field theories and explicit expressions of some null vectors, Phys. Lett. B 215 (1988) 517
[47] O., Bergman, M. R., Gaberdiel, A non-supersymmetric open string theory and S-duality, Nucl. Phys. B 499 (1997) 183, hep-th/9701137
[48] O., Bergman, M. R., Gaberdiel, Stable non-BPS D-particles, Phys. Lett. B 441 (1998) 133, hep-th/9806155
[49] M., Berkooz, M. R., Douglas, R. G., Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265, hep-th/9606139
[50] M., Bershadsky, S., Cecotti, H., Ooguri, C., Vafa, Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311; hep-th/9309140
[51] M., Bertolini, P., Fré, F., Hussain, R., Iengo, C., Nuñez, C., Scrucca, Black hole – D-brane correspondence: an example, hep-th/9807209
[52] M., Bertolini, P., Fré, R., Iengo, C., Nuñez, C., Scrucca, Black holes as D3-branes on Calabi–Yau threefolds, Phys. Lett. B 431 (1998) 22, hep-th/9803096
[53] M., Bianchi, G., Pradisi, A., Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992) 365
[54] M., Bianchi, A., Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517
[55] M., Bianchi, A., Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519
[56] M., Bianchi, Y. S., Stanev, Open strings on the Neveu–Schwarz pentabrane, Nucl. Phys. B 523 (1998) 193, hep-th/9711069
[57] M., Billo, D., Cangemi, P., Di Vecchia, Boundary states for moving D-branes, Phys. Lett. B 400 (1997) 63, hep-th/9701190
[58] M., Billó, B., Craps, F., Roose, Orbifold boundary states from Cardy's condition, J. High Energy Phys. 0101 (2001) 038, hep-th/0011060
[59] L., Birke, J., Fuchs, C., Schweigert, Symmetry breaking boundary conditions and WZW orbifolds, Adv. Theor. Math. Phys. 3 (1999) 671, hep-th/9905038
[60] H. W. J., Bloete, J. L., Cardy and M. P., Nightingale, Conformal invariance, the central charge, and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742
[61] R., Blumenhagen, W., Eholzer, A., Honecker, K., Hornfeck, R., Hübel, Unifying W-algebras, Phys. Lett. B 332 (1994) 51, hep-th/9404113
[62] R., Blumenhagen, M., Flohr, A., Kliem, W., Nahm, A., Recknagel, R., Varnhagen, W-algebras with two and three generators, Nucl. Phys. B 361 (1991) 255
[63] R., Blumenhagen, E., Plauschinn, Introduction to conformal field theory, Lecture Notes in Physics, vol. 779, Springer 2000
[64] R., Blumenhagen, T., Weigand, Chiral supersymmetric Gepner model orientifolds, J. High Energy Phys. 0402 (2004) 041, hep-th/0401148
[65] R., Blumenhagen, A., Wisskirchen, Spectra of 4D, N = 1 type I string vacua on non-toroidal CY threefolds, Phys. Lett. B 438 (1998) 52, hep-th/9806131
[66] J., Böckenhauer, D. E., Evans, Modular invariants, graphs and α-induction for nets of subfactors I,II,II, Commun. Math. Phys. 197 (1998) 361, hep-th/9801171; Commun. Math. Phys. 200 (1999) 57, hep-th/9805023; Commun. Math. Phys. 205 (1999) 183, hep-th/9812110
[67] J., Böckenhauer, D. E., Evans, Y., Kawahigashi, On α-induction, chiral generators and modular invariants for subfactors, math.OA/9904109; Chiral structure ofmodular invariants for subfactors, math.OA/9907149
[68] R., Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Natl. Acad. Sci. USA 83 (1986) 3068; Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405
[69] P., Bouwknegt, V., Mathai, D-branes, B-fields and twisted K-theory, J. High Energy Phys. 0003 (2000) 007, hep-th/0002023
[70] P., Bouwknegt, K., Schoutens (eds.), W-Symmetry, World Scientific 1995
[71] I., Brunner, On orientifolds of WZW models and their relation to geometry, J. High Energy Phys. 0201 (2002) 007, hep-th/0110219
[72] I., Brunner, M. R., Douglas, A., Lawrence, C., Röomelsberger, D-branes on the quintic, J. High Energy Phys. 0008 (2000) 015, hep-th/9906200
[73] I., Brunner, R., Entin, C., Romelsberger, D-branes on T4/ℤ2 and T-Duality, J. High Energy Phys. 9906 (1999) 016, hep-th/9905078
[74] I., Brunner, M., Gaberdiel, Matrix factorisations and permutation branes, J. High Energy Phys. 0507 (2005) 012, hep-th/0503207
[75] I., Brunner, M. R., Gaberdiel, The matrix factorisations of the D-model, J. Phys. A A38 (2005) 7901, hep-th/0506208
[76] I., Brunner, M. R., Gaberdiel, C. A., Keller, Matrix factorisations and D-branes on K3, J. High Energy Phys. 0606 (2006) 015, hep-th/0603196
[77] I., Brunner, M., Herbst, W., Lerche, B., Scheuner, Landau–Ginzburg realization of open string TFT, J. High Energy Phys. 0611 (2006) 043, hep-th/0305133
[78] I., Brunner, M., Herbst, W., Lerche, J., Walcher, Matrix factorizations and mirror symmetry: the cubic curve, J. High Energy Phys. 0611 (2006) 006, hep-th/0408243
[79] I., Brunner, K., Hori, Notes on orientifolds of rational conformal field theories, J. High Energy Phys. 0407 (2004) 023, hep-th/0208141
[80] I., Brunner, K., Hori, K., Hosomichi, J., Walcher, Orientifolds of Gepner models, hep-th/0401137
[81] I., Brunner, D., Roggenkamp, B-type defects in Landau–Ginzburg models, J. High Energy Phys. 0708 (2007) 093, arXiv:0707.0922 [hep-th]
[82] I., Brunner, D., Roggenkamp, Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds, J. High Energy Phys. 0804 (2008) 001, arXiv:0712.0188 [hep-th]
[83] I., Brunner, V., Schomerus, D-branes at singular curves of Calabi–Yau compactifications, J. High Energy Phys. 0004 (2000) 020, hep-th/0001132
[84] I., Brunner, V., Schomerus, On superpotentials for D-branes in Gepner models, J. High Energy Phys. 0010 (2000) 016, hep-th/0008194
[85] A. O., Caldeira, A. J., Leggett, Influence of dissipation on quantum tunneling in macros, Phys. Rev. Lett. 46 (1981) 211; Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587; Quantum tunnelling in a dissipative system, Annals Phys. 149 (1983) 374
[86] C. G., Callan, J. A., Harvey, A., Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611; Worldbrane actions for string solitons, Nucl. Phys. B 367 (1991) 60
[87] C. G., Callan, I. R., Klebanov, D-Brane boundary state dynamics, Nucl. Phys. B 465 (1996) 473, hep-th/9511173
[88] C. G., Callan, I. R., Klebanov, A. W. W., Ludwig, J. M., Maldacena, Exact solution of a boundary conformal field theory, Nucl. Phys. B 422 (1994) 417, hep-th/9402113
[89] C. G., Callan, C., Lovelace, C. R., Nappi, S. A., Yost, Adding holes and crosscaps to the superstring, Nucl. Phys. B 293 (1987) 83; Loop corrections to superstring equations of motion, Nucl. Phys. B 308 (1988) 221
[90] C. G., Callan, J. M., Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591, hep-th/9602043
[91] C. G., Callan, L., Thorlacius, Open string theory as dissipative quantum mechanics, Nucl. Phys. B 329 (1990) 117
[92] C. G., Callan, L., Thorlacius, World sheet dynamics of string junctions, Nucl. Phys. B 534 (1998) 121, hep-th/9803097
[93] P., Candelas, X. C., de la Ossa, P. S., Green, L., Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds, Phys. Lett. B 258 (1991) 118; A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21
[94] P., Candelas, X. C., de la Ossa, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models I, Nucl. Phys. B 416 (1994) 481, hep-th/9308083
[95] P., Candelas, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models II, Nucl. Phys. B 429 (1994) 626, hep-th/94030187
[96] A., Cappelli, D., Friedan, J. I., Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616
