Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:41:53.802Z Has data issue: false hasContentIssue false

Chapter 5 - Structure, Function, and Evolution of Archaeo-Eukaryotic RNA Polymerases – Gatekeepers of the Genome

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Preface

RNA polymerases (RNAPs) are essential to all life forms and responsible for the regulated and template DNA-dependent transcription of all genetic information. A plethora of basal and gene-specific transcription factors interact physically and functionally with RNAP, which results in the execution of a highly fine-tuned genetic program that is at the very heart of biology. RNAPs come in a range of flavors, but notably all RNAPs responsible for the transcription of cellular genomes are evolutionary related and are thus derived from one common ancestor. Recent technological advances have given us unprecedented insights into the function and mechanisms of RNAPs. This book chapter serves to describe our modern understanding of the structure, function, and evolution of RNAPs in the three principal domains of life: the Bacteria, Archaea, and Eukarya.

Transcription in the informationprocessing circuitry of life

Since Francis Crick phrased the “central dogma” of molecular biology in the mid-1950s – according to which DNA-makes-RNA-makes-protein – scientists from a broad range of backgrounds have investigated the flow of genetic information in biological systems (Watson and Crick, 1953). According to this traditional view, the DNA template-dependent synthesis of DNA is referred to as replication, the DNA template-dependent synthesis of RNA is transcription, and RNA in turn is translated into proteins (Figure 5.1). Soon after the discovery that nucleic acids not only encode the genetic information, but are also instrumental in translating it into proteins in the form of ribosomes (e.g., rRNA) and their ligands (e.g., tRNA), it became apparent that this assumed unidirectional flow of information is anything but simple, nor is it unidirectional (Figure 5.1).

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 78 - 92
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, SRobertson, H. D 1973 RNA precursor molecules and ribonucleases in E. coliMol Cell Biochem 1 83CrossRefGoogle ScholarPubMed
Andrecka, JLewis, RBruckner, FLehmann, ECramer, PMichaelis, J 2008 Single-molecule tracking of mRNA exiting from RNA polymerase IIProc Natl Acad Sci USA 105 135CrossRefGoogle ScholarPubMed
Andrecka, JTreutlein, BArcusa, M. AMuschielok, ALewis, RCheung, A. CCramer, PMichaelis, J 2009 Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complexNucleic Acids Res 37 5803CrossRefGoogle ScholarPubMed
Armache, K. JMitterweger, SMeinhart, ACramer, P 2005 Structures of complete RNA polymerase II and its subcomplex, Rpb4/7J Biol Chem 280 7131CrossRefGoogle ScholarPubMed
Bartlett, M. SThomm, MGeiduschek, E. P 2004 Topography of the euryArchaeal transcription initiation complexJ Biol Chem 279 5894CrossRefGoogle ScholarPubMed
Bell, S. DKosa, P. LSigler, P. BJackson, S. P 1999 Orientation of the transcription preinitiation complex in ArchaeaProc Natl Acad Sci USA 96 13662CrossRefGoogle ScholarPubMed
Belogurov, G. AVassylyeva, M. NSvetlov, VKlyuyev, SGrishin, N. VVassylyev, D. GArtsimovitch, I 2007 Structural basis for converting a general transcription factor into an operon-specific virulence regulatorMol Cell 26 117CrossRefGoogle ScholarPubMed
