Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T18:39:45.975Z Has data issue: false hasContentIssue false

15 - Variations and anomalies in rodent teeth and their importance for testing computational models of development

Published online by Cambridge University Press:  05 August 2015

Cyril Charles
Affiliation:
Institut de Génomique Fonctionnelle de Lyon
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

In rodents, the comparative anatomy of the dentition is a key criterion to determine the specific affiliation of extant and fossil specimens because development is usually well canalized. The number, arrangement and shape of teeth are usually set up during embryonic development, only to be further modified by wear or injury. Morphological variations and anomalies observed on some wild specimens can indicate modifications to standard dental development. Previous studies already showed that studying pathological specimens (‘monsters’) can be performed to better understand developmental constraints (see Alberch 1989). Here, we consider relatively mild pathologies such as modifications of dental formula or tooth shape, as well as intraspecific variations of the dentition, considering that they can also give some information on the development constraints. Dental development has long been studied (especially in mice, but also in rat, voles and guinea pigs; see, for example, Hunt and Paynter, 1963; Lester, 1969; Witter et al., 1996) and various authors proposed computational developmental models of the whole tooth-row proportions (see Van Valen, 1962; Osborn, 1978; Kavanagh et al., 2007) or the crown pattern (see Jernvall, 2000; Osborn, 2008). Morphological variations and anomalies challenge computational developmental models as they enlarge the range of developmentally possible morphologies. The study of variants can be considered as a test of the strength of models: a new shape should be reproduced by tuning parameters.

In this chapter, we first document some cases of number and shape dental anomalies. We then discuss the possible developmental and/or evolutionary origins of these anomalies. We then present new data on intraspecific variations on molar morphology performed on different rodent species. The variations observed on the occurrence of supplementary cusps are then used to test the robustness of development hypotheses concerning patterning of dental cusps, which are the basis of computational developmental models.