[97] A., Cappelli, C., Itzykson, J.-B., Zuber, The ADE classification of minimal and conformal invariant theories, Commun. Math. Phys. 113 (1987) 1
[98] J. L., Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514
[99] J. L., Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186
[100] J. L., Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581
[101] J. L., Cardy, Conformal invariance and statistical mechanics, Lectures given at the Les Houches Summer School in Theoretical Physics, 1988
[102] J. L., Cardy, D. C., Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274
[103] S., Carlip, What we don't know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998) 3609, hep-th/9806026; Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017
[104] U., Carow-Watamura, S., Watamura, Noncommutative geometry and gauge theory on fuzzy sphere, Commun. Math. Phys. 212 (2000) 395, hep-th/9801195
[105] N., Carqueville, Matrix factorisations and open topological string theory, J. High Energy Phys. 0907 (2009) 005, arXiv:0904.0862 [hep-th]
[106] N., Carqueville, L., Dowdy, A., Recknagel, Algorithmic deformation of matrix factorisations, J. High Energy Phys. 1204 (2012) 014, arXiv:1112.3352 [hep-th]
[107] N., Carqueville, I., Runkel, Rigidity and defect actions in Landau–Ginzburg models, Commun. Math. Phys. 310 (2012) 135, arXiv:1006.5609 [hep-th]
[108] M., Caselle, G., Ponzano, F., Ravanini, Towards a classification of fusion rule algebras in rational conformal field theories, Int. J. Mod. Phys. B 6 (1992) 2075
[109] A. S., Cattaneo, G., Felder, A path integral approach to the Kontsevich quantization formula, math.QA/9902090
[110] A. H., Chamseddine, J., Fröohlich, Some elements of Connes' non-commutative geometry, and space-time geometry, in Chen Ning Yang, a Great Physicist of the Twentieth Century, C. S., Liu and S.-T., Yau (eds.), International Press 1995, hep-th/9307012
[111] Y.-K. E., Cheung, M., Krogh, Noncommutative geometry from D0-branes in a background B-field, Nucl. Phys. B 528 (1998) 185, hep-th/9803031
[112] L., Chim, Boundary S-matrix for the tricritical Ising model, Int. J. Mod. Phys. A 11 (1996) 4491, hep-th/9510008
[113] P., Christe, R., Flume, The four point correlations of all primary operators of the D = 2 conformally invariant SU(2) sigma model with Wess–Zumino term, Nucl. Phys. B 282 (1987) 466
[114] C., Chu, P., Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151, hep-th/9812219
[115] A., Connes, Noncommutative Geometry, Academic Press 1994
[116] A., Coste, T., Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994) 316
[117] B., Craps, M. R., Gaberdiel, Discrete torsion orbifolds and D branes 2, J. High Energy Phys. 0104 (2001) 013, hep-th/0101143
[118] A., Dabholkar, Lectures on Orientifolds and Duality, hep-th/9804208
[119] J., Dai, R. G., Leigh, J., Polchinski, New connections between string theories, Mod. Phys. Lett. A 4 (1989) 2073
[120] U., Danielsson, G., Ferretti, B., Sundborg, D-particle dynamics and bound states, Int. J. Mod. Phys. A 11 (1996) 5463, hep-th/9603081
[121] P., Di Francesco, P., Mathieu, D., Sénéchal, Conformal Field Theory, Springer 1997
[122] P., Di Francesco, J.-B., Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B 338 (1990) 602
[123] P., Di Vecchia, M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Classical p-branes from boundary states, Nucl. Phys. B 507 (1997) 259, hep-th/9707068
[124] D. E., Diaconescu, M. R., Douglas, J., Gomis, Fractional branes and wrapped branes, J. High Energy Phys. 9802 (1998) 013, hep-th/9712230
[125] D.-E., Diaconescu, J., Gomis, Fractional branes and boundary states in orbifold theories, J. High Energy Phys. 0010 (2001) 001, hep-th/9906242
[126] D.-E., Diaconescu, Enhanced D-brane categories from string field theory, J. High Energy Phys. 0106 (2001) 016, hep-th/0104200
[127] D.-E., Diaconescu, C., Römelsberger, D-branes and bundles on elliptic fibrations, Nucl. Phys. B 574 (2000) 245, hep-th/9910172
[128] R., Dijkgraaf, Les Houches lectures on fields, strings and duality, in Les Houches 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki (eds.) Elsevier 1995, pp. 3–147, hep-th/ 9703136
[129] R., Dijkgraaf, J. M., Maldacena, G. W., Moore and E. P., Verlinde, A black hole farey tail, hep-th/0005003
[130] R., Dijkgraaf, C., Vafa, E., Verlinde, H., Verlinde, Operator algebra of orbifold models, Commun. Math. Phys. 123 (1989) 485
[131] R., Dijkgraaf, E., Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. B Proc. Suppl. 5B (1988) 87
[132] R., Dijkgraaf, E., Verlinde, H., Verlinde, C = 1 conformal field theories on Riemann surfaces, Commun. Math. Phys. 115 (1988) 649
[133] R., Dijkgraaf, E., Verlinde, H., Verlinde, Toplogical strings in D < 1, Nucl. Phys. B 352 (1991) 59
[134] J., Distler, B. R., Greene, Some exact results on the superpotential from Calabi–Yau compactifications, Nucl. Phys. B 309 (1988) 295
[135] L. J., Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, Lectures given at Trieste HEP Workshop 1987
[136] L. J., Dixon, J. A., Harvey, C., Vafa, E., Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678; Strings on orbifolds 2, Nucl. Phys. B 274 (1986) 285
[137] S., Doplicher, K., Fredenhagen, J. E., Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187, hep-th/ 0303037
[138] S., Doplicher, R., Haag, J. E., Roberts, Local observables and particle statistics I, II, Commun. Math. Phys. 23 (1971) 199, 35 (1974) 49
[139] S., Doplicher, J. E., Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989) 157; Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics?, Commun. Math. Phys. 131 (1990) 51
[140] P., Dorey, A., Pocklington, R., Tateo, G., Watts, TBA and TCSA with boundaries and excited states, Nucl. Phys. B 525 (1998) 641, hep-th/9712197
[141] P., Dorey, I., Runkel, R., Tateo, G., Watts, g-function flow in perturbed boundary conformal field theories, Nucl. Phys. B 578 (2000) 85, hep-th/9909216
[142] V. S., Dotsenko, V. A., Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312; Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c ≤ 1, Nucl. Phys. B 251 (1985) 691
[143] M. R., Douglas, Branes within branes, hep-th/9512077
[144] M. R., Douglas, Two lectures on D-geometry and noncommutative geometry, hep-th/9901146; Topics in D-geometry, hep-th/9910170; D-branes on Calabi–Yau manifolds, math.ag/0009209
[145] M. R., Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42, 2818 (2001), hep-th/0011017; D-branes and N = 1 supersymmetry, hep-th/0105014; Dirichlet branes, homological mirror symmetry, and stability, math.ag/0207021
[146] M. R., Douglas, B., Fiol, C., Röomelsberger, Stability and BPS branes, J. High Energy Phys. 0509 (2005) 006, hep-th/0002037; The spectrum of BPS branes on a noncompact Calabi-Yau manifold, J. High Energy Phys. 0509 (2005) 057 (2005), hep-th/0003263
[147] M. R., Douglas, B. R., Greene, D. R., Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84, hep-th/9704151
[148] M. R., Douglas, C., Hull, D-branes and the noncommutative torus, J. High Energy Phys. 9802 (1998) 008, hep-th/9711165
[149] M. R., Douglas, D., Kabat, P., Pouliot, S. H., Shenker, D-branes and short distances in string theory, Nucl. Phys. B 485 (1997) 85, hep-th/9608024
