Skip to main content Accessibility help
×
  • Cited by 42
Publisher:
Cambridge University Press
Online publication date:
November 2013
Print publication year:
2013
Online ISBN:
9780511806476

Book description

Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.

Reviews

'… comprehensive …'

Source: CERN Courier

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] A., Abouelsaood, C. G., Callan, C. R., Nappi, S. A., Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987 Google Scholar) 599
[2] I., Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986 Google Scholar) 746
[3] I., Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995 Google Scholar) 1869, cond-mat/9512099
[4] I., Affleck, A. W. W., Ludwig, Critical theory of overscreened Kondo fixed points, Nucl. Phys. B 360 (1991 Google Scholar) 641; The Kondo effect, conformal field theory and fusion rules, Nucl. Phys. B 352 (1991) 849
[5] I., Affleck, A. W. W., Ludwig, Universal noninteger ‘groundstate degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991 Google Scholar) 161
[6] I., Affleck, A. W. W., Ludwig, Exact conformal field theory results on the multichannel Kondo effect: single-fermion Green's function, self-energy, and resistivity, Phys. Rev. B 48 (1993 Google Scholar) 7297
[7] I., Affleck, M., Oshikawa, H., Saleur Google Scholar, Boundary critical phenomena in the three-state Potts model, cond-mat/9804117
[8] I., Affleck, Edge critical behaviour of the 2-dimensional tri-critical Ising model, J. Phys. A 33 (2000 Google Scholar) 6473, cond-mat/0005286
[9] M., Aganagic, R., Gopakumar, S., Minwalla, A., Strominger, Unstable solitons in noncommutative gauge theory, J. High Energy Phys. 0104 (2001 Google Scholar) 001, hep-th/0009142
[10] A. Yu., Alekseev, S., Fredenhagen, T., Quella, V., Schomerus Google Scholar, Non-commutative gauge theory of twisted D-branes, hep-th/0205123
[11] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Generalization of the Knizhnik–Zamolodchikov equations, Lett. Math. Phys. 41 (1997 Google Scholar) 169, hep-th/9610066
[12] A. Yu., Alekseev, A., Recknagel, V., Schomerus, Non-commutative world-volume geometries: branes on SU(2) and fuzzy spheres, J. High Energy Phys. 9909 (1999 Google Scholar) 023, hep-th/9908040
[13] A. Yu., Alekseev, A., Recknagel, V., Schomerus Google Scholar, Brane dynamics in background fluxes and non-commutative geometry, hep-th/0003187
[14] A. Yu., Alekseev, V., Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999 Google Scholar) 061901, hep-th/9812193
[15] A. Yu., Alekseev, V., Schomerus Google Scholar, RR charges of D2-branes in the WZW model, hep-th/0007096
[16] A. Yu., Alekseev, S., Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys. 128 (1990 Google Scholar) 197; Quantum groups and WZW models, Commun. Math. Phys. 133 (1990) 353
[17] L., Alvarez-Gaumé, D. Z., Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Commun. Math. Phys. 80 (1981 Google Scholar) 443
[18] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Quantum group interpretation of some conformal field theories, Phys. Lett. B 220 (1989 Google Scholar) 142
[19] L., Alvarez-Gaumé, C., Gomez, G., Sierra, Topics in conformal field theory, in Physics and Mathematics of Strings, L., Brink, D., Friedan, A. M., Polyakov (eds.), World Scientific 1990 Google Scholar
[20] C., Angelantonj, M., Bianchi, G., Pradisi, A., Sagnotti, Y. S., Stanev, Comments on Gepner models and type I vacua in string theory, Phys. Lett. B 387 (1996 Google Scholar) 743, hep-th/9607229
[21] C., Angelantonj, A., Sagnotti, Open strings, Phys. Rept. 371 (2002 Google Scholar) 1, Erratum: C. Angelantonj, A. Sagnotti, Open strings, Phys. Rept. 376 (2003) 339, hep-th/0204089
[22] I., Antoniadis, C., Bachas, Branes and the gauge hierarchy, Phys. Lett. B 450 (1999 Google Scholar) 83, hep-th/9812093
[23] F., Ardalan, H., Arfaei, M. M., Sheikh-Jabbari, Noncommutative geometry from strings and branes, J. High Energy Phys. 9902 (1999 Google Scholar) 016, hep-th/9810072
[24] S. K., Ashok, E., Dell'Aquila, D. E., Diaconescu Google Scholar, Fractional branes in Landau–Ginzburg orbifolds, hep-th/0401135
[25] P. S., Aspinwall, The Landau–Ginzburg to Calabi–Yau dictionary for D–branes, J. Math. Phys. 48 (2007 Google Scholar) 082304, hep-th/0610209
[26] P. S., Aspinwall, M. R., Douglas, D-brane stability and monodromy, J. High Energy Phys. 0205 (2002 Google Scholar) 031, hep-th/0110071
[27] C., Bachas, D-brane dynamics, Phys. Lett. B 374 (1996 Google Scholar) 37, hep-th/9511043
[28] C., Bachas Google Scholar, Lectures on D-branes, hep-th/9806199
[29] C., Bachas Google Scholar, On the symmetries of classical string theory, arXiv:0808.2777 [hep-th]
[30] C., Bachas, J., de Boer, R., Dijkgraaf, H., Ooguri, Permeable conformal walls and holography, J. High Energy Phys. 0206 (2002 Google Scholar) 027, hep-th/0111210
[31] C., Bachas, M. R., Douglas, C., Schweigert, Flux stabilization of D-branes, J. High Energy Phys. 0005 (2000 Google Scholar) 048, hep-th/0003037
[32] C., Bachas, M. R., Gaberdiel, Loop operators and the Kondo problem, J. High Energy Phys. 0411 (2004 Google Scholar) 065, hep-th/0411067
[33] F. A., Bais, P., Bouwknegt, M., Surridge, K., Schoutens, Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants, Nucl. Phys. B 304 (1988 Google Scholar) 348; Coset construction for extended Virasoro algebras, Nucl. Phys. B 304 (1988) 371
[34] V., Balasubramanian, R. G., Leigh, D-branes, moduli and supersymmetry, Phys. Rev. D 55 (1997 Google Scholar) 6415, hep-th/9611165
[35] T., Banks, L. J., Dixon, D., Friedan, E., Martinec, Phenomenology and conformal field theory or Can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988 Google Scholar) 613
[36] P., Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419 (1998 Google Scholar) 175, hep-th/9708120; Permutation orbifolds, Nucl. Phys. B 633 (2002) 365, hep-th/9910079
[37] M., Bauer, Aspects de I'invariance conformé, Universitè Paris VII, 1990 Google Scholar
[38] M., Bauer, P., Di Francesco, C., Itzykson, J.-B., Zuber, Covariant differential equations and singular vectors in Virasoro representations, Nucl. Phys. B 362 (1991 Google Scholar) 515
[39] M., Bauer, H., Saleur, On some relations between local height properties and conformal invariance, Nucl. Phys. B 320 (1989 Google Scholar) 591
[40] K., Becker, M., Becker, D. R., Morrison, H., Ooguri, Y., Oz, Z., Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi–Yau 4-folds, Nucl. Phys. B 480 (1996 Google Scholar) 225, hep-th/9608116
[41] K., Becker, M., Becker, A., Strominger, Fivebranes, membranes and non-perturbative string theory, Nucl. Phys. B 456 (1995 Google Scholar) 130, hep-th/9507158
[42] R. E., Behrend, P. A., Pearce, J.-B., Zuber, Integrable boundaries, conformal boundary conditions and A–D–E fusion rules, J. Phys. A 31 (1998 Google Scholar) 1763, hep-th/9807142
[43] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444 (1998 Google Scholar) 163, hep-th/9809097
[44] R. E., Behrend, P. A., Pearce, V. B., Petkova, J.-B., Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579 (2000 Google Scholar) 525, 525 (2000) 707, hep-th/9908036
[45] A. A., Belavin, A. M., Polyakov, A. B., Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984 Google Scholar) 333
[46] L., Benoit, Y., Saint-Aubin, Degenerate conformal field theories and explicit expressions of some null vectors, Phys. Lett. B 215 (1988 Google Scholar) 517
[47] O., Bergman, M. R., Gaberdiel, A non-supersymmetric open string theory and S-duality, Nucl. Phys. B 499 (1997 Google Scholar) 183, hep-th/9701137
[48] O., Bergman, M. R., Gaberdiel, Stable non-BPS D-particles, Phys. Lett. B 441 (1998 Google Scholar) 133, hep-th/9806155
[49] M., Berkooz, M. R., Douglas, R. G., Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996 Google Scholar) 265, hep-th/9606139
[50] M., Bershadsky, S., Cecotti, H., Ooguri, C., Vafa, Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994 Google Scholar) 311; hep-th/9309140
[51] M., Bertolini, P., Fré, F., Hussain, R., Iengo, C., Nuñez, C., Scrucca Google Scholar, Black hole – D-brane correspondence: an example, hep-th/9807209
[52] M., Bertolini, P., Fré, R., Iengo, C., Nuñez, C., Scrucca, Black holes as D3-branes on Calabi–Yau threefolds, Phys. Lett. B 431 (1998 Google Scholar) 22, hep-th/9803096
[53] M., Bianchi, G., Pradisi, A., Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992 Google Scholar) 365
[54] M., Bianchi, A., Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990 Google Scholar) 517
[55] M., Bianchi, A., Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991 Google Scholar) 519
[56] M., Bianchi, Y. S., Stanev, Open strings on the Neveu–Schwarz pentabrane, Nucl. Phys. B 523 (1998 Google Scholar) 193, hep-th/9711069
[57] M., Billo, D., Cangemi, P., Di Vecchia, Boundary states for moving D-branes, Phys. Lett. B 400 (1997 Google Scholar) 63, hep-th/9701190
[58] M., Billó, B., Craps, F., Roose, Orbifold boundary states from Cardy's condition, J. High Energy Phys. 0101 (2001 Google Scholar) 038, hep-th/0011060
