Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T01:54:48.088Z Has data issue: false hasContentIssue false

19 - Climatic change and reptiles

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Life on Earth has experienced dramatic alterations of diversity and distribution as conditions of environment have changed over millennia of evolutionary history. The Earth’s climate has cooled during the past 100 million years, and events such as volcanic activity and meteorite strikes have resulted in extinctions and collapses of ecosystems. There is now overwhelming evidence that the Earth’s temperatures are warming and that human activities are driving this aspect of climatic change. Global average temperatures have increased by ~ 0.2°C per decade during the past 30 years due to increasing atmospheric concentrations of greenhouse gases (Hansen et al., 2006). Much of the added energy contributing to global warming is absorbed by the world’s oceans, in which the upper layers have increased in temperature by 0.6°C during the past 100 years (IPCC, 2007). Further warming will produce thermal expansion which could result in an 18–30 cm rise in sea level by 2100 (Meehl et al., 2005). Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, probably due to strong El Niños, and comparisons with paleoclimatic data suggest that this critical region and possibly the planet as a whole is as warm as the Holocene maximum and the maximum temperature during the past million years (Hansen et al., 2006).

Accepting the reality of climatic change in its current status, non-avian reptiles are an important and informative group of vertebrates to examine in related contexts. The utility of reptilian data for assessing the effects of climatic changes on organisms and communities relates to characteristic features of this group, including ectothermy, geographic distributions, reproductive modes (especially oviparity), breadth of diversity, biogeographical histories, local abundance, keystone status in some communities, dispersal capabilities, trophic relationships, and energetics. With regard to global warming, it is significant to note that two-thirds of the global variation in the species richness of reptiles can be explained by temperature alone (Qian, 2010). The diversity of reptiles is greater in the tropics and decreases with increasing latitude.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. H. (1984). Archaean plate tectonics revisited 2. Paleo-sea level changes, continental area, oceanic heat loss and the area-age distribution of the ocean basins. Tectonics, 3, 709–722.CrossRefGoogle Scholar
Anonymous. (2012). Dwindling sea snakes. (News of the week). Science, 335, 150.Google Scholar
Aubret, F., & Shine, R. (2010). Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms?Journal of Experimental Biology, 213, 242–248.CrossRefGoogle ScholarPubMed
Berg, E. E. (1965). Krokodileale Klimazeugen. Geologische Rundschau, 54, 328–333.CrossRefGoogle Scholar
Bonnet, X., & Brischoux, F. (2008). Thirsty sea snakes forsake refuge during rainfall. Austral Ecology, 33, 911–21.CrossRefGoogle Scholar
Bourjea, J., Lapegue, S., Gagnevin, L., et al. (2007). Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Molecular Ecology, 16, 175–186.CrossRefGoogle ScholarPubMed
Bush, M. B. (2002). Distributional change and conservation on the Andean flank, a palaeoecological perspective. Global Ecology and Biogeography, 11, 463–473.CrossRefGoogle Scholar
Cai, W., Shi, G., Cowan, T., Bi, D., & Ribbe, J. (2005). The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophysical Research Letters, 32, L23706.CrossRefGoogle Scholar
Chamaillé-Jammes, S., Massott, M., Aragon, P., & Clobert, J. (2006). Global warming and positive fitness response in mountain populations of common lizards, Lacerta vivipara. Global Change Biology, 12, 392–402.CrossRefGoogle Scholar
Chen, I.-J, Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.CrossRefGoogle ScholarPubMed
Chou, C., Tu, J.-Y., & Tan, P. -H. (2007). Asymmetry of tropical precipitation change under global warming. Geophysical Research Letters, 34, L17708, 1–5.CrossRefGoogle Scholar
Church, J. A., White, N. J., & Hunter, J. R. (2006). Sea-level rise at tropical Pacific and Indian Ocean islands. Global Planetary Change, 53, 155–168.CrossRefGoogle Scholar
Crowley, T. J., & North, G. R. (1991). Paleoclimatology. New York: Oxford University Press.Google Scholar
Dethmers, K. E. M., Broderick, D., Moritz, C., et al. (2006). The genetic structure of Australasian green turtles (Chelonia mydas): exploring the geographical scale of genetic exchange. Molecular Ecology, 15, 3931–3946.CrossRefGoogle ScholarPubMed
Donn, W. L. (1987). Terrestrial climate change from the Triassic to Recent. In Rampino, M. R., Sanders, J. E., Newman, W. S. & Königsson, L. K. (Eds.), Climate: History, Periodicity and Predictability (pp. 343–352). New York: Van Nostrand Reinhold.Google Scholar
