Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T13:41:09.634Z Has data issue: false hasContentIssue false

6 - History, taxonomy and palaeobiology of giant fossil rodents (Hystricognathi, Dinomyidae)

Published online by Cambridge University Press:  05 August 2015

Andrés Rinderknecht
Affiliation:
Museo Nacional de Historia Natural, Montevideo, Uruguay
R. Ernesto Blanco
Affiliation:
Instituto de Física, Facultad de Ciencias, Montevideo, Uruguay
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Among the great diversity of the order Rodentia, the “New World Hystricognathi”, or caviomorphs are a very characteristic group from the Neotropical region. This group, whose fossil record begins in the late Eocene (Antoine et al., 2011), and is included in the infraorder Hystricognathi (Huchon and Douzery, 2001; Woods and Kilpatrick, 2005), comprises more than 50 genera in 13 families. One of the peculiarities of the extant caviomorphs is their wide range of size, between ∼200 g and ∼60 kg (Sánchez-Villagra et al., 2003). The latter is the maximum body mass among extant rodents (Mones and Ojasti, 1986) and occurs in Hydrochoerus hydrochaeris (known colloquially as capybaras), considered the giant of the group. South America is also home of the pacarana, Dinomys branickii, a large, enigmatic caviomorph rodent that can be found in the rainforests of Brazil, Bolivia, Colombia, Ecuador and Peru (Figure 6.1). This is the only living member of the family Dinomyidae, which is notorious for its great past diversity (Frailey, 1986; Mones, 1986; Rinderknecht et al., 2011).

With a body mass that varies from 10 kg to 15 kg (White and Alberico, 1992), the pacarana is one of the biggest living rodents. However, dinomyid rodents used to be much larger. Many taxa from this family achieved extraordinary body sizes, especially those that belong to the extinct subfamily Eumegamyinae (Rinderknecht and Blanco, 2008). This subfamily contains the biggest rodents that ever existed (see Figures 6.2–6.4).

Recorded since the middle Miocene (but see Krapovickas and Nasif, 2011), the diversity of the Dinomyidae has been repeatedly corroborated with a great number of findings. Nowadays, approximately 60 extinct species are known, all of them distributed within South America (Mones, 1986; Rinderknecht and Blanco, 2008; Rinderknecht et al., 2011). In this chapter we summarize the principal aspects of the history, anatomy, systematics and taxonomy of these enigmatic rodents. All texts shown in square brackets and italics are translations from Spanish.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 164 - 185
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. McN. (1981). Factors of safety in the structure of animals. Science Progress, 67, 109–130.Google ScholarPubMed
Alexander, R. McN. (1990). Animals. Cambridge: Cambridge University Press.CrossRefGoogle ScholarPubMed
Ameghino, C. (1916). Algunas observaciones curiosas sobre una cabeza del género Tetrastylus de Catamarca. Physis, 2, 429–430. Buenos Aires.Google Scholar
Ameghino, F. (1883a). Sobre una colección de mamíferos fósiles del piso mesopotámico de la formación patagónica, recogidos en las barrancas del Paraná, por el profesor Pedro Scalabrini. Boletín de la Academia Nacional de Ciencias en Córdoba, 5, 101–116.Google Scholar
Ameghino, F. (1883b). Sobre una nueva colección de mamíferos fósiles recogidos por el Profesor Scalabrini en las barrancas del Paraná. Boletín de la Academia Nacional de Ciencias en Córdoba, 5, 257–306.Google Scholar
Ameghino, F. (1886). Contribuciones al conocimiento de los mamíferos fósiles de los terrenos terciarios antiguos del Paraná. Boletín de la Academia Nacional de Ciencias en Córdoba, 9, 5–228.Google Scholar