[150] M. R., Douglas, G. W., Moore, D-branes, quivers, and ALE instantons, hep-th/9603167
[151] M. R., Douglas, N. A., Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2002) 977, hep-th/0106048
[152] M. J., Duff, R. R., Khuri, J. X., Lu, String solitons, Phys. Rept. 259 (1995) 213, hep-th/9412184
[153] E., D'Hoker, String theory, Lecture Notes Princeton 1997; see http://www.math.ias.edu/QFT/spring /index.html
[154] T., Eguchi, S.-K. Yang, N = 2 superconformal models as topological field theories, Mod. Phys. Lett. A 5 (1990) 1693
[155] S., Elitzur, G., Sarkissian, D-branes on a gauged WZW model, Nucl. Phys. B 625 (2002) 166, hep-th/0108142
[156] H., Enger, A., Recknagel, D., Roggenkamp, Permutation branes and linear matrix factorisations, J. High Energy Phys. 0601 (2006) 087, hep-th/0508053
[157] D. E., Evans, Y., Kawahigashi, Orbifold subfactors from Hecke algebras, Commun. Math. Phys. 165 (1994) 445
[158] F., Falceto, K., Gawedzki, Lattice Wess–Zumino–Witten model and quantum groups, J. Geom. Phys. 11 (1993) 251, hep-th/9209076
[159] B. L., Feigin, D. B., Fuchs, Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114; Verma modules over the Virasoro algebra, in Lecture Notes in Mathematics, vol. 1060, Springer 1984, p. 230
[160] B. L., Feigin, T., Nakanishi, H., Ooguri, The annihilating ideals of minimal models, Int. J. Mod. Phys. A 7 Suppl. 1A (1992) 217
[161] G., Felder, BRST Approach to Minimal Models, Nucl. Phys. B 317 (1989) 215, Erratum: G. Felder, BRST Approach to Minimal Models, Nucl. Phys. B 324 (1989) 548
[162] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162, hep-th/9909030
[163] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys. Rev. Lett. 84 (2000) 1659, hep-th/9909140; Correlation functions and boundary conditions in RCFT and three-dimensional topology, Compos. Math. 131 (2002) 189, hep-th/9912239
[164] G., Felder, J., Fröhlich, G., Keller, On the structure of unitary conformal field theoryCommun. Math. Phys. 124 (1989) 417, 30 (1990) 1
[165] G., Felder, J., Fröhlich, G., Keller, Braid matrices and structure constants for minimal conformal models, Commun. Math. Phys. 124 (1989) 647
[166] G., Felder, K., Gawȩdzki, A., Kupiainen, Spectra of Wess–Zumino–Witten models with arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127; The spectrum of Wess–Zumino–Witten models, Nucl. Phys. B 299 (1988) 355
[167] P., Fendley, F., Lesage, H., Saleur, A unified framework for the Kondo problem and for an impurity in a Luttinger liquid, J. Stat. Phys. 85 (1996) 211, cond-mat/9510055
[168] P., Fendley, H., Saleur, N. P., Warner, Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430 (1994) 577, hep-th/9406125
[169] J. M., Figueroa-O'Farrill, S., Schrans, The spin 6 extended conformal algebra, Phys. Lett. B 245 (1990) 471
[170] J. M., Figueroa-O'Farrill, S., Stanciu, D-brane charge, flux quantization and relative (co)homology, J. High Energy Phys. 0101 (2001) 006, hep-th/0008038
[171] J., Fjelstad, J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 5: Proof of modular invariance and factorisation, Theor. Appl. Categor. 16 (2006) 342, hep-th/0503194
[172] S., Förste, D., Ghoshal, S., Panda, An orientifold of the solitonic fivebrane, Phys. Lett. B 411 (1997) 46, hep-th/9706057
[173] A., Font, L. E., Ibañez, D., Luüst, F., Quevedo, Strong–weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249 (1990) 35
[174] E. S., Fradkin, A. A., Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 160 (1985) 69
[175] M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Scattering of closed strings from many D-branes, Phys. Lett. B 400 (1997) 52, hep-th/9702037
[176] K., Fredenhagen, K.-H., Rehren, B., Schroer, Superselection sectors with braid group statistics and exchange algebras I, II, Commun. Math. Phys. 125 (1989) 201, Rev. Math. Phys. Special issue (1992) 111
[177] S., Fredenhagen, Dynamics of D-branes in curved backgrounds, Ph.D. thesis (2002), available via http://www.slac.stanford.edu/spires/find/hep/www?irn=5331455
[178] S., Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436, hep-th/0301229
[179] S., Fredenhagen, M. R., Gaberdiel, C. A., Keller, Bulk induced boundary perturbations, J. Phys. A 40 (2007) F17, hep-th/0609034
[180] S., Fredenhagen, M. R., Gaberdiel, C., Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403, arXiv:0907.2560 [hep-th]
[181] S., Fredenhagen, V., Schomerus, Branes on group manifolds, gluon condensates, and twisted K-theory, J. High Energy Phys. 0104 (2001) 007, hep-th/0012164
[182] S., Fredenhagen, V., Schomerus, Brane dynamics in CFT backgrounds, hep-th/0104043
[183] S., Fredenhagen, V., Schomerus, D-branes in coset models, J. High Energy Phys. 0202 (2002) 005, hep-th/0111189
[184] D., Friedan, The space of conformal boundary conditions for the c = 1 Gaussian model, unpublished note (1999), http://www.physics.rutgers.edu/pages/friedan/
[185] D., Friedan, A., Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402, hep-th/0312197
[186] D., Friedan, E., Martinec, S. H., Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93
[187] D., Friedan, Z., Qiu, S. H., Shenker, Conformal invariance, unitarity and two-dimensional critical exponents, Phys. Rev. Lett. 52 (1984) 1575
[188] J., Frohlich, New superselection sectors (‘soliton states’) in two-dimensional Bose quantum field theories, Commun. Math. Phys. 47 (1976) 269
[189] J., Fröhlich, Statistics of fields, the Yang–Baxter equation and the theory of knots and links, in Non-perturbative Quantum Field Theory, G.t', Hooftet al. (eds.), Plenum 1988
[190] J., Fröhlich, The non-commutative geometry of two-dimensional supersymmetric conformal field theory, in PASCOS, Proceedings of the Fourth International Symposium on Particles, Strings and Cosmology, K. C., Wali (ed.), World Scientific 1995
[191] J., Fröhlich, J., Fuchs, I., Runkel, C., Schweigert, Kramers–Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601, cond-mat/0404051; Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [math-ph]
[192] J., Fröhlich, F., Gabbiani, Braid statistics in local quantum theory, Rev. Math. Phys. 2 (1990) 251
[193] J., Fröhlich, K., Gawȩdzki, Conformal field theory and the geometry of strings, CRM Proceedings and Lecture Notes, Vol. 7, CRM 1994, 57, hep-th/9310187
[194] J., Fröhlich, O., Grandjean, A., Recknagel, Supersymmetric quantum theory, non-commutative geometry, and gravitation, in Les Houches 1995, Elsevier 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki (eds.), hep-th/9706132
[195] J., Fröhlich, O., Grandjean, A., Recknagel, V., Schomerus, Fundamental strings in Dp–Dq brane systems, Nucl. Phys. B 583 (2000) 381, hep-th/9912079
[196] J., Fröhlich, T., Kerler, Quantum groups, quantum categories and quantum field theory, Lecture Notes in Mathematics, vol. 1542, Springer 1993
[197] J., Fröhlich, C., King, The Chern–Simons theory and knot polynomials, Commun. Math. Phys. 126 (1989) 167; Two-dimensional conformal field theory and three-dimensional topology, Int. J. Mod. Phys. A 4 (1989) 5321
[198] J., Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory, Cambridge University Press 1992