[59] L., Birke, J., Fuchs, C., Schweigert, Symmetry breaking boundary conditions and WZW orbifolds, Adv. Theor. Math. Phys. 3 (1999 Google Scholar) 671, hep-th/9905038
[60] H. W. J., Bloete, J. L., Cardy and M. P., Nightingale, Conformal invariance, the central charge, and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986 Google Scholar) 742
[61] R., Blumenhagen, W., Eholzer, A., Honecker, K., Hornfeck, R., Hübel, Unifying W-algebras, Phys. Lett. B 332 (1994 Google Scholar) 51, hep-th/9404113
[62] R., Blumenhagen, M., Flohr, A., Kliem, W., Nahm, A., Recknagel, R., Varnhagen, W-algebras with two and three generators, Nucl. Phys. B 361 (1991 Google Scholar) 255
[63] R., Blumenhagen, E., Plauschinn, Introduction to conformal field theory, Lecture Notes in Physics, vol. 779, Springer 2000 Google Scholar
[64] R., Blumenhagen, T., Weigand, Chiral supersymmetric Gepner model orientifolds, J. High Energy Phys. 0402 (2004 Google Scholar) 041, hep-th/0401148
[65] R., Blumenhagen, A., Wisskirchen, Spectra of 4D, N = 1 type I string vacua on non-toroidal CY threefolds, Phys. Lett. B 438 (1998 Google Scholar) 52, hep-th/9806131
[66] J., Böckenhauer, D. E., Evans, Modular invariants, graphs and α-induction for nets of subfactors I,II,II, Commun. Math. Phys. 197 (1998 Google Scholar) 361, hep-th/9801171; Commun. Math. Phys. 200 (1999) 57, hep-th/9805023; Commun. Math. Phys. 205 (1999) 183, hep-th/9812110
[67] J., Böckenhauer, D. E., Evans, Y., Kawahigashi Google Scholar, On α-induction, chiral generators and modular invariants for subfactors, math.OA/9904109; Chiral structure ofmodular invariants for subfactors, math.OA/9907149
[68] R., Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Natl. Acad. Sci. USA 83 (1986 Google Scholar) 3068; Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405
[69] P., Bouwknegt, V., Mathai, D-branes, B-fields and twisted K-theory, J. High Energy Phys. 0003 (2000 Google Scholar) 007, hep-th/0002023
[70] P., Bouwknegt, K., Schoutens (eds.), W-Symmetry, World Scientific 1995 Google Scholar
[71] I., Brunner, On orientifolds of WZW models and their relation to geometry, J. High Energy Phys. 0201 (2002 Google Scholar) 007, hep-th/0110219
[72] I., Brunner, M. R., Douglas, A., Lawrence, C., Röomelsberger, D-branes on the quintic, J. High Energy Phys. 0008 (2000 Google Scholar) 015, hep-th/9906200
[73] I., Brunner, R., Entin, C., Romelsberger, D-branes on T4/ℤ2 and T-Duality, J. High Energy Phys. 9906 (1999 Google Scholar) 016, hep-th/9905078
[74] I., Brunner, M., Gaberdiel, Matrix factorisations and permutation branes, J. High Energy Phys. 0507 (2005 Google Scholar) 012, hep-th/0503207
[75] I., Brunner, M. R., Gaberdiel, The matrix factorisations of the D-model, J. Phys. A A38 (2005 Google Scholar) 7901, hep-th/0506208
[76] I., Brunner, M. R., Gaberdiel, C. A., Keller, Matrix factorisations and D-branes on K3, J. High Energy Phys. 0606 (2006 Google Scholar) 015, hep-th/0603196
[77] I., Brunner, M., Herbst, W., Lerche, B., Scheuner, Landau–Ginzburg realization of open string TFT, J. High Energy Phys. 0611 (2006 Google Scholar) 043, hep-th/0305133
[78] I., Brunner, M., Herbst, W., Lerche, J., Walcher, Matrix factorizations and mirror symmetry: the cubic curve, J. High Energy Phys. 0611 (2006 Google Scholar) 006, hep-th/0408243
[79] I., Brunner, K., Hori, Notes on orientifolds of rational conformal field theories, J. High Energy Phys. 0407 (2004 Google Scholar) 023, hep-th/0208141
[80] I., Brunner, K., Hori, K., Hosomichi, J., Walcher Google Scholar, Orientifolds of Gepner models, hep-th/0401137
[81] I., Brunner, D., Roggenkamp, B-type defects in Landau–Ginzburg models, J. High Energy Phys. 0708 (2007 Google Scholar) 093, arXiv:0707.0922 [hep-th]
[82] I., Brunner, D., Roggenkamp, Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds, J. High Energy Phys. 0804 (2008 Google Scholar) 001, arXiv:0712.0188 [hep-th]
[83] I., Brunner, V., Schomerus, D-branes at singular curves of Calabi–Yau compactifications, J. High Energy Phys. 0004 (2000 Google Scholar) 020, hep-th/0001132
[84] I., Brunner, V., Schomerus, On superpotentials for D-branes in Gepner models, J. High Energy Phys. 0010 (2000 Google Scholar) 016, hep-th/0008194
[85] A. O., Caldeira, A. J., Leggett, Influence of dissipation on quantum tunneling in macros, Phys. Rev. Lett. 46 (1981 Google Scholar) 211; Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587; Quantum tunnelling in a dissipative system, Annals Phys. 149 (1983) 374
[86] C. G., Callan, J. A., Harvey, A., Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991 Google Scholar) 611; Worldbrane actions for string solitons, Nucl. Phys. B 367 (1991) 60
[87] C. G., Callan, I. R., Klebanov, D-Brane boundary state dynamics, Nucl. Phys. B 465 (1996 Google Scholar) 473, hep-th/9511173
[88] C. G., Callan, I. R., Klebanov, A. W. W., Ludwig, J. M., Maldacena, Exact solution of a boundary conformal field theory, Nucl. Phys. B 422 (1994 Google Scholar) 417, hep-th/9402113
[89] C. G., Callan, C., Lovelace, C. R., Nappi, S. A., Yost, Adding holes and crosscaps to the superstring, Nucl. Phys. B 293 (1987 Google Scholar) 83; Loop corrections to superstring equations of motion, Nucl. Phys. B 308 (1988) 221
[90] C. G., Callan, J. M., Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996 Google Scholar) 591, hep-th/9602043
[91] C. G., Callan, L., Thorlacius, Open string theory as dissipative quantum mechanics, Nucl. Phys. B 329 (1990 Google Scholar) 117
[92] C. G., Callan, L., Thorlacius, World sheet dynamics of string junctions, Nucl. Phys. B 534 (1998 Google Scholar) 121, hep-th/9803097
[93] P., Candelas, X. C., de la Ossa, P. S., Green, L., Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds, Phys. Lett. B 258 (1991 Google Scholar) 118; A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21
[94] P., Candelas, X. C., de la Ossa, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models I, Nucl. Phys. B 416 (1994 Google Scholar) 481, hep-th/9308083
[95] P., Candelas, A., Font, S., Katz, D. R., Morrison, Mirror symmtry for two parameter models II, Nucl. Phys. B 429 (1994 Google Scholar) 626, hep-th/94030187
[96] A., Cappelli, D., Friedan, J. I., Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991 Google Scholar) 616
[97] A., Cappelli, C., Itzykson, J.-B., Zuber, The ADE classification of minimal and conformal invariant theories, Commun. Math. Phys. 113 (1987 Google Scholar) 1
[98] J. L., Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984 Google Scholar) 514
[99] J. L., Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986 Google Scholar) 186
[100] J. L., Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989 Google Scholar) 581
[101] J. L., Cardy, Conformal invariance and statistical mechanics, Lectures given at the Les Houches Summer School in Theoretical Physics, 1988 Google Scholar
[102] J. L., Cardy, D. C., Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991 Google Scholar) 274
[103] S., Carlip, What we don't know about BTZ black hole entropy, Class. Quant. Grav. 15 (1998 Google Scholar) 3609, hep-th/9806026; Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017
[104] U., Carow-Watamura, S., Watamura, Noncommutative geometry and gauge theory on fuzzy sphere, Commun. Math. Phys. 212 (2000 Google Scholar) 395, hep-th/9801195
[105] N., Carqueville, Matrix factorisations and open topological string theory, J. High Energy Phys. 0907 (2009 Google Scholar) 005, arXiv:0904.0862 [hep-th]
[106] N., Carqueville, L., Dowdy, A., Recknagel, Algorithmic deformation of matrix factorisations, J. High Energy Phys. 1204 (2012 Google Scholar) 014, arXiv:1112.3352 [hep-th]
[107] N., Carqueville, I., Runkel, Rigidity and defect actions in Landau–Ginzburg models, Commun. Math. Phys. 310 (2012 Google Scholar) 135, arXiv:1006.5609 [hep-th]
[108] M., Caselle, G., Ponzano, F., Ravanini, Towards a classification of fusion rule algebras in rational conformal field theories, Int. J. Mod. Phys. B 6 (1992 Google Scholar) 2075
[109] A. S., Cattaneo, G., Felder Google Scholar, A path integral approach to the Kontsevich quantization formula, math.QA/9902090
[110] A. H., Chamseddine, J., Fröohlich, Some elements of Connes' non-commutative geometry, and space-time geometry, in Chen Ning Yang, a Great Physicist of the Twentieth Century, C. S., Liu and S.-T., Yau (eds.), International Press 1995 Google Scholar, hep-th/9307012
[111] Y.-K. E., Cheung, M., Krogh, Noncommutative geometry from D0-branes in a background B-field, Nucl. Phys. B 528 (1998 Google Scholar) 185, hep-th/9803031
[112] L., Chim, Boundary S-matrix for the tricritical Ising model, Int. J. Mod. Phys. A 11 (1996 Google Scholar) 4491, hep-th/9510008
[113] P., Christe, R., Flume, The four point correlations of all primary operators of the D = 2 conformally invariant SU(2) sigma model with Wess–Zumino term, Nucl. Phys. B 282 (1987 Google Scholar) 466
[114] C., Chu, P., Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999 Google Scholar) 151, hep-th/9812219
[115] A., Connes, Noncommutative Geometry, Academic Press 1994 Google Scholar