Briand, J. FNavarro, FRematier, PBoschiero, CLabarre, SWerner, MShpakovski, G. VThuriaux, P 2001 Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and IIIMol Cell Biol 21 6056CrossRefGoogle Scholar
Brueckner, FOrtiz, JCramer, P 2009 A movie of the RNA polymerase nucleotide addition cycleCurr Opin Struct Biol 19 294CrossRefGoogle ScholarPubMed
Bushnell, D. AWestover, K. DDavis, R. EKornberg, R. D 2004 Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 AngstromsScience 303 983CrossRefGoogle ScholarPubMed
Carter, RDrouin, G 2009 The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factorsMol Biol Evol 27 1035CrossRefGoogle ScholarPubMed
Cech, T. R 2009 Crawling out of the RNA worldCell 136 599CrossRefGoogle ScholarPubMed
Cech, T. RBass, B. L 1986 Biological catalysis by RNAAnnu Rev Biochem 55 599CrossRefGoogle ScholarPubMed
Chen, H. THahn, S 2003 Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complexMol Cell 12 437CrossRefGoogle ScholarPubMed
Chen, H. THahn, S 2004 Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PICCell 119 169CrossRefGoogle ScholarPubMed
Cheong, J. HMurakami, S 1995 Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivationEmbo J 14 143Google ScholarPubMed
Cramer, PArnold, E 2009 Proteins: how RNA polymerases workCurr Opin Struct Biol 19 680CrossRefGoogle ScholarPubMed
Deighan, PHochschild, A 2006 Conformational toggle triggers a modulator of RNA polymerase activityTrends Biochem Sci 31 424CrossRefGoogle ScholarPubMed
Edwards, A. MKane, C. MYoung, R. AKornberg, R. D 1991 Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitroJ Biol Chem 266 71Google Scholar
Ekland, E. HSzostak, J. WBartel, D. P 1995 Structurally complex and highly active RNA ligases derived from random RNA sequencesScience 269 364CrossRefGoogle ScholarPubMed
Epshtein, VCardinale, C. JRuckenstein, A. EBorukhov, SNudler, E 2007 An allosteric path to transcription terminationMol Cell 28 991CrossRefGoogle ScholarPubMed
Epshtein, VDutta, DWade, JNudler, E 2010 An allosteric mechanism of Rho-dependent transcription terminationNature 463 245CrossRefGoogle ScholarPubMed
Gnatt, A. LCramer, PFu, JBushnell, D. AKornberg, R. D 2001 Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolutionScience 292 1876CrossRefGoogle ScholarPubMed
Goldman, S. REbright, R. HNickels, B. E 2009 Direct detection of abortive RNA transcripts in vivoScience 324 927CrossRefGoogle ScholarPubMed
Grohmann, DHirtreiter, AWerner, F 2009 The RNAP subunits F/E (RPB4/7) are stably associated with Archaeal RNA polymerase – using fluorescence anisotropy to monitor RNAP assembly in vitroBiochem J 421 339CrossRefGoogle ScholarPubMed
Grohmann, DKlose, DKlare, J. PKay, C. MSteinhoff, H.-JWerner, F 2010 RNA-binding to Archaeal RNAP subunits F/E- a DEER and FRET studyJACS 132 5954CrossRefGoogle ScholarPubMed
Grunberg, SReich, CZeller, M. EBartlett, M. SThomm, M 2010 Rearrangement of the RNA polymerase subunit H and the lower jaw in Archaeal elongation complexesNucleic Acids Res 38 1950CrossRefGoogle ScholarPubMed
Hausner, WLange, UMusfeldt, M 2000 Transcription factor S, a cleavage induction factor of the Archaeal RNA polymeraseJ Biol Chem 275 12393CrossRefGoogle ScholarPubMed
Hirata, AKlein, B. JMurakami, K. S 2008 The X-ray crystal structure of RNA polymerase from ArchaeaNature 451 851CrossRefGoogle ScholarPubMed