[199] J., Fuchs, Fusion rules in conformal field theory, Fortsch. Phys. 42 (1994) 1, hep-th/9306162
[200] J., Fuchs, A., Klemm, C., Scheich, M. G., Schmidt, Gepner models with arbitrary affine invariants and the associated Calabi–Yau spaces, Phys. Lett. B 232 (1989) 317; Spectra and symmetries of Gepner models compared to Calabi–Yau compactifications, Ann. Phys. 204 (1990) 1
[201] J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 1: Partition functions, Nucl. Phys. B 646 (2002) 353, hep-th/0204148; TFT construction of RCFT correlators. 2: Unoriented world sheets, Nucl. Phys. B 678 (2004) 511, hep-th/0306164;TFT construction of RCFT correlators. 3: Simple currents, Nucl. Phys. B 694 (2004) 277, hep-th/0403157; TFT construction of RCFT correlators 4: Structure constants and correlation functions, Nucl. Phys. B 715 (2005) 539, hep-th/ 0412290
[202] J., Fuchs, A. N., Schellekens, C., Schweigert, A matrix S for all simple current extensions, Nucl. Phys. B 473 (1996) 323, hep-th/9601078
[203] J., Fuchs, C., Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, Cambridge University Press 1997
[204] J., Fuchs, C., Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414 (1997) 251, hep-th/9708141
[205] J., Fuchs, C., Schweigert, Branes: from free fields to general conformal field theories, Nucl. Phys. B 530 (1998) 99, hep-th/9712257
[206] J., Fuchs, C., Schweigert, Completeness of boundary conditions for the critical three-state Potts model, Phys. Lett. B 441 (1998) 141, hep-th/9806121
[207] J., Fuchs, C., Schweigert, Orbifold analysis of broken bulk symmetriesPhys. Lett. B 447 (1999) 266, hep-th/9811211; Symmetry breaking boundaries I. General theory, Nucl. Phys. B 558 (1999) 419, hep-th/9902132; Symmetry breaking boundaries II. More structures; examples, Nucl. Phys. B 568 (2000) 543, hep-th/9908025
[208] J., Fuchs, C., Schweigert, J., Walcher, Projections in string theory and boundary states for Gepner models, Nucl. Phys. B 588 (2000) 110, hep-th/0003298
[209] P., Furlan, G. M., Sotkov, I. T., Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim. 12 (1989) 1
[210] F., Gabbiani, J., Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys. 155 (1993) 569
[211] M. R., Gaberdiel, Fusion in conformal field theory as the tensor product of the symmetry algebra, Int. J. Mod. Phys. A 9 (1994) 4619, hep-th/9307183
[212] M. R., Gaberdiel, An introduction to conformal field theory, Rept. Prog. Phys. 63 (2000) 607, hep-th/9910156
[213] M. R., Gaberdiel, Discrete torsion orbifolds and D branes, J. High Energy Phys. 0011 (2000) 026, hep-th/0008230
[214] M. R., Gaberdiel, P., Goddard, Axiomatic conformal field theory, Commun. Math. Phys. 209 (2000) 549, hep-th/9810019
[215] M. R., Gaberdiel, A., Recknagel, Conformal boundary states for free bosons and free fermions, J. High Energy Phys. 0111 (2001) 016, hep-th/0108238
[216] M. R., Gaberdiel, A., Recknagel, G. M. T., Watts, The conformal boundary states for SU(2) at level 1, Nucl. Phys. B 626 (2002) 344, hep-th/0108102
[217] M. R., Gaberdiel, A., Konechny, C., Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009) 105402, arXiv:0811.3149 [hep-th]
[218] T., Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys. 161 (1994) 233, hep-th/9212060; The classification of SU(3) modular invariants revisited, Annales Henri Poincaré: Phys. Theor. 65 (1996) 15, hep-th/9404185; The level 2 and 3 modular invariants of SU(n), Lett. Math. Phys. 39 (1997) 289, hep-th/9511040
[219] T., Gannon, Integers in the open string, Phys. Lett. B 473 (2000) 80, hep-th/9910148
[220] T., Gannon, Boundary conformal field theory and fusion ring representations, Nucl. Phys. B 627 (2002) 506, hep-th/0106105
[221] M. R., Garousi, R. C., Myers, Superstring scattering from D-branes, Nucl. Phys. B 475 (1996) 193, hep-th/9603194
[222] E., Gava, J. F., Morales, K. S., Narain, G., Thompson, Bound states of type I D-strings, Nucl. Phys. B 528 (1998) 95, hep-th/9801128
[223] K., Gawȩdzki, Quadrature of conformal field theories, Nucl. Phys. B 328 (1989) 733; Coulomb gas representation of the SU(2) WZW correlators at higher genera, Lett. Math. Phys. 33 (1995) 335, hep-th/9404012; SU(2) WZW theory at higher genera, Commun. Math. Phys. 169 (1995) 329, hep-th/9402091
[224] K., Gawȩdzki, Lectures on conformal field theory, Lecture Notes Princeton 1996; see http://www.math.ias.edu/QFT/fall/index.html
[225] K., Gawȩdzki, Conformal field theory: a case study, hep-th/9904145
[226] K., Gawȩdzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincarée 3 (2002) 847, hep-th/0108044
[227] K., Gawȩdzki, A., Kupiainen, G/H conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119; Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625
[228] D., Gepner, Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys. B 296 (1988) 757
[229] D., Gepner, Lectures on N=2 string theory, Lectures at the Trieste Spring School on Superstrings 1989
[230] D., Gepner, Z., Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987) 423
[231] D., Gepner, E., Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986) 493
[232] A. A., Gerasimov, S. L., Shatashvili, On exact tachyon potential in open string field theory, J. High Energy Phys. 0010 (2000) 034, hep-th/0009103
[233] G. W., Gibbons, N. S., Manton, Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B 274 (1986) 183
[234] E. G., Gimon, J., Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D 54 (1996) 1667, hep-th/9601038
[235] P., Ginsparg, Applied conformal field theory, Lectures given at the Les Houches Summer School in Theoretical Physics 1988
[236] P., Ginsparg, Curiosities at c = 1, Nucl. Phys. B 295 (1988) 153
[237] V., Ginzburg, Lectures on Noncommutative Geometry, math.AG/0506603
[238] A., Giveon, D., Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983, hep-th/9802067
[239] P., Goddard, Meromorphic conformal field theory, in Infinite-dimensional Lie Algebras and Lie Groups, V. G., Kac (ed.), World Scientific 1989
[240] P., Goddard, A., Kent, D. I., Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88; Unitary representations of the Virasoro and Supervirasoro algebras, Commun. Math. Phys. 103 (1986) 105
[241] P., Goddard, D. I., Olive, Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303
[242] J., Gomis, D-branes on orbifolds with discrete torsion and topological obstruction, J. High Energy Phys. 0005 (2000) 006, hep-th/0001200
[243] R., Gopakumar, S., Minwalla, A., Strominger, Noncommutative solitons, J. High Energy Phys. 0005 (2000) 020, hep-th/0003160
[244] S., Govindarajan, J., Majumder, Crosscaps in Gepner models and type IIA orientifolds, J. High Energy Phys. 0402 (2004) 026, hep-th/0306257
[245] K., Graham, I., Runkel, G. M. T., Watts, Minimal model boundary flows and c = 1 CFT, Nucl. Phys. B 608 (2001) 527, hep-th/0101187
[246] K., Graham, G. M. T., Watts, Defect lines and boundary flows, J. High Energy Phys. 0404 (2004) 019, hep-th/0306167
[247] M. B., Green, A gas of D-instantons, Phys. Lett. B 354 (1995) 271, hep-th/9504108
[248] M. B., Green, M., Gutperle, Symmetry breaking at enhanced symmetry points, Nucl. Phys. B 460 (1996) 77, hep-th/9509171