[116] A., Coste, T., Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994 Google Scholar) 316
[117] B., Craps, M. R., Gaberdiel, Discrete torsion orbifolds and D branes 2, J. High Energy Phys. 0104 (2001 Google Scholar) 013, hep-th/0101143
[118] A., Dabholkar, Lectures on Orientifolds and Duality Google Scholar, hep-th/9804208
[119] J., Dai, R. G., Leigh, J., Polchinski, New connections between string theories, Mod. Phys. Lett. A 4 (1989 Google Scholar) 2073
[120] U., Danielsson, G., Ferretti, B., Sundborg, D-particle dynamics and bound states, Int. J. Mod. Phys. A 11 (1996 Google Scholar) 5463, hep-th/9603081
[121] P., Di Francesco, P., Mathieu, D., Sénéchal, Conformal Field Theory, Springer 1997 Google Scholar
[122] P., Di Francesco, J.-B., Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B 338 (1990 Google Scholar) 602
[123] P., Di Vecchia, M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Classical p-branes from boundary states, Nucl. Phys. B 507 (1997 Google Scholar) 259, hep-th/9707068
[124] D. E., Diaconescu, M. R., Douglas, J., Gomis, Fractional branes and wrapped branes, J. High Energy Phys. 9802 (1998 Google Scholar) 013, hep-th/9712230
[125] D.-E., Diaconescu, J., Gomis, Fractional branes and boundary states in orbifold theories, J. High Energy Phys. 0010 (2001 Google Scholar) 001, hep-th/9906242
[126] D.-E., Diaconescu, Enhanced D-brane categories from string field theory, J. High Energy Phys. 0106 (2001 Google Scholar) 016, hep-th/0104200
[127] D.-E., Diaconescu, C., Römelsberger, D-branes and bundles on elliptic fibrations, Nucl. Phys. B 574 (2000 Google Scholar) 245, hep-th/9910172
[128] R., Dijkgraaf, Les Houches lectures on fields, strings and duality, in Les Houches 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki (eds.) Elsevier 1995 Google Scholar, pp. 3–147, hep-th/ 9703136
[129] R., Dijkgraaf, J. M., Maldacena, G. W., Moore and E. P., Verlinde Google Scholar, A black hole farey tail, hep-th/0005003
[130] R., Dijkgraaf, C., Vafa, E., Verlinde, H., Verlinde, Operator algebra of orbifold models, Commun. Math. Phys. 123 (1989 Google Scholar) 485
[131] R., Dijkgraaf, E., Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. B Proc. Suppl. 5B (1988 Google Scholar) 87
[132] R., Dijkgraaf, E., Verlinde, H., Verlinde, C = 1 conformal field theories on Riemann surfaces, Commun. Math. Phys. 115 (1988 Google Scholar) 649
[133] R., Dijkgraaf, E., Verlinde, H., Verlinde, Toplogical strings in D < 1, Nucl. Phys. B 352 (1991 Google Scholar) 59
[134] J., Distler, B. R., Greene, Some exact results on the superpotential from Calabi–Yau compactifications, Nucl. Phys. B 309 (1988 Google Scholar) 295
[135] L. J., Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, Lectures given at Trieste HEP Workshop 1987 Google Scholar
[136] L. J., Dixon, J. A., Harvey, C., Vafa, E., Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985 Google Scholar) 678; Strings on orbifolds 2, Nucl. Phys. B 274 (1986) 285
[137] S., Doplicher, K., Fredenhagen, J. E., Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995 Google Scholar) 187, hep-th/ 0303037
[138] S., Doplicher, R., Haag, J. E., Roberts, Local observables and particle statistics I, II, Commun. Math. Phys. 23 (1971 Google Scholar) 199, 35 (1974) 49
[139] S., Doplicher, J. E., Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989 Google Scholar) 157; Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics?, Commun. Math. Phys. 131 (1990) 51
[140] P., Dorey, A., Pocklington, R., Tateo, G., Watts, TBA and TCSA with boundaries and excited states, Nucl. Phys. B 525 (1998 Google Scholar) 641, hep-th/9712197
[141] P., Dorey, I., Runkel, R., Tateo, G., Watts, g-function flow in perturbed boundary conformal field theories, Nucl. Phys. B 578 (2000 Google Scholar) 85, hep-th/9909216
[142] V. S., Dotsenko, V. A., Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312; Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c ≤ 1, Nucl. Phys. B 251 (1985 Google Scholar) 691
[143] M. R., Douglas Google Scholar, Branes within branes, hep-th/9512077
[144] M. R., Douglas Google Scholar, Two lectures on D-geometry and noncommutative geometry, hep-th/9901146; Topics in D-geometry, hep-th/9910170; D-branes on Calabi–Yau manifolds, math.ag/0009209
[145] M. R., Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42, 2818 (2001 Google Scholar), hep-th/0011017; D-branes and N = 1 supersymmetry, hep-th/0105014; Dirichlet branes, homological mirror symmetry, and stability, math.ag/0207021
[146] M. R., Douglas, B., Fiol, C., Röomelsberger, Stability and BPS branes, J. High Energy Phys. 0509 (2005 Google Scholar) 006, hep-th/0002037; The spectrum of BPS branes on a noncompact Calabi-Yau manifold, J. High Energy Phys. 0509 (2005) 057 (2005), hep-th/0003263
[147] M. R., Douglas, B. R., Greene, D. R., Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997 Google Scholar) 84, hep-th/9704151
[148] M. R., Douglas, C., Hull, D-branes and the noncommutative torus, J. High Energy Phys. 9802 (1998 Google Scholar) 008, hep-th/9711165
[149] M. R., Douglas, D., Kabat, P., Pouliot, S. H., Shenker, D-branes and short distances in string theory, Nucl. Phys. B 485 (1997 Google Scholar) 85, hep-th/9608024
[150] M. R., Douglas, G. W., Moore Google Scholar, D-branes, quivers, and ALE instantons, hep-th/9603167
[151] M. R., Douglas, N. A., Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2002 Google Scholar) 977, hep-th/0106048
[152] M. J., Duff, R. R., Khuri, J. X., Lu, String solitons, Phys. Rept. 259 (1995 Google Scholar) 213, hep-th/9412184
[153] E., D'Hoker, String theory, Lecture Notes Princeton 1997 Google Scholar; see http://www.math.ias.edu/QFT/spring /index.html
[154] T., Eguchi, S.-K. Yang, N = 2 superconformal models as topological field theories, Mod. Phys. Lett. A 5 (1990 Google Scholar) 1693
[155] S., Elitzur, G., Sarkissian, D-branes on a gauged WZW model, Nucl. Phys. B 625 (2002 Google Scholar) 166, hep-th/0108142
[156] H., Enger, A., Recknagel, D., Roggenkamp, Permutation branes and linear matrix factorisations, J. High Energy Phys. 0601 (2006 Google Scholar) 087, hep-th/0508053
[157] D. E., Evans, Y., Kawahigashi, Orbifold subfactors from Hecke algebras, Commun. Math. Phys. 165 (1994 Google Scholar) 445
[158] F., Falceto, K., Gawedzki, Lattice Wess–Zumino–Witten model and quantum groups, J. Geom. Phys. 11 (1993 Google Scholar) 251, hep-th/9209076
[159] B. L., Feigin, D. B., Fuchs, Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982 Google Scholar) 114; Verma modules over the Virasoro algebra, in Lecture Notes in Mathematics, vol. 1060, Springer 1984, p. 230
[160] B. L., Feigin, T., Nakanishi, H., Ooguri, The annihilating ideals of minimal models, Int. J. Mod. Phys. A 7 Suppl. 1A (1992 Google Scholar) 217
[161] G., Felder, BRST Approach to Minimal Models, Nucl. Phys. B 317 (1989 Google Scholar) 215, Erratum: G. Felder, BRST Approach to Minimal Models, Nucl. Phys. B 324 (1989) 548
[162] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000 Google Scholar) 162, hep-th/9909030
[163] G., Felder, J., Fröhlich, J., Fuchs, C., Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys. Rev. Lett. 84 (2000 Google Scholar) 1659, hep-th/9909140; Correlation functions and boundary conditions in RCFT and three-dimensional topology, Compos. Math. 131 (2002) 189, hep-th/9912239
[164] G., Felder, J., Fröhlich, G., Keller, On the structure of unitary conformal field theoryCommun. Math. Phys. 124 (1989 Google Scholar) 417, 30 (1990) 1
[165] G., Felder, J., Fröhlich, G., Keller, Braid matrices and structure constants for minimal conformal models, Commun. Math. Phys. 124 (1989 Google Scholar) 647
[166] G., Felder, K., Gawȩdzki, A., Kupiainen, Spectra of Wess–Zumino–Witten models with arbitrary simple groups, Commun. Math. Phys. 117 (1988 Google Scholar) 127; The spectrum of Wess–Zumino–Witten models, Nucl. Phys. B 299 (1988) 355
[167] P., Fendley, F., Lesage, H., Saleur, A unified framework for the Kondo problem and for an impurity in a Luttinger liquid, J. Stat. Phys. 85 (1996 Google Scholar) 211, cond-mat/9510055
[168] P., Fendley, H., Saleur, N. P., Warner, Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430 (1994 Google Scholar) 577, hep-th/9406125
[169] J. M., Figueroa-O'Farrill, S., Schrans, The spin 6 extended conformal algebra, Phys. Lett. B 245 (1990 Google Scholar) 471
[170] J. M., Figueroa-O'Farrill, S., Stanciu, D-brane charge, flux quantization and relative (co)homology, J. High Energy Phys. 0101 (2001 Google Scholar) 006, hep-th/0008038
[171] J., Fjelstad, J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 5: Proof of modular invariance and factorisation, Theor. Appl. Categor. 16 (2006 Google Scholar) 342, hep-th/0503194
[172] S., Förste, D., Ghoshal, S., Panda, An orientifold of the solitonic fivebrane, Phys. Lett. B 411 (1997 Google Scholar) 46, hep-th/9706057
[173] A., Font, L. E., Ibañez, D., Luüst, F., Quevedo, Strong–weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249 (1990 Google Scholar) 35