Hirtreiter, ADamsma, FCheung, AKlose, DGrohmann, DVojnic, EMartin, C. RCramer, PWerner, F 2010 Spt4/5 Stimulates Transcription Elongation through the RNA Polymerase Clamp Coiled Coil MotifNAR 38 4040CrossRefGoogle ScholarPubMed
Hirtreiter, AGrohmann, DWerner, F 2010 Molecular mechanisms of RNA polymerase – the F/E (RPB4/7) complex is required for high processivity in vitroNucleic Acids Res 38 585CrossRefGoogle Scholar
Holstege, F. CVan Der Vliet, P. CTimmers, H. T 1996 Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIHEMBO J 15 1666Google ScholarPubMed
Iyer, L. MKoonin, E. VAravind, L 2003 Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerasesBMC Struct Biol 3 1CrossRefGoogle ScholarPubMed
Jeon, CYoon, HAgarwal, K 1994 The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase IIProc Natl Acad Sci USA 91 9106CrossRefGoogle ScholarPubMed
Johnston, W. KUnrau, P. JLawrence, M. SGlasner, M. EBartel, D. P 2001 RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extensionScience 292 1319CrossRefGoogle ScholarPubMed
Joyce, G. FOrgel, L. E 1999 The RNA WorldNew YorkCold Spring Harbor Laboratory PressGoogle Scholar
Kang, XHu, Y.Li, YGuo, XJiang, XLai, LXia, BJin, C 2006 Structural, biochemical, and dynamic characterizations of the hRPB8 subunit of human RNA polymerasesJ Biol Chem 281 18216CrossRefGoogle ScholarPubMed
Kapanidis, A. NMargeat, EHo, S. OKortkhonjia, EWeiss, SEbright, R. H 2006 Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanismScience 314 1144CrossRefGoogle ScholarPubMed
Kettenberger, HArmache, K. JCramer, P 2004 Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIISMol Cell 16 955CrossRefGoogle ScholarPubMed
Kim, YGeiger, J. HHahn, SSigler, P. B 1993 Crystal structure of a yeast TBP/TATA-box complexNature512CrossRefGoogle ScholarPubMed
Kolodziej, P. AWoychik, NLiao, S. MYoung, R. A 1990 RNA polymerase II subunit composition, stoichiometry, and phosphorylationMol Cell Biol 10 1915CrossRefGoogle ScholarPubMed
Komissarova, NKashlev, M 1998 Functional topography of nascent RNA in elongation intermediates of RNA polymeraseProc Natl Acad Sci USA 95 14699CrossRefGoogle ScholarPubMed
Koonin, E. VMakarova, K. SElkins, J. G 2007 Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “KorarchaeotaBiol Direct 2 38CrossRefGoogle Scholar
Korkhin, YUnligil, U. MLittlefield, ONelson, P. JStuart, D. ISigler, P. BBell, S. DAbrescia, N. G 2009 Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase StructurePLoS Biol 7 e102CrossRefGoogle ScholarPubMed
Kostrewa, DZeller, M. EArmache, K. JSeizl, MLeike, KThomm, MCramer, P 2009 RNA polymerase II-TFIIB structure and mechanism of transcription initiationNature 462 323CrossRefGoogle ScholarPubMed
Landick, R 2006 The regulatory roles and mechanism of transcriptional pausingBiochem Soc Trans 34 1062CrossRefGoogle ScholarPubMed
Lin, YNomura, TCheong, JDorjsuren, DIida, KMurakami, S 1997 Hepatitis B virus X protein is a transcriptional modulator that communicates with transcription factor IIB and the RNA polymerase II subunit 5J Biol Chem 272 7132CrossRefGoogle ScholarPubMed
Lincoln, T. AJoyce, G. F 2009 Self-sustained replication of an RNA enzymeScience 323 1229CrossRefGoogle ScholarPubMed
Liu, XBushnell, D. AWang, DCalero, GKornberg, R. D 2010 Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanismScience 327 206CrossRefGoogle ScholarPubMed
Meka, HWerner, FCordell, S. COnesti, SBrick, P 2005 Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase IINucleic Acids Res 33 6435CrossRefGoogle ScholarPubMed
