Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T21:47:36.418Z Has data issue: false hasContentIssue false

21 - Population dynamics of insects: impacts of a changing climate

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Climate change is recognized as one of the most serious scientific issues to understand and respond to (AAS, 2010). One of the most fundamental issues is to recognize how our biota will respond and adapt to such rapid changes at a global scale. Already global mean temperature has risen by 0.76°C this century (IPCC, 2007), and recent research indicates that current temperature increases are tracking the upper range projected by the IPCC modeled predictions and sea-level change is faster than projected (Rahmstorf et al., 2007; Steffen et al., 2009). Across Australia, different regions have experienced climatic changes to varying degrees, both seasonally and annually. Future predictions are for a generally warmer and drier continent by 2030 (CSIRO, 2007), but with the likely impacts of climate change being complex and highly variable across the continent, and worldwide (Walther et al., 2002). Changes in the physiological tolerances and population depletion could cause major population restructure of currently common species, leading to the collapse of trophic interactions and depletion of ecosystem services.

Two of the great challenges in predicting how biological organisms will respond to a rapidly changing climate are (i) determining whether responses of organisms are idiosyncratic, or whether there are underlying generalities that can be made based on evolutionary relationships, or ecological associations, and (ii) determining whether these responses are consistent in time and space (Andrew & Terblanche, in press).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AAS (2010). The Science of Climate Change: Questions and Answers. Canberra: Australian Academy of Science.Google Scholar
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2001). Revisiting water loss in insects: a large scale view. Journal of Insect Physiology, 47, 1377–1388.CrossRefGoogle ScholarPubMed
Andrew, N. R., & Hughes, L. (2004). Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change. Ecological Entomology, 29, 527–542.CrossRefGoogle Scholar
Andrew, N. R., & Hughes, L. (2005a). Arthropod community structure along a latitudinal gradient: implications for future impacts of climate change. Austral Ecology, 30, 281–297.CrossRefGoogle Scholar
Andrew, N. R., & Hughes, L. (2005b). Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Global Ecology and Biogeography, 14, 249–262.CrossRefGoogle Scholar
Andrew, N. R., & Hughes, L. (2005c). Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos, 108, 176–182.CrossRefGoogle Scholar
Andrew, N. R., & Hughes, L. (2007). Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Global Change Biology, 13, 1539–1549.CrossRefGoogle Scholar
Andrew, N. R., & Hughes, L. (2008). Abundance-body mass relationships among insects along a latitudinal gradient. Austral Ecology, 33, 253–260.CrossRefGoogle Scholar
Andrew, N. R., & Terblanche, J. S. (in press). Insects. In Salinger, J. (Ed.), Climate of Change: Living in a Warmer World (Ch. 16, pp. 142–149). Auckland: David Bateman.
Andrew, N. R., Hart, R. A., & Terblanche, J. S. (2011). Limited plasticity of low temperature tolerance in an Australian cantharid beetle Chauliognathus lugubris. Physiological Entomology, 36, 385–391.CrossRefGoogle Scholar
Andrewartha, H. G., & Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago, IL: University of Chicago Press.Google Scholar
Angilletta, M. J., & Sears, M. W. (2011). Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integrative and Comparative Biology, 51, 653–661.CrossRefGoogle ScholarPubMed
Bairstow, K. A., Clarke, K. L., Mcgeoch, M. A., & Andrew, N. R. (2010). Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate. Oecologia, 163, 437–448.CrossRefGoogle ScholarPubMed
Basson, C. H., Nyamukondiwa, C., & Terblanche, J. S. (2012). Fitness costs of rapid cold-hardening in Ceratitis capitata. Evolution, 66, 296–304.CrossRefGoogle ScholarPubMed
Chown, S. L., & Gaston, K. J. (2000). Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology & Evolution, 15, 311–315.CrossRefGoogle ScholarPubMed
Chown, S. L., & Nicolson, S. W. (2004). Insect Physiological Ecology: Mechanisms and Patterns. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chown, S. L., & Steenkamp, H. E. (1996). Body size and abundance in a dung beetle assemblage: optimal mass and the role of transients. African Entomology, 4, 203–212.Google Scholar
Chown, S. L., & Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50–152.CrossRefGoogle Scholar
Chown, S. L., Sinclair, B. J., Leinaas, H. P., & Gaston, K. J. (2004). Hemispheric asymmetries in biodiversity – a serious matter for ecology. PLoS Biology, 2, 1701–1707.CrossRefGoogle ScholarPubMed
Chown, S. L., Gaston, K., Van Kleunen, M., & Clusella-Trullas, S. (2010). Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evolutionary Ecology, 24, 601–616.CrossRefGoogle Scholar
Chown, S. L., Sørensen, J. G., & Terblanche, J. S. (2011). Water loss in insects: an environmental change perspective. Journal of Insect Physiology, 57, 1070–1084.CrossRefGoogle ScholarPubMed
Clusella-Trullas, S., Blackburn, T. M., & Chown, S. L. (2011). Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. The American Naturalist, 177, 738–751.CrossRefGoogle ScholarPubMed
Coggan, N., Clissold, F. J., & Simpson, S. J. (2011). Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes. Proceedings of the Royal Society of London B, 278, 2745–2752.CrossRefGoogle ScholarPubMed
CSIRO (2007). Climate Change in Australia: Observed Changes and Projections. .