[174] E. S., Fradkin, A. A., Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 160 (1985 Google Scholar) 69
[175] M., Frau, I., Pesando, S., Sciuto, A., Lerda, R., Russo, Scattering of closed strings from many D-branes, Phys. Lett. B 400 (1997 Google Scholar) 52, hep-th/9702037
[176] K., Fredenhagen, K.-H., Rehren, B., Schroer, Superselection sectors with braid group statistics and exchange algebras I, II, Commun. Math. Phys. 125 (1989 Google Scholar) 201, Rev. Math. Phys. Special issue (1992) 111
[177] S., Fredenhagen, Dynamics of D-branes in curved backgrounds, Ph.D. thesis (2002 Google Scholar), available via http://www.slac.stanford.edu/spires/find/hep/www?irn=5331455
[178] S., Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003 Google Scholar) 436, hep-th/0301229
[179] S., Fredenhagen, M. R., Gaberdiel, C. A., Keller, Bulk induced boundary perturbations, J. Phys. A 40 (2007 Google Scholar) F17, hep-th/0609034
[180] S., Fredenhagen, M. R., Gaberdiel, C., Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009 Google Scholar) 495403, arXiv:0907.2560 [hep-th]
[181] S., Fredenhagen, V., Schomerus, Branes on group manifolds, gluon condensates, and twisted K-theory, J. High Energy Phys. 0104 (2001 Google Scholar) 007, hep-th/0012164
[182] S., Fredenhagen, V., Schomerus Google Scholar, Brane dynamics in CFT backgrounds, hep-th/0104043
[183] S., Fredenhagen, V., Schomerus, D-branes in coset models, J. High Energy Phys. 0202 (2002 Google Scholar) 005, hep-th/0111189
[184] D., Friedan, The space of conformal boundary conditions for the c = 1 Gaussian model, unpublished note (1999 Google Scholar), http://www.physics.rutgers.edu/pages/friedan/
[185] D., Friedan, A., Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004 Google Scholar) 030402, hep-th/0312197
[186] D., Friedan, E., Martinec, S. H., Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986 Google Scholar) 93
[187] D., Friedan, Z., Qiu, S. H., Shenker, Conformal invariance, unitarity and two-dimensional critical exponents, Phys. Rev. Lett. 52 (1984 Google Scholar) 1575
[188] J., Frohlich, New superselection sectors (‘soliton states’) in two-dimensional Bose quantum field theories, Commun. Math. Phys. 47 (1976 Google Scholar) 269
[189] J., Fröhlich, Statistics of fields, the Yang–Baxter equation and the theory of knots and links, in Non-perturbative Quantum Field Theory, G.t', Hooftet al. (eds.), Plenum 1988 Google Scholar
[190] J., Fröhlich, The non-commutative geometry of two-dimensional supersymmetric conformal field theory, in PASCOS, Proceedings of the Fourth International Symposium on Particles, Strings and Cosmology, K. C., Wali (ed.), World Scientific 1995 Google Scholar
[191] J., Fröhlich, J., Fuchs, I., Runkel, C., Schweigert, Kramers–Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004 Google Scholar) 070601, cond-mat/0404051; Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [math-ph]
[192] J., Fröhlich, F., Gabbiani, Braid statistics in local quantum theory, Rev. Math. Phys. 2 (1990 Google Scholar) 251
[193] J., Fröhlich, K., Gawȩdzki, Conformal field theory and the geometry of strings, CRM Proceedings and Lecture Notes, Vol. 7, CRM 1994 Google Scholar, 57, hep-th/9310187
[194] J., Fröhlich, O., Grandjean, A., Recknagel, Supersymmetric quantum theory, non-commutative geometry, and gravitation, in Les Houches 1995, Elsevier 1995, Quantum Symmetries, A., Connes, K., Gawȩdzki Google Scholar (eds.), hep-th/9706132
[195] J., Fröhlich, O., Grandjean, A., Recknagel, V., Schomerus, Fundamental strings in Dp–Dq brane systems, Nucl. Phys. B 583 (2000 Google Scholar) 381, hep-th/9912079
[196] J., Fröhlich, T., Kerler, Quantum groups, quantum categories and quantum field theory, Lecture Notes in Mathematics, vol. 1542, Springer 1993 Google Scholar
[197] J., Fröhlich, C., King, The Chern–Simons theory and knot polynomials, Commun. Math. Phys. 126 (1989 Google Scholar) 167; Two-dimensional conformal field theory and three-dimensional topology, Int. J. Mod. Phys. A 4 (1989) 5321
[198] J., Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory, Cambridge University Press 1992 Google Scholar
[199] J., Fuchs, Fusion rules in conformal field theory, Fortsch. Phys. 42 (1994 Google Scholar) 1, hep-th/9306162
[200] J., Fuchs, A., Klemm, C., Scheich, M. G., Schmidt, Gepner models with arbitrary affine invariants and the associated Calabi–Yau spaces, Phys. Lett. B 232 (1989 Google Scholar) 317; Spectra and symmetries of Gepner models compared to Calabi–Yau compactifications, Ann. Phys. 204 (1990) 1
[201] J., Fuchs, I., Runkel, C., Schweigert, TFT construction of RCFT correlators. 1: Partition functions, Nucl. Phys. B 646 (2002 Google Scholar) 353, hep-th/0204148; TFT construction of RCFT correlators. 2: Unoriented world sheets, Nucl. Phys. B 678 (2004) 511, hep-th/0306164;TFT construction of RCFT correlators. 3: Simple currents, Nucl. Phys. B 694 (2004) 277, hep-th/0403157; TFT construction of RCFT correlators 4: Structure constants and correlation functions, Nucl. Phys. B 715 (2005) 539, hep-th/ 0412290
[202] J., Fuchs, A. N., Schellekens, C., Schweigert, A matrix S for all simple current extensions, Nucl. Phys. B 473 (1996 Google Scholar) 323, hep-th/9601078
[203] J., Fuchs, C., Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, Cambridge University Press 1997 Google Scholar
[204] J., Fuchs, C., Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414 (1997 Google Scholar) 251, hep-th/9708141
[205] J., Fuchs, C., Schweigert, Branes: from free fields to general conformal field theories, Nucl. Phys. B 530 (1998 Google Scholar) 99, hep-th/9712257
[206] J., Fuchs, C., Schweigert, Completeness of boundary conditions for the critical three-state Potts model, Phys. Lett. B 441 (1998 Google Scholar) 141, hep-th/9806121
[207] J., Fuchs, C., Schweigert, Orbifold analysis of broken bulk symmetriesPhys. Lett. B 447 (1999 Google Scholar) 266, hep-th/9811211; Symmetry breaking boundaries I. General theory, Nucl. Phys. B 558 (1999) 419, hep-th/9902132; Symmetry breaking boundaries II. More structures; examples, Nucl. Phys. B 568 (2000) 543, hep-th/9908025
[208] J., Fuchs, C., Schweigert, J., Walcher, Projections in string theory and boundary states for Gepner models, Nucl. Phys. B 588 (2000 Google Scholar) 110, hep-th/0003298
[209] P., Furlan, G. M., Sotkov, I. T., Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim. 12 (1989 Google Scholar) 1
[210] F., Gabbiani, J., Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys. 155 (1993 Google Scholar) 569
[211] M. R., Gaberdiel, Fusion in conformal field theory as the tensor product of the symmetry algebra, Int. J. Mod. Phys. A 9 (1994 Google Scholar) 4619, hep-th/9307183
[212] M. R., Gaberdiel, An introduction to conformal field theory, Rept. Prog. Phys. 63 (2000 Google Scholar) 607, hep-th/9910156
[213] M. R., Gaberdiel, Discrete torsion orbifolds and D branes, J. High Energy Phys. 0011 (2000 Google Scholar) 026, hep-th/0008230
[214] M. R., Gaberdiel, P., Goddard, Axiomatic conformal field theory, Commun. Math. Phys. 209 (2000 Google Scholar) 549, hep-th/9810019
[215] M. R., Gaberdiel, A., Recknagel, Conformal boundary states for free bosons and free fermions, J. High Energy Phys. 0111 (2001 Google Scholar) 016, hep-th/0108238
[216] M. R., Gaberdiel, A., Recknagel, G. M. T., Watts, The conformal boundary states for SU(2) at level 1, Nucl. Phys. B 626 (2002 Google Scholar) 344, hep-th/0108102
[217] M. R., Gaberdiel, A., Konechny, C., Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009 Google Scholar) 105402, arXiv:0811.3149 [hep-th]
[218] T., Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys. 161 (1994 Google Scholar) 233, hep-th/9212060; The classification of SU(3) modular invariants revisited, Annales Henri Poincaré: Phys. Theor. 65 (1996) 15, hep-th/9404185; The level 2 and 3 modular invariants of SU(n), Lett. Math. Phys. 39 (1997) 289, hep-th/9511040
[219] T., Gannon, Integers in the open string, Phys. Lett. B 473 (2000 Google Scholar) 80, hep-th/9910148
[220] T., Gannon, Boundary conformal field theory and fusion ring representations, Nucl. Phys. B 627 (2002 Google Scholar) 506, hep-th/0106105
[221] M. R., Garousi, R. C., Myers, Superstring scattering from D-branes, Nucl. Phys. B 475 (1996 Google Scholar) 193, hep-th/9603194
[222] E., Gava, J. F., Morales, K. S., Narain, G., Thompson, Bound states of type I D-strings, Nucl. Phys. B 528 (1998 Google Scholar) 95, hep-th/9801128
[223] K., Gawȩdzki, Quadrature of conformal field theories, Nucl. Phys. B 328 (1989 Google Scholar) 733; Coulomb gas representation of the SU(2) WZW correlators at higher genera, Lett. Math. Phys. 33 (1995) 335, hep-th/9404012; SU(2) WZW theory at higher genera, Commun. Math. Phys. 169 (1995) 329, hep-th/9402091
[224] K., Gawȩdzki, Lectures on conformal field theory, Lecture Notes Princeton 1996 Google Scholar; see http://www.math.ias.edu/QFT/fall/index.html
[225] K., Gawȩdzki Google Scholar, Conformal field theory: a case study, hep-th/9904145