Occurrences of dental anomalies in rodents

Anomalies in number of teeth

Many cases of mammals with supernumerary or missing teeth (that failed to develop) have been reported in the literature, including rodent cases (presented in Table 15.1).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 405 - 423
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. (1989). The logic of monsters: evidence for internal constraints in development and evolution. Geobios, 12, 21–57.Google Scholar
Angelici, F. M. and Luiselli, L. (1999). Extra teeth and dental anomalies in the crested porcupine Hystrix cristata, from Sicily. Acta Theriologica, 44, 219–223.CrossRefGoogle Scholar
Arnal, M. and Vucetich, M. G. (2011). First record of supernumerary teeth in South American fossil rodents. Journal of Vertebrate Paleontology, 31, 925–927.CrossRefGoogle Scholar
Cave, A. J. (1984). Dentitional anomalies in the beaver and some other mammals. In Investigations on Beavers. Pilleri, G. (ed.), pp. 145–151. Berne: Brain Anatomy Institute.Google Scholar
Charles, C. and Viriot, L. (2007). Abnormal and supernumerary teeth in the dentition of a greater Egyptian jerboa Jaculus orientalis (Dipodoidea, Rodentia). Mammalia, 71, 95–97.CrossRefGoogle Scholar
Charles, C., Pantalacci, S., Peterkova, R.et al. (2009). Effect of Eda loss of function on upper jugal tooth morphology. Anatomical Record – Advances in Integrative Anatomy and Evolutionary Biology, 292, 299–308.CrossRefGoogle ScholarPubMed
Chou, C.-W., Lee, P.-F., Lu, K.-H. and Yu, H.-T. (1998). A population study of house mice (Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zoological Studies, 37, 201–212.Google Scholar
Colyer, J. F. (1936). Variations and Diseases of the Teeth of Animals. London: John Bale Sons & Danielsson.Google Scholar
Danforth, C. H. (1958). The occurrence and genetic behavior of duplicate lower incisors in the mouse. Genetics, 43, 140–148.Google ScholarPubMed
Fish, P. G. and Whitaker, J. O. (1971). Microtus pinetorum with grooved incisors. Journal of Mammalogy, 52, 827.CrossRefGoogle Scholar
Gomes Rodrigues, H., Charles, C., Marivaux, L.et al. (2011). Evolutionary and developmental dynamics of the dentition in Muroidea and Dipodoidea (Rodentia, Mammalia). Evolution & Development, 13, 361–369.Google Scholar
Goodwin, H. T. (1998). Supernumerary teeth in pleistocene, recent and hybrid individuals of the Spermophilus richardsonii complex (Sciuridae). Journal of Mammalogy, 79, 1161–1169.CrossRefGoogle Scholar
Hansen, R. (1956). Extra incisor in the rodent Dicrostonyx groenlandicus. Journal of Mammalogy, 37, 549–550.CrossRefGoogle Scholar
Harris, A. H. and Fleharty, E. D. (1962). Extra tooth in the long-tailed vole. Journal of Mammalogy, 43, 267–268.CrossRefGoogle Scholar
Herold, W. and Zimmerman, K. (1960). Molaren-abbau bei der hausmaus (Mus musculus L.). Zeitschrift für Säugetierkunde, 25, 81.Google Scholar
Hooper, E. T. (1956). Extra teeth in the pigmy mouse, Baiomys musculus. Journal of Mammalogy, 36, 298–299.Google Scholar
Hooper, E. T. (1957). Supernumerary teeth in Peromyscus truei. Journal of Mammalogy, 38, 522.CrossRefGoogle Scholar
Hunt, A. and Paynter, K. (1963). The role of cells of the stratum intermedium in the development of the guinea pig molar. A study of cell differentiation and migration using tritiated thymidine. Archives of Oral Biology, 8, 65–74.CrossRefGoogle ScholarPubMed
Ingles, J. M., Bates, P. J. J. and Harrison, D. L. (1981). Dental anomalies in Indian and African gerbils (Rodentia: Gerbillinae). Mammalia, 45, 266–268.Google Scholar
Jernvall, J. (2000). Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences of the USA, 97, 2641–2645.CrossRefGoogle ScholarPubMed
Ji, Q., Luo, Z. X., Yuan, C. X.et al. (2002). The earliest known eutherian mammal. Nature, 416, 816–822.CrossRefGoogle ScholarPubMed
Johnson, D. H. (1952). The occurrence and significance of extra molar teeth in rodents. Journal of Mammalogy, 33, 70–72.CrossRefGoogle Scholar
Jones, G. S. (1978). Microtus longicaudus with grooved incisors. The Murrelet, 59, 104–105.Google Scholar
Jones, G. S. (1979). An unusual incisor malocclusion of Rattus exulans from Java, Indonesia. Malayan Nature Journal, 33, 123–124.Google Scholar
Jones, J. K. (1960). Absence of third upper premolar in Eutamias. Journal of Mammalogy, 41, 268–269.CrossRefGoogle Scholar