[249] M. B., Green, M., Gutperle, Light-cone supersymmetry and D-branes, Nucl. Phys. B 476 (1996) 484, hep-th/9604091
[250] M. B., Green, M., Gutperle, D-instanton partition functions, Phys. Rev. D 58 (1998) 046007, hep-th/9804123
[251] M. B., Green, J. A., Harvey, G., Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47, hep-th/9605033
[252] M. B., Green, J. H., Schwarz, E., Witten, Superstring Theory I, II, Cambridge University Press 1987
[253] B. R., Greene, String theory on Calabi–Yau manifolds, TASI lectures, hep-th/9702155
[254] B. R., Greene, M. R., Plesser, Duality in Calabi–Yau moduli spaces, Nucl. Phys. B 338 (1990) 14
[255] B. R., Greene, C., Vafa, N. P., Warner, Calabi–Yau manifolds and renormalization group flows, Nucl. Phys. B 324 (1989) 371
[256] M. T., Grisaru, A. E. M., van de Ven, D., Zanon, Four loop beta function for the N =1 and N = 2 supersymmetric nonlinear sigma model in two dimensions, Phys. Lett. B 173 (1986) 423; Two-dimensional supersymmetric sigma models on Ricci flat Kahler manifolds are not finite, Nucl. Phys. B 277 (1986) 388
[257] D. J., Gross, N. A., Nekrasov, Monopoles and strings in noncommutative gauge theory, J. High Energy Phys. 0007 (2000) 034, hep-th/0005204
[258] H., Grosse, C., Klimčík, P., Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231, hep-th/9505175; Field theory on a supersymmetric lattice, Commun. Math. Phys. 185 (1997) 155, hep-th/9507074; Simple field theoretical models on noncommutative manifolds, Lecture Notes Clausthal 1995, hep-th/9510177
[259] S. S., Gubser, A., Hashimoto, I. R., Klebanov, J. M., Maldacena, Gravitational lensing by p-branes, Nucl. Phys. B 472 (1996) 231, hep-th/9601057
[260] S. S., Gubser, I. R., Klebanov, A. M., Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105, hep-th/9802109
[261] S., Gukov, I. R., Klebanov, A. M., Polyakov, Dynamics of (n, 1) strings, Phys. Lett. B 423 (1998) 64, hep-th/9711112
[262] M., Gutperle, Aspects of D-instantons, hep-th/9712156
[263] M., Gutperle, Y., Satoh, D-branes in Gepner models and supersymmetry, Nucl. Phys. B 543 (1999) 73, hep-th/9808080
[264] M., Gutperle, Y., Satoh, D0-branes in Gepner models and N = 2 black holes, Nucl. Phys. B 555 (1999) 477, hep-th/9902120
[265] R., Haag, Local Quantum Physics, Springer 1992
[266] M., Hamermesh, Group Theory and its Applications to Physical Problems, Addison-Wesley 1962
[267] A., Hanany, E., Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152, hep-th/9611230
[268] J. A., Harvey, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076
[269] J. A., Harvey, P., Kraus, F., Larsen, Exact noncommutative solitons, J. High Energy Phys. 0012 (2000) 024, hep-th/0010060
[270] R., Harvey, H. B., Lawson, Calibrated geometries, Acta Math. 148 (1982) 47
[271] A., Hashimoto, I. R., Klebanov, Decay of excited D-branes, Phys. Lett. B 381 (1996) 437, hep-th/9604065; Scattering of strings from D-branes, Nucl. Phys. B Proc. Suppl. 55B (1997) 118, hep-th/9611214
[272] K., Hashimoto, K., Krasnov, D-brane solutions in non-commutative gauge theory on fuzzy sphere, Phys. Rev. D 64 (2001) 046007, hep-th/0101145
[273] M., Herbst, K., Hori, D., Page, Phases of N = 2 theories in 1+1 dimensions with boundary, arXiv:0803.2045 [hep-th]
[274] M., Herbst, C. I., Lazaroiu, Localization and traces in open–closed topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005) 044, hep-th/0404184
[275] M., Herbst, C. I., Lazaroiu, W., Lerche, Superpotentials, A-infinity relations and WDVV equations for open topological strings, J. High Energy Phys. 0502 (2005) 071, hep-th/0402110
[276] Y., Hikida, M., Nozaki, Y., Sugawara, Formation of spherical D2-brane from multiple D0-branes, Nucl. Phys. B 617 (2001) 117, hep-th/0101211
[277] C., Hofman, On the open–closed B-model, J. High Energy Phys. 0311 (2003) 069, hep-th/0204157
[278] J., Hoppe, Diffeomorphism groups, quantization and SU(∞), Int. J. Mod. Phys. A 4 (1989) 5235
[279] P., Horava, E., Witten, Heterotic and type I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506, hep-th/9510209; Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94, hep-th/9603142
[280] K., Hori, Boundary RG flows of N = 2 minimal models, hep-th/0401139
[281] K., Hori, A., Iqbal, C., Vafa, D-branes and mirror symmetry, hep-th/0005247
[282] K., Hori, S., Katz, A., Klemm, R., Pandharipande, R., Thomas, C., Vafa, R., Vakil, E., Zaslow (eds.), Mirror Symmetry, Clay Mathematics Monographs 2003
[283] K., Hori, J., Walcher, F-term equations near Gepner points, J. High Energy Phys. 0501 (2005) 008, hep-th/0404196
[284] G. T., Horowitz, The origin of black hole entropy in string theory, gr-qc/9604051
[285] G. T., Horowitz, A., Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197
[286] S., Hosono, A., Klemm, S., Theisen, Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301, hep-th/9308122; Lectures on Mirror Symmetry, hep-th/9403096
[287] B.-Y., Hou, K.-J., Shi, P., Wang, R.-H., Yue, The crossing matrices of WZW SU(2) model and minimal models with the quantum 6j symbols, Nucl. Phys. B 345 (1990) 659
[288] P. S., Howe, P. C., West, N = 2 Superconformal models, Landau–Ginzburg Hamiltonians and the epsilon expansion, Phys. Lett. B 223 (1989) 377
[289] Y. Z., Huang, Vertex operator algebras and the Verlinde conjecture, math.qa/0406291; Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. USA 102 (2005) 5352, math.qa/0412261; Rigidity and modularity of vertex tensor categories, math.qa/0502533; Vertex operator algebras, fusion rules and modular transformations, math.qa/0502558
[290] T., Hubsch, Calabi–Yau Manifolds: A Bestiary for Physicists, World Scientific 1992
[291] L. R., Huiszoon, A. N., Schellekens, N., Sousa, Klein bottles and simple currents, Phys. Lett. B 470 (1999) 95, hep-th/9909114
[292] F., Hussain, R., Iengo, C., Nuñez, C. A., Scrucca, Interaction of moving D-branes on orbifolds, Phys. Lett. B 409 (1997) 101, hep-th/9706186; Interaction of D-branes on orbifolds and massless particle emission, hep-th/9711021; Aspects of D-brane dynamics on orb-ifolds, hep-th/9711020; Closed string radiation from moving D-branes, Nucl. Phys. B 517 (1998) 92, hep-th/9710049
[293] K. A., Intriligator, Bonus symmetry in conformal field theory, Nucl. Phys. B 332 (1990) 541
[294] N., Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989) 251
[295] N., Ishibashi, T., Onogi, Conformal field theories on surfaces with boundaries and cross-caps, Mod. Phys. Lett. A 4 (1989) 161
[296] C., Itzykson, H., Saleur, J.-B., Zuber (eds.), Conformal Invariance and Applications to Statistical Mechanics, World Scientific 1988
[297] C., Itzykson, J. B., Zuber, Two-dimensional conformal invariant theories on a torus, Nucl. Phys. B 275 (1986) 580
[298] R. A., Janik, Exceptional boundary states at c = 1, Nucl. Phys. B 618 (2001) 675, hep-th/0109021
[299] D. P., Jatkar, G., Mandal, S. R., Wadia, K. P., Yogendran, Matrix dynamics of fuzzy spheres, J. High Energy Phys. 0201 (2002) 039, hep-th/0110172
[300] D., Kabat, P., Pouliot, A comment on zero-brane quantum mechanics, Phys. Rev. Lett. 77 (1996) 1004, hep-th/9603127