[226] K., Gawȩdzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincarée 3 (2002 Google Scholar) 847, hep-th/0108044
[227] K., Gawȩdzki, A., Kupiainen, G/H conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988 Google Scholar) 119; Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625
[228] D., Gepner, Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys. B 296 (1988 Google Scholar) 757
[229] D., Gepner, Lectures on N=2 string theory, Lectures at the Trieste Spring School on Superstrings 1989 Google Scholar
[230] D., Gepner, Z., Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987 Google Scholar) 423
[231] D., Gepner, E., Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986 Google Scholar) 493
[232] A. A., Gerasimov, S. L., Shatashvili, On exact tachyon potential in open string field theory, J. High Energy Phys. 0010 (2000 Google Scholar) 034, hep-th/0009103
[233] G. W., Gibbons, N. S., Manton, Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B 274 (1986 Google Scholar) 183
[234] E. G., Gimon, J., Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D 54 (1996 Google Scholar) 1667, hep-th/9601038
[235] P., Ginsparg, Applied conformal field theory, Lectures given at the Les Houches Summer School in Theoretical Physics 1988 Google Scholar
[236] P., Ginsparg, Curiosities at c = 1, Nucl. Phys. B 295 (1988 Google Scholar) 153
[237] V., Ginzburg, Lectures on Noncommutative Geometry Google Scholar, math.AG/0506603
[238] A., Giveon, D., Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999 Google Scholar) 983, hep-th/9802067
[239] P., Goddard, Meromorphic conformal field theory, in Infinite-dimensional Lie Algebras and Lie Groups, V. G., Kac (ed.), World Scientific 1989 Google Scholar
[240] P., Goddard, A., Kent, D. I., Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985 Google Scholar) 88; Unitary representations of the Virasoro and Supervirasoro algebras, Commun. Math. Phys. 103 (1986) 105
[241] P., Goddard, D. I., Olive, Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986 Google Scholar) 303
[242] J., Gomis, D-branes on orbifolds with discrete torsion and topological obstruction, J. High Energy Phys. 0005 (2000 Google Scholar) 006, hep-th/0001200
[243] R., Gopakumar, S., Minwalla, A., Strominger, Noncommutative solitons, J. High Energy Phys. 0005 (2000 Google Scholar) 020, hep-th/0003160
[244] S., Govindarajan, J., Majumder, Crosscaps in Gepner models and type IIA orientifolds, J. High Energy Phys. 0402 (2004 Google Scholar) 026, hep-th/0306257
[245] K., Graham, I., Runkel, G. M. T., Watts, Minimal model boundary flows and c = 1 CFT, Nucl. Phys. B 608 (2001 Google Scholar) 527, hep-th/0101187
[246] K., Graham, G. M. T., Watts, Defect lines and boundary flows, J. High Energy Phys. 0404 (2004 Google Scholar) 019, hep-th/0306167
[247] M. B., Green, A gas of D-instantons, Phys. Lett. B 354 (1995 Google Scholar) 271, hep-th/9504108
[248] M. B., Green, M., Gutperle, Symmetry breaking at enhanced symmetry points, Nucl. Phys. B 460 (1996 Google Scholar) 77, hep-th/9509171
[249] M. B., Green, M., Gutperle, Light-cone supersymmetry and D-branes, Nucl. Phys. B 476 (1996 Google Scholar) 484, hep-th/9604091
[250] M. B., Green, M., Gutperle, D-instanton partition functions, Phys. Rev. D 58 (1998 Google Scholar) 046007, hep-th/9804123
[251] M. B., Green, J. A., Harvey, G., Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997 Google Scholar) 47, hep-th/9605033
[252] M. B., Green, J. H., Schwarz, E., Witten, Superstring Theory I, II, Cambridge University Press 1987 Google Scholar
[253] B. R., Greene Google Scholar, String theory on Calabi–Yau manifolds, TASI lectures, hep-th/9702155
[254] B. R., Greene, M. R., Plesser, Duality in Calabi–Yau moduli spaces, Nucl. Phys. B 338 (1990 Google Scholar) 14
[255] B. R., Greene, C., Vafa, N. P., Warner, Calabi–Yau manifolds and renormalization group flows, Nucl. Phys. B 324 (1989 Google Scholar) 371
[256] M. T., Grisaru, A. E. M., van de Ven, D., Zanon, Four loop beta function for the N =1 and N = 2 supersymmetric nonlinear sigma model in two dimensions, Phys. Lett. B 173 (1986 Google Scholar) 423; Two-dimensional supersymmetric sigma models on Ricci flat Kahler manifolds are not finite, Nucl. Phys. B 277 (1986) 388
[257] D. J., Gross, N. A., Nekrasov, Monopoles and strings in noncommutative gauge theory, J. High Energy Phys. 0007 (2000 Google Scholar) 034, hep-th/0005204
[258] H., Grosse, C., Klimčík, P., Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996 Google Scholar) 231, hep-th/9505175; Field theory on a supersymmetric lattice, Commun. Math. Phys. 185 (1997) 155, hep-th/9507074; Simple field theoretical models on noncommutative manifolds, Lecture Notes Clausthal 1995, hep-th/9510177
[259] S. S., Gubser, A., Hashimoto, I. R., Klebanov, J. M., Maldacena, Gravitational lensing by p-branes, Nucl. Phys. B 472 (1996 Google Scholar) 231, hep-th/9601057
[260] S. S., Gubser, I. R., Klebanov, A. M., Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998 Google Scholar) 105, hep-th/9802109
[261] S., Gukov, I. R., Klebanov, A. M., Polyakov, Dynamics of (n, 1) strings, Phys. Lett. B 423 (1998 Google Scholar) 64, hep-th/9711112
[262] M., Gutperle Google Scholar, Aspects of D-instantons, hep-th/9712156
[263] M., Gutperle, Y., Satoh, D-branes in Gepner models and supersymmetry, Nucl. Phys. B 543 (1999 Google Scholar) 73, hep-th/9808080
[264] M., Gutperle, Y., Satoh, D0-branes in Gepner models and N = 2 black holes, Nucl. Phys. B 555 (1999 Google Scholar) 477, hep-th/9902120
[265] R., Haag, Local Quantum Physics, Springer 1992 Google Scholar
[266] M., Hamermesh, Group Theory and its Applications to Physical Problems, Addison-Wesley 1962 Google Scholar
[267] A., Hanany, E., Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997 Google Scholar) 152, hep-th/9611230
[268] J. A., Harvey Google Scholar, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076
[269] J. A., Harvey, P., Kraus, F., Larsen, Exact noncommutative solitons, J. High Energy Phys. 0012 (2000 Google Scholar) 024, hep-th/0010060
[270] R., Harvey, H. B., Lawson, Calibrated geometries, Acta Math. 148 (1982 Google Scholar) 47
[271] A., Hashimoto, I. R., Klebanov, Decay of excited D-branes, Phys. Lett. B 381 (1996 Google Scholar) 437, hep-th/9604065; Scattering of strings from D-branes, Nucl. Phys. B Proc. Suppl. 55B (1997) 118, hep-th/9611214
[272] K., Hashimoto, K., Krasnov, D-brane solutions in non-commutative gauge theory on fuzzy sphere, Phys. Rev. D 64 (2001 Google Scholar) 046007, hep-th/0101145
[273] M., Herbst, K., Hori, D., Page Google Scholar, Phases of N = 2 theories in 1+1 dimensions with boundary, arXiv:0803.2045 [hep-th]
[274] M., Herbst, C. I., Lazaroiu, Localization and traces in open–closed topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005 Google Scholar) 044, hep-th/0404184
[275] M., Herbst, C. I., Lazaroiu, W., Lerche, Superpotentials, A-infinity relations and WDVV equations for open topological strings, J. High Energy Phys. 0502 (2005 Google Scholar) 071, hep-th/0402110
[276] Y., Hikida, M., Nozaki, Y., Sugawara, Formation of spherical D2-brane from multiple D0-branes, Nucl. Phys. B 617 (2001 Google Scholar) 117, hep-th/0101211
[277] C., Hofman, On the open–closed B-model, J. High Energy Phys. 0311 (2003 Google Scholar) 069, hep-th/0204157
[278] J., Hoppe, Diffeomorphism groups, quantization and SU(∞), Int. J. Mod. Phys. A 4 (1989 Google Scholar) 5235
[279] P., Horava, E., Witten, Heterotic and type I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996 Google Scholar) 506, hep-th/9510209; Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94, hep-th/9603142
[280] K., Hori Google Scholar, Boundary RG flows of N = 2 minimal models, hep-th/0401139
[281] K., Hori, A., Iqbal, C., Vafa Google Scholar, D-branes and mirror symmetry, hep-th/0005247
[282] K., Hori, S., Katz, A., Klemm, R., Pandharipande, R., Thomas, C., Vafa, R., Vakil, E., Zaslow (eds.), Mirror Symmetry, Clay Mathematics Monographs 2003 Google Scholar
[283] K., Hori, J., Walcher, F-term equations near Gepner points, J. High Energy Phys. 0501 (2005 Google Scholar) 008, hep-th/0404196
[284] G. T., Horowitz Google Scholar, The origin of black hole entropy in string theory, gr-qc/9604051
[285] G. T., Horowitz, A., Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991 Google Scholar) 197
[286] S., Hosono, A., Klemm, S., Theisen, Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces, Commun. Math. Phys. 167 (1995 Google Scholar) 301, hep-th/9308122; Lectures on Mirror Symmetry, hep-th/9403096
[287] B.-Y., Hou, K.-J., Shi, P., Wang, R.-H., Yue, The crossing matrices of WZW SU(2) model and minimal models with the quantum 6j symbols, Nucl. Phys. B 345 (1990 Google Scholar) 659
[288] P. S., Howe, P. C., West, N = 2 Superconformal models, Landau–Ginzburg Hamiltonians and the epsilon expansion, Phys. Lett. B 223 (1989 Google Scholar) 377