Davis, A. J., Lawton, J. H., Shorrocks, B., & Jenkinson, L. S. (1998). Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology, 67, 600–612.CrossRefGoogle Scholar
Deere, J. A., & Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. The American Naturalist, 168, 630–644.CrossRefGoogle ScholarPubMed
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the USA, 105, 6668–6672.CrossRefGoogle ScholarPubMed
Dewitt, T., & Scheiner, S. (Eds.) (2004). Plasticity. Functional and Conceptual Approaches. Oxford: Oxford University Press.
Diamond, S. E., Magdalena Sorger, D., Hulcr, J., et al. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18, 448–456.CrossRefGoogle Scholar
Farrow, R. A. (1977). Maturation and fecundity of the spur-throated locust, Austracris guttulosa (Walker), in New South Wales during the 1974/75 plague. Australian Journal of Entomology, 16, 27–39.CrossRefGoogle Scholar
Fleishman, E., Fay, J. P., & Murphy, D. D. (2000). Upsides and downsides: contrasting topographic gradients in species richness and associated scenarios for climate change. Journal of Biogeography, 27, 1209–1219.CrossRefGoogle Scholar
Gaston, K. J. (2008). Biodiversity and extinction: the importance of being common. Progress in Physical Geography, 32, 73–79.CrossRefGoogle Scholar
Gaston, K. J., & Fuller, R. A. (2008). Commonness, population depletion and conservation biology. Trends in Ecology & Evolution, 23, 14–19.CrossRefGoogle ScholarPubMed
Hadley, N. F. (1994). Water Relations of Terrestrial Arthropods: New York: Academic Press.Google Scholar
Hanski, I., & Cambefort, Y. (Eds.) (1991). Dung Beetle Ecology. Princeton, NJ: Princeton University Press.CrossRef
Harrison, S. (1993). Species diversity, spatial scale, and global change. In Kareiva, P. M., Kingsolver, J. G. & Huey, R. B. (Eds.), Biotic Interactions and Global Change (pp. 388–401). Sunderland, MA: Sinauer Associates.Google Scholar
Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. Functional Ecology, 17, 562–567.CrossRefGoogle Scholar
Hoffmann, A. A., Hallas, R., Sinclair, C., & Mitrovski, P. (2001). Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution, 55, 1621–1630.CrossRefGoogle ScholarPubMed
Horgan, F. G., & Fuentes, R. C. (2005). Asymmetrical competition between Neotropical dung beetles and its consequences for assemblage structure. Ecological Entomology, 30, 182–193.CrossRefGoogle Scholar
Huberty, A. F., & Denno, R. F. (2004). Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85, 1383–1398.CrossRefGoogle Scholar
Huey, R. B., Deutsch, C. A., Tewksbury, J. J., et al. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B, 276, 1939–1948.CrossRefGoogle ScholarPubMed
Inward, D. J. G., Davies, R. G., Pergande, C., Denham, A. J., & Vogler, A. P. (2011). Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions. Journal of Biogeography, 38, 1668–1682.CrossRefGoogle Scholar
IPCC (2007). Summary for policymakers. In Solomon, S., Qin, D., Manning, M., et al. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Jeffree, C. E., & Jeffree, E. P. (1996). Redistribution of the potential geographical range of Mistletoe and Colorado Beetle in Europe in response to the temperature component of climate change. Functional Ecology, 10, 562–577.CrossRefGoogle Scholar
Jumbam, K. R., Jackson, S., Terblanche, J. S., Mcgeoch, M. A., & Chown, S. L. (2008). Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Journal of Insect Physiology, 54, 1008–1014.CrossRefGoogle ScholarPubMed
Kelty, J., & Lee, R. (2001). Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. Journal of Experimental Biology, 204, 1659–1666.Google ScholarPubMed
Kingsolver, J. G., & Huey, R. B. (1998). Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. American Zoologist, 38, 545–560.CrossRefGoogle Scholar
Kingsolver, J. G., Arthur Woods, H., Buckley, L. B., et al. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51, 719–732.CrossRefGoogle ScholarPubMed
Kleynhans, E., & Terblanche, J. S. (2009). The evolution of water balance in Glossina (Diptera: Glossinidae): correlations with climate. Biology Letters, 5, 93–96.CrossRefGoogle ScholarPubMed
Lach, L., & Hooper-Bui, L. M. (2010). Consequences of ant invasions. In Lach, L., Parr, C. L. & Abbott, K. L. (Eds.), Ant Ecology (pp. 261–286). New York: Oxford University Press.Google Scholar
Lach, L., Parr, C. L., & Abbott, K. L. (2010). Ant Ecology. New York: Oxford University Press.Google Scholar
Lee, R. E., & Denlinger, D. L. (2010). Rapid cold-hardening: ecological significance and underpinning mechanisms. In Denlinger, D. L. & Lee, R. E. (Eds.), Low Temperature Biology of Insects (pp. 35–58). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Loeschcke, V., & Hoffman, A. A. (2007). Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. The American Naturalist, 169, 175–183.CrossRefGoogle ScholarPubMed