[301] S., Kachru, J., McGreevy, Supersymmetric three-cycles and (super)symmetry breaking, Phys. Rev. D 61 (2000) 026001, hep-th/9908135
[302] A., Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2000) 127, hep-th/9909089
[303] A., Kapustin, Y., Li, D-branes in Landau–Ginzburg models and algebraic geometry, J. High Energy Phys. 0312 (2003) 005, hep-th/0210296
[304] A., Kapustin, Y., Li, Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2004) 727, hep-th/0305136
[305] A., Kapustin, Y., Li, D-branes in topological minimal models: the Landau–Ginzburg approach, J. High Energy Phys. 0407 (2004) 045, hep-th/0306001
[306] A., Kapustin, D., Orlov, Remarks on A branes, mirror symmetry, and the Fukaya category, J. Geom. Phys. 48 (2003) 84, hep-th/0109098
[307] A., Kapustin, D., Orlov, Lectures on mirror symmetry, derived categories, and D-branes, math.AG/0308173
[308] P., Kaste, W., Lerche, C. A., Lütken, J., Walcher, D-branes on K3-fibrations, Nucl. Phys. B 582 (2000) 203, hep-th/9912147
[309] H., Kausch, G. M. T., Watts, A study of W-algebras using Jacobi identities, Nucl. Phys. B 354 (1991) 740
[310] Y., Kazama, H., Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232
[311] R., Kedem, T. R., Klassen, B. M., McCoy, E., Melzer, Fermionic quasiparticle representations for characters of, Phys. Lett. B 304 (1993) 263, hep-th/9211102; Fermionic sum representations for conformal field theory characters, Phys. Lett. B 307 (1993) 68, hep-th/9301046
[312] R., Kedem, B. M., McCoy, Construction of modular branching functions from Bethe's equations in the 3-state Potts chain, hep-th/9210129
[313] B., Keller, Introduction to A-infinity algebras and modules, Homology, Homotopy Appl. 3 (2001) 1, math.RA/9910179
[314] A. N., Kirillov, N. Y., Reshetikhin, Representations of the algebra U(q)(sl(2), q-orthogonal polynomials and invariants of links, in New Developments in the Theory of Knots, T., Kohno (ed.), World Scientific 1990
[315] C., Klimčík, A nonperturbative regularization of the supersymmetric Schwinger model, Commun. Math. Phys. 206 (1999) 567, hep-th/9903112
[316] J., Knapp, H., Omer, Matrix factorizations, minimal models and Massey products, J. High Energy Phys. 0605 (2006) 064, hep-th/0604189
[317] V. G., Knizhnik, A. B., Zamolodchikov, Current algebra and Wess–Zumino model in two dimensions, Nucl. Phys. B 247 (1984) 83
[318] A., Konechny, g function in perturbation theory, Int. J. Mod. Phys. A 19 (2004) 2545, hep-th/0310258
[319] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353, hep-th/0012145
[320] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Part II, Phys. Rept. 360 (2002) 353, hep-th/0107251
[321] M., Kontsevich, Homological algebra of mirror symmetry, alg-geom/9411018
[322] M., Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66 (2003) 157, q-alg/9709040
[323] M., Kontsevich, Y., Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041
[324] D., Kutasov, M., Marino, G. W., Moore, Some exact results on tachyon condensation in string field theory, J. High Energy Phys. 0010 (2000) 045, hep-th/0009148; Remarks on tachyon condensation in superstring field theory, hep-th/0010108
[325] O. A., Laudal, Matric Massey products and formal moduli I, in Lecture Notes in Mathematics, vol. 1183, Springer 1986, p. 218
[326] C. I., Lazaroiu, On the structure of open–closed topological field theory in two dimensions, Nucl. Phys. B 603 (2001) 497, hep-th/0010269
[327] C. I., Lazaroiu, On the boundary coupling of topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005) 037, hep-th/0312286
[328] R. G., Leigh, Dirac–Born–Infeld action from Dirichlet sigma model, Mod. Phys. Lett. A 4 (1989) 2767
[329] W., Lerche, Recent developments in string theory, hep-th/9710246
[330] W., Lerche, B., Schellekens, N. P., Warner, Lattices and strings, Phys. Rept. 177 (1989) 1
[331] W., Lerche, C., Vafa, N. P., Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427
[332] F., Lesage, H., Saleur, Boundary conditions changing operators in non conformal theories, Nucl. Phys. B 520 (1998) 563, hep-th/9801089
[333] F., Lesage, H., Saleur, P., Simonetti, Boundary flows in minimal models, Phys. Lett. B 427 (1998) 85, hep-th/9802061
[334] D. C., Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992) 654
[335] M., Li, Boundary states of D-branes and Dy-strings, Nucl. Phys. B 460 (1996) 351, hep-th/9510161
[336] A. W. W., Ludwig, Field theory approach to critical quantum impurity problems and applications to the multi-channel Kondo effect, Int. J. Mod. Phys. B 8 (1994) 347; Methods of conformal field theory in condensed matter physics: an introduction to nonabelian bosonization, in: Low-dimensional Quantum Field Theories for Condensed Matter Physicists, S. Lundqvist, G. Morandi, Y. Lu (eds.), World Scientific 1995
[337] D., Lüst, S., Theisen, Lectures on string theory, Lecture Notes in Physics, vol. 346, Springer 1989
[338] G., Mack, V., Schomerus, Quasi-Hopf quantum symmetry in quantum theory, Nucl. Phys. B 370 (1991) 185; Action of truncated quantum groups on quasi-quantum planes and a quasi-associative differential geometry and calculus, Commun. Math. Phys. 149 (1992) 513
[339] J., Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69
[340] J., Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press 1999
[341] J., Majumder, A., Sen, ‘Blowing up’ D-branes on non-supersymmetric cycles, J. High Energy Phys. 9909 (1999) 004, hep-th/9906109
[342] J. M., Maldacena, Black holes in string theory, hep-th/9607235
[343] J. M., Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200
[344] J. M., Maldacena, G. W., Moore, N., Seiberg, Geometrical interpretation of D-branes in gauged WZW models, J. High Energy Phys. 0107 (2001) 046, hep-th/0105038
[345] J. M., Maldacena, G. W., Moore, N., Seiberg, D-brane instantons and K-theory charges, J. High Energy Phys. 0111 (2001) 062, hep-th/0108100
[346] N. S., Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54
[347] D., Matalliotakis, H. P., Nilles, S., Theisen, Matching the BPS spectra of heterotic – type I–type I' strings, Phys. Lett. B 421 (1998) 169, hep-th/9710247
[348] K., Matsubara, V., Schomerus, M., Smedbäack, Open strings in simple current orbifolds, Nucl. Phys. B 626 (2002) 53, hep-th/0108126
[349] G., Moore, N., Reshetikhin, A comment on quantum group symmetry in conformal field theory, Nucl. Phys. B 328 (1989) 557
[350] G., Moore, N., Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988) 451; Classical and conformal quantum field theory, Commun. Math. Phys. 123 (1989) 177; Lectures on rational conformal field theory, http://www.physics.rutgers.edu/~gmoore/LecturesRCFT.pdf
[351] J. E., Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99
[352] R. C., Myers, Dielectric-branes, J. High Energy Phys. 9912 (1999) 022, hep-th/9910053
[353] W., Nahm, Lie group exponents and SU(2) current algebras, Commun. Math. Phys. 118 (1988) 171
[354] W., Nahm, Quantum field theories in one and two dimensions, Duke Math. J. 54 (1987) 579; Chiral algebras of two-dimensional chiral field theories and their normal ordered products, Proceedings of the Trieste Conference on Recent Developments in Conformational Field Theories, Trieste, October 1989