[289] Y. Z., Huang Google Scholar, Vertex operator algebras and the Verlinde conjecture, math.qa/0406291; Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. USA 102 (2005) 5352, math.qa/0412261; Rigidity and modularity of vertex tensor categories, math.qa/0502533; Vertex operator algebras, fusion rules and modular transformations, math.qa/0502558
[290] T., Hubsch, Calabi–Yau Manifolds: A Bestiary for Physicists, World Scientific 1992 Google Scholar
[291] L. R., Huiszoon, A. N., Schellekens, N., Sousa, Klein bottles and simple currents, Phys. Lett. B 470 (1999 Google Scholar) 95, hep-th/9909114
[292] F., Hussain, R., Iengo, C., Nuñez, C. A., Scrucca, Interaction of moving D-branes on orbifolds, Phys. Lett. B 409 (1997 Google Scholar) 101, hep-th/9706186; Interaction of D-branes on orbifolds and massless particle emission, hep-th/9711021; Aspects of D-brane dynamics on orb-ifolds, hep-th/9711020; Closed string radiation from moving D-branes, Nucl. Phys. B 517 (1998) 92, hep-th/9710049
[293] K. A., Intriligator, Bonus symmetry in conformal field theory, Nucl. Phys. B 332 (1990 Google Scholar) 541
[294] N., Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989 Google Scholar) 251
[295] N., Ishibashi, T., Onogi, Conformal field theories on surfaces with boundaries and cross-caps, Mod. Phys. Lett. A 4 (1989 Google Scholar) 161
[296] C., Itzykson, H., Saleur, J.-B., Zuber (eds.), Conformal Invariance and Applications to Statistical Mechanics, World Scientific 1988 Google Scholar
[297] C., Itzykson, J. B., Zuber, Two-dimensional conformal invariant theories on a torus, Nucl. Phys. B 275 (1986 Google Scholar) 580
[298] R. A., Janik, Exceptional boundary states at c = 1, Nucl. Phys. B 618 (2001 Google Scholar) 675, hep-th/0109021
[299] D. P., Jatkar, G., Mandal, S. R., Wadia, K. P., Yogendran, Matrix dynamics of fuzzy spheres, J. High Energy Phys. 0201 (2002 Google Scholar) 039, hep-th/0110172
[300] D., Kabat, P., Pouliot, A comment on zero-brane quantum mechanics, Phys. Rev. Lett. 77 (1996 Google Scholar) 1004, hep-th/9603127
[301] S., Kachru, J., McGreevy, Supersymmetric three-cycles and (super)symmetry breaking, Phys. Rev. D 61 (2000 Google Scholar) 026001, hep-th/9908135
[302] A., Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2000 Google Scholar) 127, hep-th/9909089
[303] A., Kapustin, Y., Li, D-branes in Landau–Ginzburg models and algebraic geometry, J. High Energy Phys. 0312 (2003 Google Scholar) 005, hep-th/0210296
[304] A., Kapustin, Y., Li, Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2004 Google Scholar) 727, hep-th/0305136
[305] A., Kapustin, Y., Li, D-branes in topological minimal models: the Landau–Ginzburg approach, J. High Energy Phys. 0407 (2004 Google Scholar) 045, hep-th/0306001
[306] A., Kapustin, D., Orlov, Remarks on A branes, mirror symmetry, and the Fukaya category, J. Geom. Phys. 48 (2003 Google Scholar) 84, hep-th/0109098
[307] A., Kapustin, D., Orlov Google Scholar, Lectures on mirror symmetry, derived categories, and D-branes, math.AG/0308173
[308] P., Kaste, W., Lerche, C. A., Lütken, J., Walcher, D-branes on K3-fibrations, Nucl. Phys. B 582 (2000 Google Scholar) 203, hep-th/9912147
[309] H., Kausch, G. M. T., Watts, A study of W-algebras using Jacobi identities, Nucl. Phys. B 354 (1991 Google Scholar) 740
[310] Y., Kazama, H., Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989 Google Scholar) 232
[311] R., Kedem, T. R., Klassen, B. M., McCoy, E., Melzer, Fermionic quasiparticle representations for characters of, Phys. Lett. B 304 (1993 Google Scholar) 263, hep-th/9211102; Fermionic sum representations for conformal field theory characters, Phys. Lett. B 307 (1993) 68, hep-th/9301046
[312] R., Kedem, B. M., McCoy Google Scholar, Construction of modular branching functions from Bethe's equations in the 3-state Potts chain, hep-th/9210129
[313] B., Keller, Introduction to A-infinity algebras and modules, Homology, Homotopy Appl. 3 (2001 Google Scholar) 1, math.RA/9910179
[314] A. N., Kirillov, N. Y., Reshetikhin, Representations of the algebra U(q)(sl(2), q-orthogonal polynomials and invariants of links, in New Developments in the Theory of Knots, T., Kohno (ed.), World Scientific 1990 Google Scholar
[315] C., Klimčík, A nonperturbative regularization of the supersymmetric Schwinger model, Commun. Math. Phys. 206 (1999 Google Scholar) 567, hep-th/9903112
[316] J., Knapp, H., Omer, Matrix factorizations, minimal models and Massey products, J. High Energy Phys. 0605 (2006 Google Scholar) 064, hep-th/0604189
[317] V. G., Knizhnik, A. B., Zamolodchikov, Current algebra and Wess–Zumino model in two dimensions, Nucl. Phys. B 247 (1984 Google Scholar) 83
[318] A., Konechny, g function in perturbation theory, Int. J. Mod. Phys. A 19 (2004 Google Scholar) 2545, hep-th/0310258
[319] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002 Google Scholar) 353, hep-th/0012145
[320] A., Konechny, A., Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Part II, Phys. Rept. 360 (2002 Google Scholar) 353, hep-th/0107251
[321] M., Kontsevich Google Scholar, Homological algebra of mirror symmetry, alg-geom/9411018
[322] M., Kontsevich, Deformation quantization of Poisson manifolds I, Lett. Math. Phys. 66 (2003 Google Scholar) 157, q-alg/9709040
[323] M., Kontsevich, Y., Soibelman Google Scholar, Homological mirror symmetry and torus fibrations, math.SG/0011041
[324] D., Kutasov, M., Marino, G. W., Moore, Some exact results on tachyon condensation in string field theory, J. High Energy Phys. 0010 (2000 Google Scholar) 045, hep-th/0009148; Remarks on tachyon condensation in superstring field theory, hep-th/0010108
[325] O. A., Laudal, Matric Massey products and formal moduli I, in Lecture Notes in Mathematics, vol. 1183, Springer 1986 Google Scholar, p. 218
[326] C. I., Lazaroiu, On the structure of open–closed topological field theory in two dimensions, Nucl. Phys. B 603 (2001 Google Scholar) 497, hep-th/0010269
[327] C. I., Lazaroiu, On the boundary coupling of topological Landau–Ginzburg models, J. High Energy Phys. 0505 (2005 Google Scholar) 037, hep-th/0312286
[328] R. G., Leigh, Dirac–Born–Infeld action from Dirichlet sigma model, Mod. Phys. Lett. A 4 (1989 Google Scholar) 2767
[329] W., Lerche Google Scholar, Recent developments in string theory, hep-th/9710246
[330] W., Lerche, B., Schellekens, N. P., Warner, Lattices and strings, Phys. Rept. 177 (1989 Google Scholar) 1
[331] W., Lerche, C., Vafa, N. P., Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989 Google Scholar) 427
[332] F., Lesage, H., Saleur, Boundary conditions changing operators in non conformal theories, Nucl. Phys. B 520 (1998 Google Scholar) 563, hep-th/9801089
[333] F., Lesage, H., Saleur, P., Simonetti, Boundary flows in minimal models, Phys. Lett. B 427 (1998 Google Scholar) 85, hep-th/9802061
[334] D. C., Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372 (1992 Google Scholar) 654
[335] M., Li, Boundary states of D-branes and Dy-strings, Nucl. Phys. B 460 (1996 Google Scholar) 351, hep-th/9510161
[336] A. W. W., Ludwig, Field theory approach to critical quantum impurity problems and applications to the multi-channel Kondo effect, Int. J. Mod. Phys. B 8 (1994 Google Scholar) 347; Methods of conformal field theory in condensed matter physics: an introduction to nonabelian bosonization, in: Low-dimensional Quantum Field Theories for Condensed Matter Physicists, S. Lundqvist, G. Morandi, Y. Lu (eds.), World Scientific 1995
[337] D., Lüst, S., Theisen, Lectures on string theory, Lecture Notes in Physics, vol. 346, Springer 1989 Google Scholar
[338] G., Mack, V., Schomerus, Quasi-Hopf quantum symmetry in quantum theory, Nucl. Phys. B 370 (1991 Google Scholar) 185; Action of truncated quantum groups on quasi-quantum planes and a quasi-associative differential geometry and calculus, Commun. Math. Phys. 149 (1992) 513
[339] J., Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992 Google Scholar) 69
[340] J., Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press 1999 Google Scholar
[341] J., Majumder, A., Sen, ‘Blowing up’ D-branes on non-supersymmetric cycles, J. High Energy Phys. 9909 (1999 Google Scholar) 004, hep-th/9906109
[342] J. M., Maldacena Google Scholar, Black holes in string theory, hep-th/9607235
[343] J. M., Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998 Google Scholar) 231, hep-th/9711200
[344] J. M., Maldacena, G. W., Moore, N., Seiberg, Geometrical interpretation of D-branes in gauged WZW models, J. High Energy Phys. 0107 (2001 Google Scholar) 046, hep-th/0105038
[345] J. M., Maldacena, G. W., Moore, N., Seiberg, D-brane instantons and K-theory charges, J. High Energy Phys. 0111 (2001 Google Scholar) 062, hep-th/0108100
[346] N. S., Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982 Google Scholar) 54
[347] D., Matalliotakis, H. P., Nilles, S., Theisen, Matching the BPS spectra of heterotic – type I–type I' strings, Phys. Lett. B 421 (1998 Google Scholar) 169, hep-th/9710247
[348] K., Matsubara, V., Schomerus, M., Smedbäack, Open strings in simple current orbifolds, Nucl. Phys. B 626 (2002 Google Scholar) 53, hep-th/0108126