Marshall, K. E., & Sinclair, B. J. (2010). Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society of London B, 277, 963–969.CrossRefGoogle Scholar
Nichols, E., Spector, S., Louzada, J., et al. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141, 1461–1474.CrossRefGoogle Scholar
Peck, S. B., & Forsyth, A. (1982). Composition, structure, and competitive behaviour in a guild of Ecuadorian rain forest dung beetles (Coleoptera, Scarabaeidae). Canadian Journal of Zoology, 60, 1624–1634.CrossRefGoogle Scholar
Rahmstorf, S., Cazenave, A., Church, J. A., et al. (2007). Recent climate observations compared to projections. Science, 316, 709.CrossRefGoogle ScholarPubMed
Rako, L., Blacket, M. J., Mckechnie, S. W., & Hoffmann, A. A. (2007). Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Molecular Ecology, 16, 2948–2957.CrossRefGoogle ScholarPubMed
Satterlie, R. A., Pearse, J. S., & Sebens, K. P. (2009). The black box, the creature from the Black Lagoon, August Krogh, and the dominant animal. Integrative and Comparative Biology, 49, 89–92.CrossRefGoogle Scholar
Shelford, V. E. (1911). Physiological animal geography. Journal of Morphology, 22, 551–618.CrossRefGoogle Scholar
Sinclair, B. J. (2001). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos, 93, 286–293.CrossRefGoogle Scholar
Sinclair, B. J., Vernon, P., Klok, C. J., & Chown, S. L. (2003). Insects at low temperatures: an ecological perspective. Trends in Ecology & Evolution, 18, 257–262.CrossRefGoogle Scholar
Sinervo, B., Méndez-De-La-Cruz, F., Miles, D. B., et al. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894–899.CrossRefGoogle ScholarPubMed
Steffen, W., Burbidge, A., Hughes, L., et al. (2009). Australia’s Biodiversity and Climate Change: Summary for Policy Makers. Canberra: Australian Government.Google Scholar
Suggitt, A. J., Gillingham, P. K., Hill, J. K., et al. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120, 1–8.CrossRefGoogle Scholar
Terblanche, J. S., & Chown, S. L. (2007). Factory flies are not equal to wild flies. Science, 317, 1678.CrossRefGoogle Scholar
Terblanche, J. S., & Kleynhans, E. (2009). Phenotypic plasticity of desiccation resistance in Glossina puparia: are there ecotype constraints on acclimation responses?Journal of Evolutionary Biology, 22, 1636–1648.CrossRefGoogle ScholarPubMed
Terblanche, J. S., Klok, C. J., Krafsur, E. S., & Chown, S. L. (2006). Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. American Journal of Tropical Medicine and Hygiene, 74, 786–794.Google ScholarPubMed
Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C., & Chown, S. L. (2007a). Critical thermal limits depend on methodological context. Proceedings of the Royal Society of London B, 274, 2935–2943.CrossRefGoogle ScholarPubMed
Terblanche, J. S., Marais, E., & Chown, S. L. (2007b). Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Journal of Insect Physiology, 53, 455–462.CrossRefGoogle ScholarPubMed
Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., & Chown, S. L. (2008). Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Journal of Insect Physiology, 54, 114–127.CrossRefGoogle Scholar
Terblanche, J. S., Clusella-Trullas, S., & Chown, S. L. (2010). Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleóptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Journal of Experimental Biology, 213, 2940–2949.CrossRefGoogle ScholarPubMed
Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., et al. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. The Journal of Experimental Biology, 214, 3713–3725.CrossRefGoogle ScholarPubMed
Tshikae, B. P., Davis, A. L. V., & Scholtz, C. H. (2008). Trophic associations of a dung beetle assemblage (Scarabaeidae: Scarabaeinae) in a woodland savanna of Botswana. Environmental Entomology, 37, 431–441.CrossRefGoogle Scholar
Tufto, J. (2000). The evolution of plasticity and nonplastic spatial and temporal adaptations in the presence of imperfect environmental cues. The American Naturalist, 156, 121–130.CrossRefGoogle ScholarPubMed
Walther, G.-R., Post, E., Convey, P., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
White, T. C. R. (1969). An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology, 50, 905–909.CrossRefGoogle Scholar
White, T. C. R. (1984). The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63, 90–105.CrossRefGoogle ScholarPubMed
Woodman, J. D. (2012). Cold tolerance of the Australian spur-throated locust, Austracris guttulosa. Journal of Insect Physiology, 58, 384–390.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×