[355] W., Nahm, A proof of modular invariance, Int. J. Mod. Phys. A 6 (1991) 2837
[356] W., Nahm, Quasi-rational fusion products, Int. J. Mod. Phys. B 8 (1994) 3693, hep-th/9402039
[357] W., Nahm, Conformal quantum field theories in two dimensions, in preparation
[358] W., Nahm, A., Recknagel, M., Terhoeven, Dilogarithm identities in conformal field theory, Mod. Phys. Lett. A 8 (1993) 1835, hep-th/9211034
[359] W., Nahm, K., Wendland, A Hiker's guide to K3: aspects of N = (4, 4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85, hep-th/9912067
[360] M., Naka, M., Nozaki, Boundary states in Gepner models, J. High Energy Phys. 0005 (2000) 027, hep-th/0001037
[361] N., Nekrasov, A., Schwarz, Instantons on noncommutative ℝ4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198 (1998) 689, hep-th/9802068
[362] N. A., Obers, B., Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113, hep-th/9809039; Eisenstein series and string thresholds, Commun. Math. Phys. 209 (2000) 275, hep-th/9903113
[363] A., Ocneanu, Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications II, London Mathematical Society, Cambridge University Press 1989; Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45, recorded by Y. Kawahigashi, July 1990
[364] H., Ooguri, Y., Oz, Z., Yin, D-branes on Calabi–Yau spaces and their mirrors, Nucl. Phys. B 477 (1996) 407, hep-th/9606112
[365] H., Ooguri, Z., Yin, TASI lectures on perturbative string theories, hep-th/9612254
[366] D., Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, vol. II, Birkhäauser 2009, math.AG/0503632
[367] M., Oshikawa, I., Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys B 495 (1997) 533, condmat/9612187
[368] B., Ovrut, N =1 supersymmetric vacua in heterotic M-theory, hep-th/9905115
[369] V., Pasquier, Operator content of the ADE lattice models, J. Phys. A 20 (1987) 5707; Two-dimensional critical systems labeled by Dynkin diagrams, Nucl. Phys. B 285 (1987) 162; Etiology of IRF models, Commun. Math. Phys. 118 (1988) 355
[370] V. B., Petkova, J.-B., Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438 (1995) 347, hep-th/9410209
[371] V. B., Petkova, J.-B., Zuber, From CFT to graphs, Nucl. Phys. B 463 (1996) 161, hep-th/9510175; Conformal field theory and graphs, hep-th/9701103
[372] V. B., Petkova, J.-B., Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157, hep-th/0011021
[373] V. B., Petkova, J.-B., Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001) 449, hep-th/0101151
[374] J., Polchinski, Combinatorics of boundaries in string theory, Phys. Rev. D 50 (1994) 6041, hep-th/9407031
[375] J., Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017
[376] J., Polchinski, TASI lectures on D-branes, hep-th/9611050
[377] J., Polchinski, String Theory I, II, Cambridge University Press 1998
[378] J., Polchinski, Y., Cai, Consistency of open superstring theories, Nucl. Phys. B 296 (1988) 91
[379] J., Polchinski, S., Chaudhuri, C. V., Johnson, Notes on D-Branes, hep-th/9602052
[380] J., Polchinski, L., Thorlacius, Free fermion representation of a boundary conformal field theory, Phys. Rev. D 50 (1994) 622, hep-th/9404008
[381] A. P., Polychronakos, Flux tube solutions in noncommutative gauge theories, Phys. Lett. B 495 (2000) 407, hep-th/0007043
[382] G., Pradisi, A., Sagnotti, Open string orbifolds, Phys. Lett. B 216 (1989) 59
[383] G., Pradisi, A., Sagnotti, Y. S., Stanev, Planar duality in SU(2) WZW models, Phys. Lett. B 354 (1995) 279, hep-th/9503207; The open descendants of non-diagonal SU(2) WZW models, Phys. Lett. B 356 (1995) 230, hep-th/9506014
[384] G., Pradisi, A., Sagnotti, Y. S., Stanev, Completeness conditions for boundary operators in 2d conformal field theory, Phys. Lett. B 381 (1996) 97, hep-th/9603097
[385] A., Pressley, G., Segal, Loop Groups, Clarendon 1988
[386] A., Recknagel, Permutation branes, J. High Energy Phys. 0304 (2003) 041, hep-th/0208119
[387] A., Recknagel, On Permutation branes, Fortsch. Phys. 51 (2003) 824
[388] A., Recknagel, D., Roggenkamp, V., Schomerus, On relevant boundary perturbations in unitary minimal models, Nucl. Phys. B 588 (2000) 552, hep-th/0003110
[389] A., Recknagel, V., Schomerus, D-branes in Gepner models, Nucl. Phys. B 531 (1998) 185, hep-th/9712186
[390] A., Recknagel, V., Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999) 233, hep-th/9811237
[391] A., Recknagel, V., Schomerus, Moduli spaces of D-branes in CFT-backgrounds, Fortsch. Phys. 48 (2000) 195, hep-th/9903139
[392] K.-H., Rehren, Markov traces as characters for local algebras, Nucl. Phys. B Proc. Suppl. 18B (1990) 259; Braid group statistics and their superselection rules, in The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, D. Kastler (ed.), World Scientific 1990; Quantum symmetry associated with braid group statistics, in Lecture Notes in Physics, vol. 370, Springer 1990; Quantum symmetry associated with braid group statistics II, in: Quantum Symmetries Doebner et al. (eds.), World Scientific 1993
[393] K.-H., Rehren, B., Schroer, Einstein causality and Artin braids, Nucl. Phys. B 312 (1989) 715
[394] S.-J., Rey, The confining phase of superstrings and axionic strings, Phys. Rev. D 43 (1991) 526
[395] A., Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, in Vertex Operators in Mathematics and Physics, J., Lepowskyet al. (eds.), Springer 1985
[396] D., Roggenkamp, K., Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004) 589, hep-th/0308143
[397] I., Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563, hep-th/9811178
[398] I., Runkel, Structure constants for the D-series Virasoro minimal models, Nucl. Phys. B 579 (1999) 561, hep-th/9908046
[399] A., Sagnotti, Open strings and their symmetry groups, in Non-perturbative Methods in Field Theory, G., Macket al. (eds.), Lecture Notes Cargese 1987
[400] A., Sagnotti, Some properties of open string theories, hep-th/9509080
[401] A., Sagnotti, Surprises in open-string perturbation theory, Nucl. Phys. B Proc. Suppl. 56B (1997) 332, hep-th/9702093
[402] E., Scheidegger, D-branes on some one- and two-parameter Calabi–Yau hypersurfaces, J. High Energy Phys. 0004 (2000) 003, hep-th/9912188
[403] E., Scheidegger, D0-branes in Gepner models, J. High Energy Phys. 0208 (2002) 001, hep-th/0109013
[404] E., Scheidegger, D-branes on Calabi–Yau spaces, Ph.D. thesis, Ludwig-Maximilians-Universität, Munich (2001), available at http://edoc.ub.uni-muenchen.de/archive/00000445
[405] A. N., Schellekens, S., Yankielowicz, Extended chiral algebras and modular invariant partition functions, Nucl. Phys. B 327 (1989) 673; Modular invariants from simple currents: an explicit proof, Phys. Lett. B 227 (1989) 387
[406] A. N., Schellekens, S., Yankielowicz, Simple currents, modular invariants and fixed points, Int. J. Mod. Phys. A 5 (1990) 2903
[407] A. N., Schellekens, S., Yankielowicz, Field identification fixed points in the coset construction, Nucl. Phys. B 334 (1990) 67
[408] V., Schomerus, Construction of field algebras with quantum symmetry from local observables, Commun. Math. Phys. 169 (1995) 193, hep-th/9401042
[409] V., Schomerus, Non-compact string backgrounds and non-rational CFT, Phys. Rept. 431 (2006) 39, hep-th/0509155.