[349] G., Moore, N., Reshetikhin, A comment on quantum group symmetry in conformal field theory, Nucl. Phys. B 328 (1989 Google Scholar) 557
[350] G., Moore, N., Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988 Google Scholar) 451; Classical and conformal quantum field theory, Commun. Math. Phys. 123 (1989) 177; Lectures on rational conformal field theory, http://www.physics.rutgers.edu/~gmoore/LecturesRCFT.pdf
[351] J. E., Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949 Google Scholar) 99
[352] R. C., Myers, Dielectric-branes, J. High Energy Phys. 9912 (1999 Google Scholar) 022, hep-th/9910053
[353] W., Nahm, Lie group exponents and SU(2) current algebras, Commun. Math. Phys. 118 (1988 Google Scholar) 171
[354] W., Nahm, Quantum field theories in one and two dimensions, Duke Math. J. 54 (1987 Google Scholar) 579; Chiral algebras of two-dimensional chiral field theories and their normal ordered products, Proceedings of the Trieste Conference on Recent Developments in Conformational Field Theories, Trieste, October 1989
[355] W., Nahm, A proof of modular invariance, Int. J. Mod. Phys. A 6 (1991 Google Scholar) 2837
[356] W., Nahm, Quasi-rational fusion products, Int. J. Mod. Phys. B 8 (1994 Google Scholar) 3693, hep-th/9402039
[357] W., Nahm Google Scholar, Conformal quantum field theories in two dimensions, in preparation
[358] W., Nahm, A., Recknagel, M., Terhoeven, Dilogarithm identities in conformal field theory, Mod. Phys. Lett. A 8 (1993 Google Scholar) 1835, hep-th/9211034
[359] W., Nahm, K., Wendland, A Hiker's guide to K3: aspects of N = (4, 4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001 Google Scholar) 85, hep-th/9912067
[360] M., Naka, M., Nozaki, Boundary states in Gepner models, J. High Energy Phys. 0005 (2000 Google Scholar) 027, hep-th/0001037
[361] N., Nekrasov, A., Schwarz, Instantons on noncommutative ℝ4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198 (1998 Google Scholar) 689, hep-th/9802068
[362] N. A., Obers, B., Pioline, U-duality and M-theory, Phys. Rept. 318 (1999 Google Scholar) 113, hep-th/9809039; Eisenstein series and string thresholds, Commun. Math. Phys. 209 (2000) 275, hep-th/9903113
[363] A., Ocneanu, Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications II, London Mathematical Society, Cambridge University Press 1989 Google Scholar; Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45, recorded by Y. Kawahigashi, July 1990
[364] H., Ooguri, Y., Oz, Z., Yin, D-branes on Calabi–Yau spaces and their mirrors, Nucl. Phys. B 477 (1996 Google Scholar) 407, hep-th/9606112
[365] H., Ooguri, Z., Yin Google Scholar, TASI lectures on perturbative string theories, hep-th/9612254
[366] D., Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, vol. II, Birkhäauser 2009 Google Scholar, math.AG/0503632
[367] M., Oshikawa, I., Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys B 495 (1997 Google Scholar) 533, condmat/9612187
[368] B., Ovrut Google Scholar, N =1 supersymmetric vacua in heterotic M-theory, hep-th/9905115
[369] V., Pasquier, Operator content of the ADE lattice models, J. Phys. A 20 (1987 Google Scholar) 5707; Two-dimensional critical systems labeled by Dynkin diagrams, Nucl. Phys. B 285 (1987) 162; Etiology of IRF models, Commun. Math. Phys. 118 (1988) 355
[370] V. B., Petkova, J.-B., Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438 (1995 Google Scholar) 347, hep-th/9410209
[371] V. B., Petkova, J.-B., Zuber, From CFT to graphs, Nucl. Phys. B 463 (1996 Google Scholar) 161, hep-th/9510175; Conformal field theory and graphs, hep-th/9701103
[372] V. B., Petkova, J.-B., Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001 Google Scholar) 157, hep-th/0011021
[373] V. B., Petkova, J.-B., Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001 Google Scholar) 449, hep-th/0101151
[374] J., Polchinski, Combinatorics of boundaries in string theory, Phys. Rev. D 50 (1994 Google Scholar) 6041, hep-th/9407031
[375] J., Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995 Google Scholar) 4724, hep-th/9510017
[376] J., Polchinski Google Scholar, TASI lectures on D-branes, hep-th/9611050
[377] J., Polchinski, String Theory I, II, Cambridge University Press 1998 Google Scholar
[378] J., Polchinski, Y., Cai, Consistency of open superstring theories, Nucl. Phys. B 296 (1988 Google Scholar) 91
[379] J., Polchinski, S., Chaudhuri, C. V., Johnson Google Scholar, Notes on D-Branes, hep-th/9602052
[380] J., Polchinski, L., Thorlacius, Free fermion representation of a boundary conformal field theory, Phys. Rev. D 50 (1994 Google Scholar) 622, hep-th/9404008
[381] A. P., Polychronakos, Flux tube solutions in noncommutative gauge theories, Phys. Lett. B 495 (2000 Google Scholar) 407, hep-th/0007043
[382] G., Pradisi, A., Sagnotti, Open string orbifolds, Phys. Lett. B 216 (1989 Google Scholar) 59
[383] G., Pradisi, A., Sagnotti, Y. S., Stanev, Planar duality in SU(2) WZW models, Phys. Lett. B 354 (1995 Google Scholar) 279, hep-th/9503207; The open descendants of non-diagonal SU(2) WZW models, Phys. Lett. B 356 (1995) 230, hep-th/9506014
[384] G., Pradisi, A., Sagnotti, Y. S., Stanev, Completeness conditions for boundary operators in 2d conformal field theory, Phys. Lett. B 381 (1996 Google Scholar) 97, hep-th/9603097
[385] A., Pressley, G., Segal, Loop Groups, Clarendon 1988 Google Scholar
[386] A., Recknagel, Permutation branes, J. High Energy Phys. 0304 (2003 Google Scholar) 041, hep-th/0208119
[387] A., Recknagel, On Permutation branes, Fortsch. Phys. 51 (2003 Google Scholar) 824
[388] A., Recknagel, D., Roggenkamp, V., Schomerus, On relevant boundary perturbations in unitary minimal models, Nucl. Phys. B 588 (2000 Google Scholar) 552, hep-th/0003110
[389] A., Recknagel, V., Schomerus, D-branes in Gepner models, Nucl. Phys. B 531 (1998 Google Scholar) 185, hep-th/9712186
[390] A., Recknagel, V., Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999 Google Scholar) 233, hep-th/9811237
[391] A., Recknagel, V., Schomerus, Moduli spaces of D-branes in CFT-backgrounds, Fortsch. Phys. 48 (2000 Google Scholar) 195, hep-th/9903139
[392] K.-H., Rehren, Markov traces as characters for local algebras, Nucl. Phys. B Proc. Suppl. 18B (1990 Google Scholar) 259; Braid group statistics and their superselection rules, in The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, D. Kastler (ed.), World Scientific 1990; Quantum symmetry associated with braid group statistics, in Lecture Notes in Physics, vol. 370, Springer 1990; Quantum symmetry associated with braid group statistics II, in: Quantum Symmetries Doebner et al. (eds.), World Scientific 1993
[393] K.-H., Rehren, B., Schroer, Einstein causality and Artin braids, Nucl. Phys. B 312 (1989 Google Scholar) 715
[394] S.-J., Rey, The confining phase of superstrings and axionic strings, Phys. Rev. D 43 (1991 Google Scholar) 526
[395] A., Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, in Vertex Operators in Mathematics and Physics, J., Lepowskyet al. (eds.), Springer 1985 Google Scholar
[396] D., Roggenkamp, K., Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004 Google Scholar) 589, hep-th/0308143
[397] I., Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549 (1999 Google Scholar) 563, hep-th/9811178
[398] I., Runkel, Structure constants for the D-series Virasoro minimal models, Nucl. Phys. B 579 (1999 Google Scholar) 561, hep-th/9908046
[399] A., Sagnotti, Open strings and their symmetry groups, in Non-perturbative Methods in Field Theory, G., Macket al. (eds.), Lecture Notes Cargese 1987 Google Scholar
[400] A., Sagnotti Google Scholar, Some properties of open string theories, hep-th/9509080
[401] A., Sagnotti, Surprises in open-string perturbation theory, Nucl. Phys. B Proc. Suppl. 56B (1997 Google Scholar) 332, hep-th/9702093
[402] E., Scheidegger, D-branes on some one- and two-parameter Calabi–Yau hypersurfaces, J. High Energy Phys. 0004 (2000 Google Scholar) 003, hep-th/9912188
[403] E., Scheidegger, D0-branes in Gepner models, J. High Energy Phys. 0208 (2002 Google Scholar) 001, hep-th/0109013
[404] E., Scheidegger, D-branes on Calabi–Yau spaces, Ph.D. thesis, Ludwig-Maximilians-Universität, Munich (2001 Google Scholar), available at http://edoc.ub.uni-muenchen.de/archive/00000445
[405] A. N., Schellekens, S., Yankielowicz, Extended chiral algebras and modular invariant partition functions, Nucl. Phys. B 327 (1989 Google Scholar) 673; Modular invariants from simple currents: an explicit proof, Phys. Lett. B 227 (1989) 387
[406] A. N., Schellekens, S., Yankielowicz, Simple currents, modular invariants and fixed points, Int. J. Mod. Phys. A 5 (1990 Google Scholar) 2903
[407] A. N., Schellekens, S., Yankielowicz, Field identification fixed points in the coset construction, Nucl. Phys. B 334 (1990 Google Scholar) 67
[408] V., Schomerus, Construction of field algebras with quantum symmetry from local observables, Commun. Math. Phys. 169 (1995 Google Scholar) 193, hep-th/9401042
[409] V., Schomerus, Non-compact string backgrounds and non-rational CFT, Phys. Rept. 431 (2006 Google Scholar) 39, hep-th/0509155.