Eagle, R. A., Tütken, T., Martin, T. S., et al. (2011). Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science, 333, 443–445.CrossRefGoogle Scholar
Estes, R. (1970). Origin of the Recent North American lower vertebrate fauna: an inquiry into the fossil record. Forma et Functio, 3, 139–163.Google Scholar
Fabry, V. J., Seibel, B. A., Feely, R. A., & Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65, 414–432.CrossRefGoogle Scholar
Gibbons, J. W., Scott, D. E., Ryan, T. J., et al. (2000). The global decline of reptiles, déjà vu amphibians. BioScience, 50, 653–666.CrossRefGoogle Scholar
Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., Saito, Y., & Okuno, J. (2011). Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea–level cycle and biogeographic implications. Earth-Science Reviews, 104, 92–110.CrossRefGoogle Scholar
Hansen, J., Sato, M., Ruedy, R., et al. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the USA, 103, 14288–14293.CrossRefGoogle ScholarPubMed
Harley, C. D. G. (2011). Climate change, keystone predation, and biodiversity loss. Science, 334, 1124–1127.CrossRefGoogle ScholarPubMed
Hawkes, L. A., Broderick, A. C., Godfrey, M. H., & Godley., B. J. (2007). Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13, 923–932.CrossRefGoogle Scholar
Hawkes, L. A., Broderick, A. C., Godfrey, M. H., & Godley, B. J. (2009). Climate change and marine turtles. Endangered Species Research, 7, 137–154.CrossRefGoogle Scholar
Heatwole, H. (1999). Sea Snakes. Sydney: University of New South Wales Press.Google Scholar
Herrel, A., Huyghe, K., Vanhooydonck, K. B., et al. (2008). Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proceedings of the National Academy of Sciences of the USA, 105, 4792–4795.CrossRefGoogle ScholarPubMed
Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523–1528.CrossRefGoogle ScholarPubMed
Huang, S.-P., Chiou, C.-R., Lin, T.-E., et al. (in press). Temperature-dependent digestive function and vegetation shade: critical elements affecting high–altitude snake’s energetics and thermally suitable habitat with climate change. Functional Ecology.
Huey, R. B., Deutsch, C. A., Tewksbury, J. J., et al. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B, 276, 1939–1948.CrossRefGoogle ScholarPubMed
Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent?Trends in Ecology & Evolution, 15, 56–61.CrossRefGoogle ScholarPubMed
Hutchison, J. H. (1992). Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In Prothero, D. R. & Berggren, W. A. (Eds.), Eocene-Oligocene Climatic and Biotic Evolution (pp. 451–463). Princeton, NJ: Princeton University Press.Google Scholar
IPCC (2007). Solomon, S., Qin, D., Manning, M., et al. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996 pp.Google Scholar
Jacobson, E. R., Barker, D. G., Barker, T., et al. (2012). Environmental temperatures, physiology, and behavior limit the range expansion of invasive Burmese pythons in the US. Integrative Zoology, 7, 271–285.CrossRefGoogle Scholar
Jansen, E., Overpeck, J., Briffa, K. R., et al. (2007). Palaeoclimate. In Solomon, S., Qin, D., Manning, M., et al. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 433–497). Cambridge: Cambridge University Press.Google Scholar
Janzen, F. J., & Paukstis, G. L. (1991). Environmental sex determination in reptiles: ecology, evolution and experimental design. Quarterly Review of Biology, 66, 149–179.CrossRefGoogle ScholarPubMed
Jouve, S., Bardet, N., Jalil, N.-E., et al. (2008).The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary Boundary. Journal of Vertebrate Paleontology, 28, 409–421.CrossRefGoogle Scholar
Kadota, Y. (2011). Is Ovophiso kinavensis active only in the cool season? Temporal foraging pattern of a subtropical pit viper in Okinawa, Japan. Zoological Studies, 50, 269–275.Google Scholar
Kearney, M. R., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the USA, 10, 3835–3840.CrossRefGoogle Scholar
Kennett, R., Munungurritj, N., & Yunupingu, D. (2004). Migration patterns of marine turtles in the Gulf of Carpentaria, northern Australia: implications for Aboriginal management. Wildlife Research, 31, 241–248.CrossRefGoogle Scholar
Lillywhite, H. B., Babonis, L. S., SheehyIII, C. M., & Tu, M.-C. (2008). Sea snakes (Laticauda spp.) require fresh drinking water: implications for the distribution and persistence of populations. Physiological Biochemical Zoology, 81, 785–796.CrossRefGoogle Scholar
Limpus, C. J. (2008). Adapting to climate change: a case study of the flatback turtle, Natator depressus. In Poloczanska, E. S., Hobday, A. J. & Richardson, A. J. (Eds.), Hot Water: Preparing for Climate Change in Australia’s Coastal and Marine Systems. Proceedings of conference held in Brisbane, 12–14 November 2007. Hobart: CSIRO Marine and Atmospheric Research.
