Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T05:00:34.999Z Has data issue: false hasContentIssue false

16 - The great variety of dental structures and dynamics in rodents: new insights into their ecological diversity

Published online by Cambridge University Press:  05 August 2015

Helder Gomes Rodrigues
Affiliation:
Universite Montpellier
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Rodents are particularly interesting because they represent the most prosperous of mammal groups and are highly diversified from an ecological viewpoint. Their wide range of dental characteristics coupled with their numerous locomotory adaptations, which have enabled them to colonise many habitats and environments, can partly explain their ecological ubiquity. Rodents are characterised by one continuously growing incisor and up to four or five cheek teeth per jaw quadrant, separated by a large diastema. In addition to their high reproductive rates and their short breeding cycle, their singular and complex dentitions have also contributed to their evolutionary success since 55 My.

Teeth are one of the best indicators of major diversification and adaptive events among extinct rodents because they constitute the most well-preserved tissue found in the fossil record, owing to their very high degree of mineralisation. Specific diversity and ecological data are classically inferred by paleontologists according to the variable complexity of occlusal dental patterns, especially for premolars and molars (e.g. Stehlin and Schaub, 1951; Misonne, 1969; Vianey-Liaud, 1991; Korth, 1994; Dawson, 2003). Based on the arrangement, shape and connections of cusps, the main component of feeding habits can be estimated. More precisely, bunodont patterns generally indicate an omnivorous feeding habit with the inclusion of fruits, seeds, leaves and occasionally insects in the diet. Acute cusps, which are rarely as sharp in rodents as in mammals having true secodont patterns, correspond to insectivorous to carnivorous diets. Patterns with crests or flat wear generally correspond to consumption of fibrous and abrasive plants. The dental trends listed in rodents are shared by most mammals (Janis and Fortelius, 19). Buno-lophodonty is the most frequent pattern found in extant rodents and reflects predominance towards omnivorous to herbivorous feeding habits. Crown size is another indicator of rodent lifestyle. Indeed, high-crown teeth clearly represent an adaptation to prevent erosion from intense wear (Koenigswald, 2011) resulting from the ingestion of abrasive particles present in grasses (i.e. hard silica phytoliths), present on herbaceous plants in open environments or on underground plants (i.e. dust and grit).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 424 - 447
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becerra, F., Vassallo, A. I., Echeverria, A. I. and Casinos, A. (2012). Scaling and adaptations of incisors and cheek teeth in caviomorph rodents (Rodentia, Hystricognathi). Journal of Morphology, 273, 1150–1162.CrossRefGoogle Scholar
Bosshardt, D. D. and Selvig, K. A. (1997). Dental cementum: the dynamic tissue covering of the root. Periodontology 2000, 13, 41–75.CrossRefGoogle ScholarPubMed
Bover, P., Alcover, J. A.Michaux, J. and Renaud, S. (2010). The case of an insular molarless black rat: effects on lifestyle and mandible morphology. Archives of Oral Biology, 55, 576–582.CrossRefGoogle ScholarPubMed
Bryant, J. D. and McKenna, M.C., (1995). Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia: Hsanda Gol Formation (Oligocene), Mongolia. American Museum Novitates, 3156, 1–42.Google Scholar
Butler, P. M. (1980). Functional aspects of the evolution of rodent molars. Palaeovertebrata, Mémoire Jubilaire René Lavocat, pp. 249–262.
Butler, P. M. (1985). Homologies of molars cusps and crests and their bearing on assessments of rodent phylogeny. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W.P. and Hartenberger, J.-L.New York: Plenum Press, pp. 381–402.Google Scholar
Calede, J. J. M. and Hopkins, S. S. B. (2012a). New material of Alphagaulus pristinus (Mammalia, Rodentia, Mylagaulidae) from the Deep River Formation (Montana, U.S.A.): implications for ecology, ontogeny, and phylogeny. Journal of Vertebrate Paleontology, 32, 151–165.CrossRefGoogle Scholar
Calede, J. J. M. and Hopkins, S. S. B. (2012b). Intraspecific versus interspecific variation in Miocene Great Basin mylagaulids: implications for systematics and evolutionary history. Zoological Journal of the Linnean Society, 164, 427–450.CrossRefGoogle Scholar
Charles, C., Solé, F., Gomes Rodrigues, H. and Viriot, L. (2013). Under pressure? Adaptations to vermivory and termitophagy among mammals. Evolution, 67, 1792–1804.CrossRefGoogle ScholarPubMed
Clemens, W. A. (1997). Characterization of enamel microstructure terminology and applications in systematic analyses. In Tooth Enamel Microstructure, eds. Koenigswald, W.v. and Sander, P. M.Rotterdam, Balkema.Google Scholar
Coillot, T., Chaimanee, Y., Charles, C.et al. (2013). Correlated changes in occlusal pattern and diet in stem Murinae during the onset of the radiation of Old World rats and mice. Evolution, 67(11), 3323–3338.Google Scholar
Cox, P. G., Fagan, M. J., Rayfield, E. J. and Jeffery, N. (2011). Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. Journal of Anatomy, 219, 696–709.CrossRefGoogle ScholarPubMed
Cuvier, F., (1825) Des dents des mammifères, considérées comme caractères zoologiques. Levrault, F.G., Paris.Google Scholar
Davit-Béal, T., Tucker, A. S. and Sire, J.-Y. (2009). Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. Journal of Anatomy, 214, 477–501.CrossRefGoogle ScholarPubMed
Dawson, M. R. (2003). Paleogene rodents of Eurasia. In Distribution and Migration of Tertiary Mammals in Eurasia. A Volume in Honour of Hans De Bruijn, eds. Reumer, J. W. F. and Wessels, W. Deinsea, pp. 97–126.