Ameghino, F. (1889). Contribución al conocimiento de los mamíferos fósiles de la República Argentina. Actas de la Academia Nacional de Ciencias, 6, XXXII + 1–1027.Google Scholar
Ameghino, F. (1891a). Caracteres diagnósticos de cincuenta especies nuevas de mamíferos fósiles argentinos. Revista Argentina de Historia Natural, 1, 129–167.Google Scholar
Ameghino, F. (1891b). Mamíferos y aves fósiles argentinas. Especies nuevas, adiciones y correcciones. Revista Argentina de Historia Natural, 1, 240–259.Google Scholar
Antoine, P.-O., Marivaux, L., Croft, D. A., et al. (2011). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society of London (B), 279, 1319–1326.Google ScholarPubMed
Blanco, R. E. (2008). The uncertainties of the largest fossil rodent. Proceedings of the Royal Society of London, 275, 1957–1958.Google Scholar
Blanco, R. E., Rinderknecht, A. and Lecuona, G. (2011). The bite force of the largest fossil rodent. Lethaia, 45, 157–163.Google Scholar
Blanga-Kanfi, S., Miranda, H., Penn, O., et al. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 9, 1–12.CrossRefGoogle ScholarPubMed
Bocquentin-Villanueva, J. and Bondesio, P. (1987). Novedosos restos de Neoepiblemidae (Rodentia, Caviomorpha) del Mioceno de Venezuela. Inferencias paleoambientales. Boletín Informativo, Asociación Paleontológica Argentina, 16, 11.Google Scholar
Bondesio, P. (1978). La presencia del género Carlesia (Rodentia, Dinomyidae, Eumegamyinae) en la formación Arroyo Chasicó (Plioceno Temprano), Provincia de Buenos Aires. Publicaciones del Museo Municipal de Ciencias Naturales de Mar del Plata “Lorenzo Scaglia”, 2, 198–206.Google Scholar
Burmeister, G. (1879). Description physique de la République Argentina d'après des observations personnelles et étragères. 3 (animaux vertébrés, 1: Mammifères vivants et éteins). Buenos Aires: P. E. Coni.Google Scholar
Burmeister, G. (1885). Examen crítico de los mamíferos y reptiles fósiles denominados por D. Augusto Bravard y mencionados en su obra precedente. Anales del Museo Público, Buenos Aires, 3, 95–174.Google Scholar
Christiansen, P. (2007). Evolutionary implications of bite mechanics and feeding ecology in bears. Journal of Zoology, 272, 423–443.CrossRefGoogle Scholar
Christiansen, P. and Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88, 347–358.CrossRefGoogle ScholarPubMed
Collins, L. R. and Eisenberg, J. F. (1972). Notes on the behaviour and breeding of pacaranas Dinomys branickii in captivity. International Zoo Yearbook, 12, 108–14.CrossRefGoogle Scholar
Crandall, L. S. (1964). The Management of Wild Mammals in Captivity. Chicago: University of Chicago Press.Google Scholar
D'Orbigny, A (1848). Voyage dans l'Amérique Meridional. Paleontología, 4éme. Paris: Partie.Google Scholar
Ellerrman, J. R. (1940). The families and genera of living rodents. British Museum (Natural History), 1, XXVI + 1–698.Google Scholar
Fernández de Álvarez, E. (1958). Sobre nuevos restos de Eumegamysops praependens (Amegh.) Kragl. Revista de la Asociación Geológica Argentina, 13, 87–104.Google Scholar
Fields, R. W. (1957). Hystricomorph rodents from the late Miocene of Colombia, South America. University of California Publications in Geological Sciences, 32, 273–404.Google Scholar
Frailey, C. D. (1986). Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Río Acre region, Western Amazonia. Contributions in Science, 374, 1–46.Google Scholar
Freeman, P. W. and Lemen, C. A. (2008). A simple morphological predictor of bite force in rodents. Journal of Zoology, 275, 418–422.CrossRefGoogle Scholar