Liu, Y.-L., Lillywhite, H. B., & Tu, M.-C. (2010). Sea snakes anticipate tropical cyclone. Marine Biology, 157, 2369–2373.CrossRefGoogle Scholar
Losos, J. B., Warheit, K. I., & Schoener, T. W. (1997). Adaptive differentiation following experimental island colonization in Anolis lizards. Nature, 387, 70–73.CrossRefGoogle Scholar
Lyell, C. (1830). Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation. 1. London: John Murray.CrossRefGoogle Scholar
MacLeod, N., Rawson, P. F., Forey, P. L., et al. (1997). The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, 154, 265–292.CrossRefGoogle Scholar
Markwick, P. J. (1998a). Crocodilian diversity in space and time: the role of climate in paleoecology and its implications for understanding K/T extinctions. Paleobiology, 24, 470–497.CrossRefGoogle Scholar
Markwick, P. J. (1998b). Fossil crocodilians as indicators of late Cretaceous and Cenozoic climates: implications for using paleontological data in reconstructing palaeoclimate. Palaeography, Palaeoclimatology, Palaeoecology, 137, 205–271.CrossRefGoogle Scholar
Meehl, G. A., Washington, W. M., Collins, W. D., et al. (2005). How much more global warming and sea level rise?Science, 307, 1769–1772.CrossRefGoogle ScholarPubMed
Mitchell, N. J., Kearney, M. R., Nelson, N. J., & Porter, W. P. (2008). Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?Proceedings of the Royal Society of London B, 275, 2185–2193.CrossRefGoogle ScholarPubMed
Neelin, J. D., Münnich, M., Su, H., Meyerson, J. E., & Holloway, C. E. (2006). Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences of the USA, 103, 6110–6115.CrossRefGoogle ScholarPubMed
Novacek, M. J. (1999). 100 million years of land vertebrate evolution: the Cretaceous-Early Tertiary transition. Annals of the Missouri Botanical Garden, 86, 230–258.CrossRefGoogle Scholar
Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860–1872.CrossRefGoogle Scholar
Pereira, H. M., Leadley, P. W., Proença, V., et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 330, 1496–1501.CrossRefGoogle ScholarPubMed
Piras, P., Teresi, L., Buscalioni, A. D., & Cubo, J. (2009). The shadow of forgotten ancestors differently constrains the fate of Alligatoroidea and Crocodyloidea. Global Ecology and Biogeography, 18, 30–40.CrossRefGoogle Scholar
Poloczanska, E. S., Limpus, C. J., & Hays, G. C. (2009). Vulnerability of marine turtles to climate change. In Simms, D. W. (Ed.), Advances in Marine Biology, Vol. 56 (pp. 151–211). Burlington, MA: Academic Press.Google Scholar
Porter, W. P., & James, F. C. (1979). Behavioral implications of mechanistic ecology II: the African rainbow lizard, Agama agama. Copeia, 594–619.CrossRef
Porter, W. P., & Mitchell, J. W. (2006). Method and system for calculating the spatial-temporal effects of climate and other environmental conditions on animals. [U.S. Patent 7,155,377 in December 2006] .
Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J., & Ramankutty, N. (2002). Physiology on a landscape scale: plant-animal interactions. Integrative and Comparative Biology, 42, 431–453.CrossRefGoogle ScholarPubMed
Pyron, R. A., Burbrink, F. T., & Guiher, T. J. (2008). Claims of potential expansion throughout the US by invasive python species are contradicted by ecological niche models. PLoS ONE, 3, e2931.CrossRefGoogle Scholar
Qian, H. (2010). Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 25, 629–637.CrossRefGoogle Scholar
Raven, J., Caldeira, K., Elderfield, H., et al. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. Policy document. London: The Royal Society, 60 pp.Google Scholar
Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., et al. (2008). Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14, 1703–1720.CrossRefGoogle Scholar
Reading, C. J., Luiselli, L. M., Akani, G. C., et al. (2010). Are snake populations in widespread decline?Biology Letters, 6, 777–780.CrossRefGoogle ScholarPubMed
Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S., & Lillegraven, J. A. (2004). Survival in the first hours of the Cenozoic. GSA Bulletin, 116, 760–768.CrossRefGoogle Scholar
Rodda, G. H., Jarnevich, C. H., & Reed, R. N. (2009). What parts of the US mainland are climatically suitable for invasive alien pythons spreading from Everglades National Park?Biological Invasions, 11, 241–251.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R., et al. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60CrossRefGoogle ScholarPubMed
Rosenzweig, C., Casassa, G., Karoly, D. J., et al. (2007). Assessment of observed changes and responses in natural and managed systems. In Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Interngovernmental Panel on Climate Change (pp. 79–131). Cambridge: Cambridge University Press.Google Scholar
Ross, J. P. (2005). Hurricane effects on nesting Caretta caretta. Marine Turtle Newsletter, 108, 13–14.Google Scholar
Rull, V., & Vegas-Vilarrúbia, T. (2006). Unexpected biodiversity loss under global warming in the neotropical Guayana Highlands: a preliminary appraisal. Global Change Biology, 12, 1–9.CrossRefGoogle Scholar
Sanders, K. L, Lee, M. S. Y., Leys, R., Foster, R., & Keogh, J. S. (2008). Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations. Journal of Evolutionary Biology 31, 682–95.CrossRefGoogle Scholar
Saunders, M. A., & Lea, A. S. (2008). Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557–561.CrossRefGoogle ScholarPubMed
Sheehan, P. M, & Hansen, T. A. (1986). Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology, 14, 868–870.2.0.CO;2>CrossRefGoogle Scholar
SheehyIII, C. M., Solórzano, A., Pfaller, J. B., & Lillywhite, H. B. (2012). Multilocus phylogeography of the Yellow-bellied sea snake, Pelamis platurus (Hydrophiini) across the Pacific Ocean. Integrative and Comparative Biology, in press.Google Scholar
Sinervo, B., Méndez-de-la-Cruz, F., Miles, D. B., et al. (2010). Erosion of lizard diversity by climate. Science, 328, 894–899.CrossRefGoogle ScholarPubMed
Stucky, R. K. (1992). Mammalian faunas in North America of Bridgerian to early Arikareean “ages” (Eocent and Oligocene). In Prothero, D. R. & Berggren, W. A. (Eds.), Eocene-Oligocene Climatic and Biotic Evolution (pp. 465–493). Princeton, NJ: Princeton University Press.Google Scholar
Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296–1297.CrossRefGoogle ScholarPubMed
Van Wilgen, N. J., Roura-Pascual, N., & Richardson, D. M. (2009). A quantitative climate-match score for risk-assessment screening of reptile and amphibian introductions. Environmental Management, 44, 590–697.CrossRefGoogle ScholarPubMed
Vervust, B., Pafilis, P., Valakos, E. D., & Van Damme, R. (2010). Anatomical and physiological changes associated with a recent dietary shift in the lizard Podarcis sicula. Physiological and Biochemical Zoology, 83, 632–642.CrossRefGoogle ScholarPubMed
Wilf, P., & Johnson, K. R. (2004). Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30, 347–368.2.0.CO;2>CrossRefGoogle Scholar
Willette, D. A., Tucker, J. K., & Janzen, F. J. (2005). Linking climate and physiology at the population level for a key life-history stage of turtles. Canadian Journal of Zoology, 83, 845–850.CrossRefGoogle Scholar
Woodroffe, C. D. (2008). Reef-island topography and the vulnerability of atolls to sea-level rise. Global Planetary Change, 62, 77–96.CrossRefGoogle Scholar
Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2004). Global warming and coastal erosion. Climate Change, 64, 41–58.CrossRefGoogle Scholar
Zhang, X. B., Zweirs, F. W., Hegerl, G. C., et al. (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×