[410] V., Schomerus, D-branes and deformation quantization, J. High Energy Phys. 9906 (1999) 030, hep-th/9903205
[41l] M., Schottenloher (ed.), A mathematical introduction to conformal field theory, Lecture Notes in Physics, vol. 759, Springer 2008, p. 1
[412] J. H., Schwarz, Superstring theory, Phys. Rept. 89 (1982) 223
[413] A., Schwimmer, N., Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two dimensions, Phys. Lett. B 184 (1987) 191
[414] G., Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, K., Bleuler, M., Werner (eds.), Kluwer 1988
[415] N., Seiberg, E., Witten, String theory and noncommutative geometry, J. High Energy Phys. 9909 (1999) 032, hep-th/9908142
[416] A., Sen, Tachyon condensation on the brane antibrane system, J. High Energy Phys. 9808 (1998) 012, hep-th/9805170; Stable non-BPS bound states of BPS D-branes, J. High Energy Phys. 9808 (1998) 010, hep-th/9805019; Stable non-BPS states in string theory, J. High Energy Phys. 9806 (1998) 007, hep-th/9803194
[417] A., Sen, SO(32) spinors of type I and other solitons on brane–antibrane pair, J. High Energy Phys. 9809 (1998) 023, hep-th/9808141
[418] A., Sen, Developments in superstring theory, hep-ph/9810356
[419] A., Sen, Type I D-particle and its interactions, J. High Energy Phys. 9810 (1998) 021, hep-th/9809111
[420] A., Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14 (1999) 4061, hep-th/9902105
[421] A., Sen, Non-BPS states and branes in string theory, hep-th/9904207
[422] A., Sen, Moduli space of unstable D-branes on a circle of critical radius, J. High Energy Phys. 0403 (2004) 070, hep-th/0312003
[423] A., Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513, hep-th/0410103
[424] S. L., Shatashvili, Comment on the background independent open string theory, Phys. Lett. B 311 (1993) 83, hep-th/9303143; On the problems with background independence in string theory, Alg. Anal. 6 (1994) 215, hep-th/9311177.
[425] M. M., Sheikh-Jabbari, Classification of different branes at angles, Phys. Lett. B 420 (1998) 279, hep-th/9710121; More on mixed boundary conditions and D-branes bound states, Phys. Lett. B 425 (1998) 48, hep-th/9712199
[426] S. H., Shenker, Another length scale in string theory?, hep-th/9509132
[427] S., Stanciu, D-branes in Kazama–Suzuki models, Nucl. Phys. B 526 (1998) 295, hep-th/9708166
[428] S., Stanciu, D-branes in group manifolds, J. High Energy Phys. 0001 (2000) 025, hep-th/9909163
[429] S., Stanciu, A note on D-branes in group manifolds: flux quantization and D0-charge, J. High Energy Phys. 0010 (2000) 015, hep-th/0006145
[430] S., Stanciu, A., Tseytlin, D-branes in curved spacetime: Nappi–Witten background, J. High Energy Phys. 9806 (1998) 010, hep-th/9805006
[431] Y. S., Stanev, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998. http://www.desy.de/~jfuchs/CftD-s.html
[432] K. S., Stelle, Lectures on supergravity p-branes, hep-th/9701088; BPS branes in super-gravity, hep-th/9803116
[433] A., Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44, hep-th/9512059
[434] A., Strominger, C., Vafa, Microscopic origin of the Bekenstein–Hawking entropy, Phys. Lett. B 379 (1996) 99, hep-th/9601029
[435] W., Taylor, D2-branes in B-fields, J. High Energy Phys. 0007 (2000) 039, hep-th/0004141
[436] J., Teschner, Remarks on Liouville theory with boundary, hep-th/0009138; Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153, hep-th/0104158
[437] P. K., Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184, hep-th/9501068
[438] A. A., Tseytlin, Ambiguity in the effective action in string theories, Phys. Lett. B 176 (1986) 92
[439] A. A., Tseytlin, Born–Infeld action, supersymmetry and string theory, hep-th/9908105
[440] C., Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592
[441] E., Verlinde, Fusion rules and modular transformations in 2-d conformal field theory, Nucl. Phys. B 300 (1988) 360
[442] N. P., Warner, N = 2 Supersymmetric integrable models and topological field theories, Lectures at the Trieste Summer School on High Energy Physics and Cosmology, 1992, hep-th/9301088
[443] N. P., Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995) 663, hep-th/9506064
[444] G. M. T., Watts, unpublished TCSA computations (February 2000)
[445] K., Wendland, Orbifold constructions of K3: a link between conformal field theory and geometry, hep-th/0112006
[446] H., Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1
[447] E. T., Whittaker, G. N., Watson, A Course of Modern Analysis, Cambridge University Press 2002
[448] E., Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455
[449] E., Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353; Topological sigma models, Commun. Math. Phys. 118 (1988) 411
[450] E., Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351
[451] E., Witten, On background independent open string field theory, Phys. Rev. D 46 (1992) 5467, hep-th/9208027; Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405, hep-th/9210065
[452] E., Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159, hep-th/9301042
[453] E., Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85, hep-th/9503124
[454] E., Witten, Bound states of strings and D-branes, Nucl. Phys. B 460 (1996) 335, hep-th/9510135
[455] E., Witten, Solutions of four-dimensional field theories via M theory, Nucl. Phys. B 500 (1997) 3, hep-th/9703166
[456] E., Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150
[457] E., Witten, D-branes and K-theory, J. High Energy Phys. 9812 (1998) 019, hep-th/9810188
[458] E., Wong, I., Affleck, Tunneling in quantum wires: a boundary conformal field theory approach, Nucl. Phys. B 417 (1994) 403
[459] S. T., Yau (ed.), Essays on Mirror Manifolds, International Press 1992
[460] S. A., Yost, Bosonized superstring boundary states and partition functions, Nucl. Phys. B 321 (1989) 629
[461] A. B., Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205
[462] A. B., Zamolodchikov, “Irreversibility” of the flux of the renormalization group in a 2-d field theory, JETP Lett. 43 (1986) 730
[463] A. B., Zamolodchikov, V. A., Fateev, Operator algebra and correlation functions in the two-dimensional Wess–Zumino SU(2) × SU(2) chiral model, Sov. J. Nucl. Phys. 43 (1986) 657
[464] Y., Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237
[465] J.-B., Zuber, Graphs, algebras, conformal field theories and integrable lattice models, Nucl. Phys. B Proc. Suppl. 18B (1990) 313; C-algebras and their applications to reflection groups and conformal field theories, hep-th/9707034
[466] J.-B., Zuber, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.