de Bruijn, H., Unay, E., Saraç, G. and Yilmaz, A. (2003). A rodent assemblage from the Eo/Oligocene boundary interval near Süngülü, lesser Caucasus, Turkey. Coloquios de Paleontologia, 1, 47–76.Google Scholar
Domning, D. P. (2001). Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 27–50.CrossRefGoogle Scholar
Dötsch, C. and Koenigswald, W. v. (1978). Zur Rotfärbung von Soricidenzähnen. Zeitschrift für Säugetierkunde, 43, 65–70.Google Scholar
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E.et al. (2010). The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science, 328, 587–591.CrossRefGoogle ScholarPubMed
Ellerman, J. R. (1940). The Families and Genera of Living Rodents with a List of Named Forms (1758–1936) by Hayman, R. W. and Holt, G. W. C.. Volume I: Rodents other than Muridae. British Museum, London.Google Scholar
Esselstyn, J. A., Achmadi, A. S. and Rowe, K. C. (2012). Evolutionary novelty in a rat with no molars. Biology Letters, 8, 990–993.CrossRefGoogle Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 1–19.CrossRefGoogle ScholarPubMed
Firmat, C., Gomes Rodrigues, H., Hutterer, R.et al. (2011). Diet of the extinct Lava mouse Malpaisomys insularis from the Canary Islands: insights from dental microwear. Naturwissenschaften, 98, 33–37.CrossRefGoogle ScholarPubMed
Freudenthal, M. (1996). The Early Oligocene rodent fauna of Olalla 4a (Teruel, Spain). Scripta Geologica, 112, 1–67.Google Scholar
Gehler, A., Tütken, T. and Pack, A. (2012). Oxygen and carbon isotope variations in a modern rodent community – implications for palaeoenvironmental reconstructions. PLoS ONE, 7, e49531.CrossRefGoogle Scholar
Gomes Rodrigues, H., Merceron, G. and Viriot, L. (2009). Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications. Naturwissenchaften, 96, 537–542.CrossRefGoogle Scholar
Gomes Rodrigues, H., Charles, C., Marivaux, L.et al. (2011a). Evolutionary and developmental dynamics of the dentition in Muroidea and Dipodoidea (Rodentia, Mammalia). Evolution and Development, 13, 260–268.Google Scholar
Gomes Rodrigues, H., Marangoni, P., Šumbera, R.et al. (2011b). Continuous dental replacement in a hyper-chisel tooth digging rodent. Proceedings of the National Academy of Sciences of the USA, 108, 17 355–17 359.CrossRefGoogle Scholar
Gomes Rodrigues, H., Marivaux, L. and Vianey-Liaud, M. (2012a). Expansion of open landscapes in northern China during the Oligocene induced by dramatic climate changes: paleoecological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 358 –360, 62–71.Google Scholar
Gomes Rodrigues, H., Solé, F., Charles, C.et al. (2012b). Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylidae (Rodentia, Mammalia). PLoS ONE, 7, e50197.CrossRefGoogle Scholar
Gomes Rodrigues, H., Marivaux, L. and Vianey-Liaud, M. (2013a). On the status of early Eucricetodontinae (Muroidea, Rodentia) with a special focus on the Atavocricetodon vs Eucricetodon issue: morphometrical and microstructural aspects. Spanish Journal of Palaeontology, 28, 17–28.Google Scholar
Gomes Rodrigues, H., Renaud, S., Charles, C.et al. (2013b). Roles of dental development and adaptation in rodent evolution. Nature Communications, 4, 2504.CrossRefGoogle Scholar
Hautier, L., Bover, P., Alcover, J. A. and Michaux, J. (2009). Mandible morphometrics, dental microwear pattern, and paleobiology of the extinct Balearic dormouse Hypnomys morpheus. Acta Paleontologica Polonica, 54, 181–194.Google Scholar
Hopley, P. J., Latham, A. G. and Marshall, J. D. (2006). Palaeoenvironments and palaeodiets of mid-Pliocene micromammals from Makapansgat limeworks, South Africa: A stable isotope and dental microwear approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 233, 235–251.CrossRefGoogle Scholar