Kan Kouassi, S., Nicolas, V., Aniskine, V.et al. (2008). Taxonomy and biogeography of the African pygmy mice, subgenus Nannomys (Rodentia, Murinae, Mus) in Ivory Coast and Guinea (West Africa). Mammalia, 72, 37–252.Google Scholar
Kavanagh, K., Evans, A. R. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle ScholarPubMed
Keranen, S. V., Kettunen, P., Aberg, T.et al. (1999). Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Development Genes and Evolution., 209, 495–506.Google ScholarPubMed
Kowalski, M. (1987). Une prémolaire supérieure supplémentaire chez Apodemus sylvaticus (Linnaeus, 1758). Mammalia, 51, 611–613.Google Scholar
Krutzsch, P. H. (1953). Supernumerary molars in the jumping mouse (Zapus princeps). Journal of Mammalogy, 34, 265–266.CrossRefGoogle Scholar
Lavocat, R. (1973). Les rongeurs du Miocène d'afrique orientale. Mémoires et travaux Ecole Pratique des Hautes Etudes, Institut Montpellier, 1, 1–284.Google Scholar
Lazzari, V., Aguilar, J.P. and Michaux, J. (2010). Intraspecific variation and micro-macroevolution connection: illustration with the late Miocene genus Progonomys (Rodentia, Muridae). Paleobiology, 36, 641–657.CrossRefGoogle Scholar
Lechtleitner, R. (1958). An extra molar in Erethizon. Journal of Mammalogy, 39, 447–448.Google Scholar
Lester, K. (1969). The unusual nature of root formation in molar teeth of the laboratory rat. Journal of Ultrastructure Research, 28, 481–506.CrossRefGoogle ScholarPubMed
Luo, Z. X., Yuan, C. X., Meng, Q. J. and Li, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476, 442–445.CrossRefGoogle ScholarPubMed
Major, C. I. F. (1904). On dental peculiarities of certain mammals. Proceedings of the Zoological Society of London, 1, 416–424.Google Scholar
Mein, P. (1986). Quelques dents fossiles de morphologie aberrante. In Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Russel, D., Santoro, J.-P., Signogneau-Russel, D. (eds.). Paris, Mémoires du Museum d'Histoire Naturelle de Paris (série C), pp. 277–284.Google Scholar
Michon, F., Tummers, M., Kyyrönen, M.et al. (2010). Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Developmental Biology, 340, 355–398.CrossRefGoogle ScholarPubMed
Miller, G. S. (1896). Genera and subgenera of voles and lemmings. North American Fauna, 12, 1–85.CrossRefGoogle Scholar
Misonne, X. (1969). African and indo-australian Muridae, evolutionary trends. Annales du Musée Royal de l'Afrique Centrale (Tervuren, Belgium) ser. IN-8, 172, 1–219.Google Scholar
Munne, P. M., Tummers, M., Jarvinen, E.et al. (2009). Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development, 136, 393–402.CrossRefGoogle ScholarPubMed
Murashima-Suginami, A., Takahashi, K., Kawabata, T.et al. (2007). Rudiment incisors survive and erupt as supernumerary teeth as a result of usag-1 abrogation. Biochemical and Biophysical Research Communications, 359, 549–555.CrossRefGoogle ScholarPubMed
Nowak, R. M. (1999). Walker's Mammals of the World, Baltimore: Johns Hopkins University Press.Google Scholar
Ohazama, A., Blackburn, J., Porntaveetus, T.et al. (2010). A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition. Proceedings of the National Academy of Sciences of the United States of America, 107, 92–97.CrossRefGoogle ScholarPubMed
Osborn, J. W. (1978). Cladistic interpretation of morphogenesis. Journal de Biologie Buccale, 6, 327–337.Google ScholarPubMed
Osborn, J. W. (2008). A model of growth restraints to explain the development and evolution of tooth shapes in mammals. Journal of Theoretical Biology, 255, 338–343.CrossRefGoogle ScholarPubMed
Peterkova, R. (1983). Dental lamina develops even within the mouse diastema. Journal of Craniofacial Genetics and Developmental Biology, 3, 133–142.Google ScholarPubMed
Peterkova, R., Lesot, H., Viriot, L. and Peterka, M. (2005). The supernumerary cheek tooth in tabby/eda mice – a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology, 50, 219–225.CrossRefGoogle ScholarPubMed
Peterkova, R., Lesot, H. and Peterka, M. (2006). Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology B Molecular and Developmental Evolution, 306, 234–250.Google ScholarPubMed
Petter, F. (1969). Une souris nouvelle d'Afrique occidentale Mus mattheyi sp. nov. Mammalia, 33, 118–123.CrossRefGoogle Scholar
Piechocki, R. (1977). Zahnanomalien beim elbebiber, Castor fiber albicus. Hercynia, 14, 187–195.Google Scholar