Gaudin, T. J. and Wible, J. R. (2006). The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. In Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds and Reptiles, eds. Carranco, M.T., Gaudin, T. J., Blob, R. W. and Wible, R.. Chicago: The University of Chicago Press, pp. 153–198.Google Scholar
Gervais, H. and Ameghino, F. (1880). Los mamíferos fósiles de la América del Sud. París-Buenos Aires: F. Savy-Igon.Google Scholar
Grand, T. I. and Eisenberg, J. F. (1982). On the affinities of the Dinomyidae. Säugetierkundliche Mitteilungen, 30, 151–157.Google Scholar
Horovitz, I., Sánchez–Villagra, M. R., Martin, T. and Aguilera, O. A. (2006). The fossil record of Phoberomys pattersoni Mones 1980 (Mammalia, Rodentia) from Urumaco (Late Miocene, Venezuela), with an analysis of its phylogenetic relationships. Journal of Systematic Paleontology, 4, 239–306.CrossRefGoogle Scholar
Huchon, D. and Douzery, E. J. P. (2001). From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution, 20, 238–251.CrossRefGoogle ScholarPubMed
Kraglievich, L. (1926). Los grandes roedores terciarios de la Argentina y sus relaciones con ciertos géneros pleistocenos de las Antillas. Anales del Museo Nacional de Historia Natural, 34, 121–135.Google Scholar
Kraglievich, L. (1930). Descripción de un interesante roedor eumegámido descubierto en el Uruguay. Gyriabrus teisseirei, n. sp. Revista de la Sociedad de Amigos de la Arqueología, 4, 219–224.Google Scholar
Kraglievich, L. (1931). Cuatro notas paleontológicas sobre Octomylodon aversus Amegh., Argyrolagus palmeri Amegh., Tetrastylus montanus Amegh.y Muñizia paranensis n. gen., n. sp. Physis, 10, 242–266.Google Scholar
Kraglievich, L. (1932). Diagnosis de nuevos géneros y especies de roedores cávidos y eumegámidos fósiles de la Argentina. Rectificación genérica de algunas especies conocidas y adiciones al conocimiento de otras. Anales de la Sociedad Científica Argentina, 114(4), 155–181; (5–6), 211–237.Google Scholar
Kraglievich, L. (1934). La antigüedad pliocena de las faunas de Monte Hermoso y Chapalmalal, deducidas de su comparación con las que les precedieron y sucedieron. Pp. 17–133. Montevideo: El Siglo ilustrado.
Krapovickas, V. and Nasif, N. L. (2011). Large caviomorph rodent footprints of the Late Oligocene Vinchina Formation, Argentina. Palaeontologia Electronica, 14, 1–13.Google Scholar
Lessa, E. P. and Patton, J. L. (1989). Structural constraints, recurrent shapes, and allometry in pocket gophers (genus Thomomys). Biological Journal of the Linnean Society, 36, 349–363.CrossRefGoogle Scholar
Lessa, E. P. and Stein, B. R. (1993). Morphological constraints in the digging apparatus of pocket gophers (Mammalia: Geomyidae). Journal of the Linnean Society, 47, 439–453.Google Scholar
MacPhee, R. D. E. (2011). Basicranial morphology and relationships of antillean Heptaxodontidae (Rodentia, Ctenohystrica, Caviomorpha). Bulletin of the American Museum of Natural History, 363, 1–70.CrossRefGoogle Scholar
Meers, M. B. (2002). Maximum bite force and prey size of Tyrannosaurus rex and their relationships to the inference of feeding behavior. Historical Biology, 16, 1–12.CrossRefGoogle Scholar
Meritt, D. A. Jr. (1984). The pacarana, Dinomys branickii. In One Medicine, eds. Ryder, O. A. and Byrd, M. L.. New York: Springer-Verlag, pp. 154–161.Google Scholar
Miller, G. S. and Gidley, J. W. (1918). Synopsis of the supergeneric groups of rodents. Journal of the Washington Academy of Sciences, 8, 431–448.CrossRefGoogle Scholar
Millien, V. (2008). The largest among the smallest: the body mass of the giant rodent Josephoartigasia monesi. Proceedings of the Royal Society of London, 275, 1953–1955.Google ScholarPubMed
Mohr, E. (1937). Vom Pacarana (Dinomys branickii Peters). Der Zoologische Garten (Neue Folge), 9, 204–209.