Hynek, S. A., Passey, B. H., Prado, J. L.et al. (2012). Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina. Earth and Planetary Science Letters, 321–322, 177–188.Google Scholar
Janis, C. M. and Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews, 63, 197–230.CrossRefGoogle ScholarPubMed
Kalthoff, D. (2000). Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica Abt. A, 259, 1–193.Google Scholar
Kalthoff, D. (2006). Incisor enamel microstructure and its implications to the systematics of Eurasian Oligocene and lower Miocene hamsters. Palaeontographica Abt. A, 277, 67–80.Google Scholar
Kavanagh, K., Evans, A. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle ScholarPubMed
Kemp, T. S. (2005). The Origin and Evolution of Mammals. Oxford University Press.Google Scholar
Kielan-Jaworowska, Z., Cifelli, R. L. and Luo, Z.-X. (2004). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. New York: Columbia University Press.CrossRefGoogle Scholar
Koenigswald, W. v. (1985). Evolutionary trends in the enamel of rodent incisors. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L., NATO ASI Series Life Sciences, pp. 403–422. New York: Plenum Press.Google Scholar
Koenigswald, W. v. (1997). Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In Tooth Enamel Microstructure, eds. Koenigswald, W. v. and Sander, P. M.Rotterdam, Balkema.Google Scholar
Koenigswald, W. v. (2004). The three basic types of schmelzmuster in fossil and extant rodent molars and their distribution among rodent cladesPalaeontographica Abt. A, 270, 95–132.Google Scholar
Koenigswald, W. v. (2011). Diversity of hypsodont teeth in mammalian dentitions – construction and classification. Palaeontographica, Abt. A: Palaeozoology – Stratigraphy, 294, 63–94.Google Scholar
Koenigswald, W. v. and Clemens, W. A. (1992). Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microscopy, 6, 195–218.Google ScholarPubMed
Koenigswald, W. v., Martin, T. and Pfretzschner, H. U. (1993). Phylogenetic interpretation of enamel structures in mammalian teeth: possibilities and problems. In Mammal Phylogeny, Vol. 2, Placentals, eds. Szalay, F. S., Novacek, M. J., and McKenna, M. C., New York: Springer, pp. 303–314.Google Scholar
Korth, W. W. (1994). The Tertiary Records of Rodents in North America. Plenum Publishing Corporation.CrossRefGoogle Scholar
Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne. Annales Zoologici Societatis Zoologicae-Botanicae Fennicae Vanamo, 2, 1–274.Google Scholar
Lazzari, V., Charles, C., Tafforeau, P.et al. (2008). Mosaic convergence of rodent dentitions. PLoS ONE, 3, 1–13.CrossRefGoogle ScholarPubMed
Lehner, J. and Plenk, H. (1936). Die zähne, In Handbuch der mikroskopischen anatomie des menschen, ed. Möllendorff, W. v.Berlin: Springer, pp. 407–708.Google Scholar
Lentle, R. G. and Hume, I. (2010). Mesial drift and mesial shift in the molars of four species of wallaby: the influence of chewing mechanics on tooth movement in a group of species with an unusual mode of jaw action. In Macropods: The Biology of Kangaroos, Wallabies and Rat-Kangaroos, eds. Coulson, G., and Eldridge, M., CSIRO Publishing, pp. 127–137.Google Scholar
Luo, Z.-X., Kielan-Jaworowska, Z. and Cifelli, R. L. (2004). Evolution of dental replacement in mammals. Bulletin of Carnegie Museum of Natural History, 36, 159–175.CrossRefGoogle Scholar
Marivaux, L., Vianey-Liaud, M. and Jaeger, J.-J. (2004). High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142, 105–134.CrossRefGoogle Scholar
Martin, T. (1992). Schmelzmikrostruktur in den Inzisiven alt-und Neuweltlicher hystricognather Nagetiere. Palaeovertebrata, Mémoire Extraordinaire, 1–168.