[410] V., Schomerus, D-branes and deformation quantization, J. High Energy Phys. 9906 (1999 Google Scholar) 030, hep-th/9903205
[41l] M., Schottenloher (ed.), A mathematical introduction to conformal field theory, Lecture Notes in Physics, vol. 759, Springer 2008 Google Scholar, p. 1
[412] J. H., Schwarz, Superstring theory, Phys. Rept. 89 (1982 Google Scholar) 223
[413] A., Schwimmer, N., Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two dimensions, Phys. Lett. B 184 (1987 Google Scholar) 191
[414] G., Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, K., Bleuler, M., Werner (eds.), Kluwer 1988 Google Scholar
[415] N., Seiberg, E., Witten, String theory and noncommutative geometry, J. High Energy Phys. 9909 (1999 Google Scholar) 032, hep-th/9908142
[416] A., Sen, Tachyon condensation on the brane antibrane system, J. High Energy Phys. 9808 (1998 Google Scholar) 012, hep-th/9805170; Stable non-BPS bound states of BPS D-branes, J. High Energy Phys. 9808 (1998) 010, hep-th/9805019; Stable non-BPS states in string theory, J. High Energy Phys. 9806 (1998) 007, hep-th/9803194
[417] A., Sen, SO(32) spinors of type I and other solitons on brane–antibrane pair, J. High Energy Phys. 9809 (1998 Google Scholar) 023, hep-th/9808141
[418] A., Sen Google Scholar, Developments in superstring theory, hep-ph/9810356
[419] A., Sen, Type I D-particle and its interactions, J. High Energy Phys. 9810 (1998 Google Scholar) 021, hep-th/9809111
[420] A., Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14 (1999 Google Scholar) 4061, hep-th/9902105
[421] A., Sen Google Scholar, Non-BPS states and branes in string theory, hep-th/9904207
[422] A., Sen, Moduli space of unstable D-branes on a circle of critical radius, J. High Energy Phys. 0403 (2004 Google Scholar) 070, hep-th/0312003
[423] A., Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005 Google Scholar) 5513, hep-th/0410103
[424] S. L., Shatashvili, Comment on the background independent open string theory, Phys. Lett. B 311 (1993 Google Scholar) 83, hep-th/9303143; On the problems with background independence in string theory, Alg. Anal. 6 (1994) 215, hep-th/9311177.
[425] M. M., Sheikh-Jabbari, Classification of different branes at angles, Phys. Lett. B 420 (1998 Google Scholar) 279, hep-th/9710121; More on mixed boundary conditions and D-branes bound states, Phys. Lett. B 425 (1998) 48, hep-th/9712199
[426] S. H., Shenker Google Scholar, Another length scale in string theory?, hep-th/9509132
[427] S., Stanciu, D-branes in Kazama–Suzuki models, Nucl. Phys. B 526 (1998 Google Scholar) 295, hep-th/9708166
[428] S., Stanciu, D-branes in group manifolds, J. High Energy Phys. 0001 (2000 Google Scholar) 025, hep-th/9909163
[429] S., Stanciu, A note on D-branes in group manifolds: flux quantization and D0-charge, J. High Energy Phys. 0010 (2000 Google Scholar) 015, hep-th/0006145
[430] S., Stanciu, A., Tseytlin, D-branes in curved spacetime: Nappi–Witten background, J. High Energy Phys. 9806 (1998 Google Scholar) 010, hep-th/9805006
[431] Y. S., Stanev, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998 Google Scholar. http://www.desy.de/~jfuchs/CftD-s.html
[432] K. S., Stelle Google Scholar, Lectures on supergravity p-branes, hep-th/9701088; BPS branes in super-gravity, hep-th/9803116
[433] A., Strominger, Open p-branes, Phys. Lett. B 383 (1996 Google Scholar) 44, hep-th/9512059
[434] A., Strominger, C., Vafa, Microscopic origin of the Bekenstein–Hawking entropy, Phys. Lett. B 379 (1996 Google Scholar) 99, hep-th/9601029
[435] W., Taylor, D2-branes in B-fields, J. High Energy Phys. 0007 (2000 Google Scholar) 039, hep-th/0004141
[436] J., Teschner, Remarks on Liouville theory with boundary, hep-th/0009138; Liouville theory revisited, Class. Quant. Grav. 18 (2001 Google Scholar) R153, hep-th/0104158
[437] P. K., Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995 Google Scholar) 184, hep-th/9501068
[438] A. A., Tseytlin, Ambiguity in the effective action in string theories, Phys. Lett. B 176 (1986 Google Scholar) 92
[439] A. A., Tseytlin Google Scholar, Born–Infeld action, supersymmetry and string theory, hep-th/9908105
[440] C., Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986 Google Scholar) 592
[441] E., Verlinde, Fusion rules and modular transformations in 2-d conformal field theory, Nucl. Phys. B 300 (1988 Google Scholar) 360
[442] N. P., Warner, N = 2 Supersymmetric integrable models and topological field theories, Lectures at the Trieste Summer School on High Energy Physics and Cosmology, 1992 Google Scholar, hep-th/9301088
[443] N. P., Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995 Google Scholar) 663, hep-th/9506064
[444] G. M. T., Watts, unpublished TCSA computations (February 2000 Google Scholar)
[445] K., Wendland Google Scholar, Orbifold constructions of K3: a link between conformal field theory and geometry, hep-th/0112006
[446] H., Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927 Google Scholar) 1
[447] E. T., Whittaker, G. N., Watson, A Course of Modern Analysis, Cambridge University Press 2002 Google Scholar
[448] E., Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984 Google Scholar) 455
[449] E., Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988 Google Scholar) 353; Topological sigma models, Commun. Math. Phys. 118 (1988) 411
[450] E., Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989 Google Scholar) 351
[451] E., Witten, On background independent open string field theory, Phys. Rev. D 46 (1992 Google Scholar) 5467, hep-th/9208027; Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405, hep-th/9210065
[452] E., Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993 Google Scholar) 159, hep-th/9301042
[453] E., Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995 Google Scholar) 85, hep-th/9503124
[454] E., Witten, Bound states of strings and D-branes, Nucl. Phys. B 460 (1996 Google Scholar) 335, hep-th/9510135
[455] E., Witten, Solutions of four-dimensional field theories via M theory, Nucl. Phys. B 500 (1997 Google Scholar) 3, hep-th/9703166
[456] E., Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998 Google Scholar) 253, hep-th/9802150
[457] E., Witten, D-branes and K-theory, J. High Energy Phys. 9812 (1998 Google Scholar) 019, hep-th/9810188
[458] E., Wong, I., Affleck, Tunneling in quantum wires: a boundary conformal field theory approach, Nucl. Phys. B 417 (1994 Google Scholar) 403
[459] S. T., Yau (ed.), Essays on Mirror Manifolds, International Press 1992 Google Scholar
[460] S. A., Yost, Bosonized superstring boundary states and partition functions, Nucl. Phys. B 321 (1989 Google Scholar) 629
[461] A. B., Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985 Google Scholar) 1205
[462] A. B., Zamolodchikov, “Irreversibility” of the flux of the renormalization group in a 2-d field theory, JETP Lett. 43 (1986 Google Scholar) 730
[463] A. B., Zamolodchikov, V. A., Fateev, Operator algebra and correlation functions in the two-dimensional Wess–Zumino SU(2) × SU(2) chiral model, Sov. J. Nucl. Phys. 43 (1986 Google Scholar) 657
[464] Y., Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996 Google Scholar) 237
[465] J.-B., Zuber, Graphs, algebras, conformal field theories and integrable lattice models, Nucl. Phys. B Proc. Suppl. 18B (1990 Google Scholar) 313; C-algebras and their applications to reflection groups and conformal field theories, hep-th/9707034
[466] J.-B., Zuber, talk given at the Workshop on Conformal Field Theory of D-Branes, DESY, Hamburg, September 1998 Google Scholar

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.