Mones, A. (1981). Sinopsis sistemática preliminar de la familia Dinomyidae (Mammalia: Rodentia: Caviomorpha). Anais do 2º Congresso Latino–Americano de Paleontología, pp. 605–619. Porto Alegre.
Mones, A. (1986). Palaeovertebrata sudamericana. Catálogo sistemático de los vertebrados fósiles de América del Sur. Parte I. Lista preliminar y bibliografía. Courier Forschungsinstitut Senckenberg, 82, 1–625.Google Scholar
Mones, A. (1989). Primer hallazgo de Euphilus Ameghino, 1889. (Mammalia: Rodentia: Neoepiblemidae) en el neógeno del Estado de Acre, Brasil. Comunicaciones Paleontológicas del Museo Nacional de Historia Natural de Montevideo, 21, 1–15.Google Scholar
Mones, A. (1997). Estudios sobre la familia Dinomyidae, II. Aportes para una osteología comparada de Dinomys branickii Peters, 1873 (Mammalia: Rodentia). Comunicaciones Paleontológicas del Museo Nacional de Historia Natural de Montevideo, 29, 1–40.Google Scholar
Mones, A. and Ojasti, J. (1986). Hydrochoerus hydrochaeris. Mammalian Species, 246, 1–7.
Pascual, R. (1967). Familia Dinomyidae. In Paleontografía Bonaerense, ed. Borrello, A. V.. La Plata: Comisión de Investigación Científica IV, pp. 123–127.Google Scholar
Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy, 83, 321–332.2.0.CO;2>CrossRefGoogle Scholar
Rinderknecht, A. and Blanco, R. E. (2008). The largest fossil rodent. Proceedings of the Royal Society of London, 275, 923–928.Google ScholarPubMed
Rinderknecht, A., Bostelmann, E. and Ubilla, M. (2011). New genus of giant Dinomyidae (Rodentia: Hystricognathi: Caviomorpha) from the late Miocene of Uruguay. Journal of Mammalogy, 92, 169–178.CrossRefGoogle Scholar
Rovereto, C. (1914). Los estratos araucanos y sus fósiles. Anales del Museo Nacional de Historia Natural de Buenos Aires, 25, 1–247.Google Scholar
Sánchez –Villagra, M. R., Aguilera, O. and Horovitz, I. (2003). The anatomy of the world's largest extinct rodent. Science, 301, 1708–1710.CrossRefGoogle ScholarPubMed
Shipley, L. A., Illius, A. W., Danell, K., Hobbs, N. T. and Spalinger, D. E. (1999). Predicting bite size selection of mammalian herbivores: a test of a general model of diet optimization. Oikos, 84, 55–68.CrossRefGoogle Scholar
Therrien, F. (2005a). Mandibular force profiles of extant carnivorans and implication for the feeding behaviour of extinct predators. Journal of Zoology, 267, 249–270.CrossRefGoogle Scholar
Therrien, F. (2005b). Feeding behaviour and bite force of sabretoothed predators. Zoological Journal of the Linnean Society, 145, 393–426.CrossRefGoogle Scholar
Vizcaíno, S. F. & De Iuliis, G. (2003). Evidence for advanced carnivory in fossil armadillos (Mammalia: Xenarthra: Dasypodidae). Paleobiology, 29, 123–138.2.0.CO;2>CrossRefGoogle Scholar
White, T. G. and Alberico, M. S. (1992). Dinomys branickii. Mammalian Species, 410, 1–5.
Woods, C. A. (1984). Hystricognath rodents. In Orders and Families of Recent Mammals of the World, eds. Anderson, S. and Jones, J. K. Jr.New York: John and Sons, pp. 389–446.Google Scholar
Woods, C. A. and Kilpatric, C. W. (2005). Infraorder Hystricognathi. In Mammal Species of the World, eds. Wilson, D. E. and Reeder, D. M.. The Johns Hopkins University Press, pp. 1538–1600.Google Scholar
Wroe, S., McHenry, C. and Thomason, J. J. (2005). Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceedings of the Royal Society of London, B. Biological Sciences, 272, 619–625.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×