Pilleri, G. (1983). The occurrence of extra premolar teeth in Castor canadensis. In Investigations on Beavers, Pilleri, G. (ed.), pp. 61–66. Berne: Brain Anatomy Institute.Google Scholar
Prochazka, J., Pantalacci, S., Churava, S.et al. (2010). Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences of the United States of America, 107, 15 497–15 502.CrossRefGoogle ScholarPubMed
Renaud, S. and Michaux, J. (2004). Parallel evolution in molar outline of murine rodents: the case of the extinct Malpaisomys insularis (eastern Canary islands). Zoological Journal of the Linnean Society, 142, 555–572.CrossRefGoogle Scholar
Renaud, S., Michaux, J., Jaeger, J.-J. and Auffray, J.-C. (1996) Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology, 22, 255–265.CrossRefGoogle Scholar
Renvoise, E., Evans, A. R., Jebrane, A.et al. (2009). Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution, 63, 1327–1340.CrossRefGoogle ScholarPubMed
Robel, D. (1971). Zur variabilität der molarenwurzeln bei des oberkiefers bei inselpopulationen der waldmaus (Apodemus sylvaticus [l], 1758). Zeitschrift für Säugetierkunde, 36, 172–179.Google Scholar
Ruprecht, A. L. (1978). Uberzahlige praemolar bei der waldmaus, Apodemus sylvaticus (Linnaeus, 1758). Säugetierkundliche Mitteilungen, 26, 79.Google Scholar
Russel, R. J. and Anderson, S. (1956). Small mammals from silver bow county, Montana. The Murrelet, 37, 2–3.Google Scholar
Salazar-Ciudad, I. and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences of the United States of America, 99, 8116–8120.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I. and Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variation. Nature, 464, 583–586.CrossRefGoogle ScholarPubMed
Schitoskey, F. (1971). Anomalies and pathological conditions in the skulls of nutria from southern Louisiana. Mammalia, 35, 311–314.CrossRefGoogle Scholar
Schreber, J. C. D. v. (1778). Die saugthiere in abbildungen nach der natur mit beschreibungen / von johann christian daniel von schreber… Fortgesetzt von august goldfutz. Erlangen: in der Expedition des Schreber'schen Saugthier-und des Esper'schen Schmetterlingswerkes, 1826.Google Scholar
Schwann, H. (1906). A list of mammals obtained by messrs. R. B. Woosman and R. E. Dent in Bechuanaland. Proceedings of the Zoological Society of London, 1, 101–111.Google Scholar
Sheppe, W. (1964). Supernumerary teeth in the deer mouse, Peromyscus. Zeitschrift für Säugetierkunde, 29, 33–36.Google Scholar
Sheppe, W. (1966). Periodontal disease and supernumerary teeth in a population of Mus musculus. Journal of Mammalogy, 47, 519–520.CrossRefGoogle Scholar
Van Laar, V. (1980). Extra praemolaren in de bovenkaak van de bosmuis Apodemus sylvaticus (Linnaeus, 1758). Lutra, 23, 12.Google Scholar
Van Valen, L. (1962). Growth fields in the dentition of Peromyscus. Evolution, 16, 272–277.Google Scholar
Verts, B. J. (1999). Suculi in upper incisors of Thomomys bulbivorus. Northwestern Naturalist, 80, 30–32.CrossRefGoogle Scholar
Viriot, L., Lesot, H., Vonesch, J.et al. (2000). The presence of rudimentary odontogenic structures in the mouse embryonic mandible requires reinterpretation of developmental control of first lower molar histomorphogenesis. International Journal of Developmental Biology, 44, 233–240.Google ScholarPubMed
Viriot, L., Peterkova, R., Peterka, M. and Lesot, H. (2002). Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connective Tissue Research, 43, 129–133.CrossRefGoogle ScholarPubMed
Wallace, J. T. and Bader, R. S. (1966). Dental agenesis in wild caught house mice. Journal of Mammalogy, 47, 733–734.CrossRefGoogle Scholar
Wang, B. Y. (2007). Late Eocene cricetids (Rodentia, Mammalia) from Nei Mongol, China. Vertebrata Palasiatica, 45, 195–212.Google Scholar
Winge, H. (1881). Om graeske pattedyr, samlede af l. Münter. Med bemaerkinger om familierne Mustelidae, Muridae og Myoxidae. Videnskabelige Meddelelser fra Naturhistorisk Forening i Kjøbenhavn, 1881, 7–59.Google Scholar
Witter, K., Misek, I., Peterka, M. and Peterkova, R. (1996). Stages of odontogenesis in the field vole (Microtus agrestis, Rodentia) – a pilot study. Acta Veterinaria Brno, 65, 285–296.Google Scholar
Wolsan, M. (1984). Concerning the variation in the number, shape and size of incisors in fissiped carnivores. Acta Zoologica Cracoviense, 27, 107–120.Google Scholar
Zakrzewski, R. (1969). Dental abnormality in the genus Castor. Journal of Mammalogy, 50, 652–653.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×