Martin, T. (1993). Early rodent incisor enamel evolution: phylogenetic implications. Journal of Mammalian Evolution, 1, 227–254.CrossRefGoogle Scholar
Martin, T. (1997). Incisor enamel microstructure and systematics in rodents. In Tooth Enamel Microstructure, eds. Koenigswald, W. v., and Sander, P. M., Rotterdam: Balkema, pp. 163 – 175.Google Scholar
Martin, T. (2007). Incisor enamel microstructure and the concept of Sciuravida. Bulletin of the Carnegie Museum of Natural History, 39, 127–140.CrossRefGoogle Scholar
Meng, J. and McKenna, M. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394, 364–367.CrossRefGoogle Scholar
Misonne, X. (1969). African and Indo-Australian Muridae evolutionary trends. Annales du Musée royal d'Afrique centrale Tervuren, 172, 1–219.Google Scholar
Möinichen, C. B., Lyngstadaas, S. P. and Risnes, S. (1996). Morphological characteristics of mouse incisor enamel. Journal of Anatomy, 189, 325–333.Google ScholarPubMed
Moss-Salentijn, L., Moss, M. L. and Yuan, M. S. (1997). The ontogeny of mammalian enamel. In Tooth Enamel Microstructure, eds. Koenigswald, W. v., and Sander, P. M., Rotterdam: Balkema, pp. 5–30.Google Scholar
Nelson, S., Badgley, C. and Zakem, E. (2005). Microwear in modern squirrels in relation to diet. Palaeontologia Electronica, 8, 1–15.Google Scholar
Nowak, R. M. (1999). Walker's Mammals of the World, Vol. II, Johns Hopkins University Press.Google Scholar
Ren, Y., Maltha, J. C. and Kuijpers-Jagtman, A. M. (2004). The rat as a model for orthodontic tooth movement – a critical review and a proposed solution. European Journal of Orthodontics, 26, 483–490.CrossRefGoogle Scholar
Rensberger, J. M. and Koenigswald, W. v. (1980). Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology, 6, 477–495.CrossRefGoogle Scholar
Renvoisé, E., Evans, A. R., Jebrane, A.et al. (2009). The evolution of mammal tooth patterns: New insights from a developmental prediction model. Evolution, 63, 1327–1340.CrossRefGoogle ScholarPubMed
Šklíba, J., Šumbera, R., Chitaukali, W. N. and Burda, H. (2009). Home-range dynamics in a solitary subterranean rodent. Ethology, 115, 217–226.CrossRefGoogle Scholar
Stehlin, H. G. and Schaub, S. (1951). Die Trigonodontie der simplicidentaten Nager. Schweizerische Paläontologische Abhandlungen, 67, 1–385.Google Scholar
Strömberg, C. A. E. (2005). Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences of the USA, 102, 11 980–11 984.CrossRefGoogle ScholarPubMed
Strömberg, C. A. E. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517–544.CrossRefGoogle Scholar
Townsend, K. and Croft, D. (2008). Enamel microwear in caviomorph rodents. Journal of Mammalogy, 89, 730–740.CrossRefGoogle Scholar
Vianey-Liaud, M. (1991). Les rongeurs de l'Eocène terminal et de l'Oligocène d'Europe comme indicateurs de leur environnement. Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 15–28.CrossRefGoogle Scholar
Vieytes, E. C., Morgan, C. C. and Verzi, D. H. (2007). Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha). Journal of Anatomy, 211, 296–302.CrossRefGoogle Scholar
Vorontsov, N. N. (1967). Evolution of the Alimentary System in Myomorph Rodents. New Delhi, published for the Smithsonian Institution and the National Science Foundation, Washington, D.C. by the Indian National Scientific Documentation Centre.Google Scholar
Wen, X. and Paine, M. L. (2013). Iron deposition and ferritin heavy chain (fth) localization in rodent teeth. BMC Research Notes, 6, 1–12.CrossRefGoogle ScholarPubMed
Wilson, G. P., Evans, A. R., Corfe, I. J.et al. (2013). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483, 457–460.Google Scholar
Wood, A. E. (1965). Grades and clades among rodents. Evolution, 19, 115–130.CrossRefGoogle Scholar
Yeakel, J. D., Bennett, N. C., Koch, P. L. and Dominy, N. J. (2007). The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proceedings of the Royal Society B: Biological Sciences, 274, 1723–1730.CrossRefGoogle ScholarPubMed
Yoshimatsu, M., Shibata, Y., Kitaura, H.et al. (2006). Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. Journal of Bone and Mineral Metabolism, 24, 20–27.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×