Murakami, K. SDarst, S. A 2003 Bacterial RNA polymerases: the whole storyCurr Opin Struct Biol31CrossRefGoogle Scholar
Naji, SGrunberg, SThomm, M 2007 The RPB7 orthologue E’ is required for transcriptional activity of a reconstituted Archaeal core enzyme at low temperatures and stimulates open complex formationJ Biol Chem 282 11047CrossRefGoogle ScholarPubMed
Orlicky, S. MTran, P. TSayre, M. HEdwards, A. M 2001 Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiationJ Biol Chem 276 10097CrossRefGoogle ScholarPubMed
Ream, T. SHaag, J. RWierzbicki, A. TNicora, C. DNorbeck, A. DZhu, J. KHagen, GGuilfoyle, T. JPasa-Tolic, LPikaard, C. S 2009 Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase IIMol Cell 33 192CrossRefGoogle Scholar
Reich, CZeller, MMilkereit, PHausner, WCramer, PTschochner, HThomm, M 2009 The Archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitroMol Microbiol 71 989CrossRefGoogle ScholarPubMed
Renfrow, M. BNaryshkin, NLewis, L. MChen, H. TEbright, R. HScott, R. A 2004 Transcription factor B contacts promoter DNA near the transcription start site of the Archaeal transcription initiation complexJ Biol Chem 279 2825CrossRefGoogle ScholarPubMed
Ruprich-Robert, GThuriaux, P 2010 Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerasesNucleic Acids Res 38 4559CrossRefGoogle ScholarPubMed
Sampath, VSadhale, P 2005 Rpb4 and Rpb7: a sub-complex integral to multi-subunit RNA polymerases performs a multitude of functionsIUBMB Life 57 93CrossRefGoogle ScholarPubMed
Santangelo, T. JCubonova, LMatsumi, RAtomi, HImanaka, TReeve, J. N 2008 Polarity in Archaeal operon transcription in Thermococcus kodakaraensisJ Bacteriol 190 2244CrossRefGoogle ScholarPubMed
Santangelo, T. JCubonova, LSkinner, K. MReeve, J. N 2009 Archaeal intrinsic transcription termination in vivoJ Bacteriol 191 7102CrossRefGoogle ScholarPubMed
Santangelo, T. JReeve, J. N 2006 Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequencesJ Mol Biol 355 196CrossRefGoogle ScholarPubMed
Schuster, P 2010 Origins of Life: Concepts, data and debatesComplexity 15 7Google Scholar
Shechner, D. MGrant, R. ABagby, S. CKoldobskaya, YPiccirilli, J. ABartel, D. P 2009 Crystal structure of the catalytic core of an RNA-polymerase ribozymeScience 326 1271CrossRefGoogle ScholarPubMed
Sigurdsson, SDirac-Svejstrup, A. BSvejstrup, J. Q 2010 Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viabilityMol Cell 38 202CrossRefGoogle ScholarPubMed
Spitalny, PThomm, M 2008 A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in ArchaeaMol Microbiol 67 958CrossRefGoogle ScholarPubMed
Steitz, T. A 1998 A mechanism for all polymerasesNature 391 231CrossRefGoogle ScholarPubMed
Steitz, T. ASteitz, J. A 1993 A general two-metal-ion mechanism for catalytic RNAProc Natl Acad Sci USA 90 6498CrossRefGoogle ScholarPubMed
Tennyson, C. NKlamut, H. JWorton, R. G 1995 The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally splicedNat Genet 9 184CrossRefGoogle ScholarPubMed
Todone, FBrick, PWerner, FWeinzierl, R. OOnesti, S 2001 Structure of an Archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complexMol Cell 8 1137CrossRefGoogle ScholarPubMed
Ujvari, ALuse, D. S 2006 RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunitNat Struct Mol Biol 13 49CrossRefGoogle ScholarPubMed
Vassylyev, D. GVassylyeva, M. NPerederina, ATahirov, T. HArtsimovitch, I 2007 Structural basis for transcription elongation by Bacterial RNA polymeraseNature 448 157CrossRefGoogle ScholarPubMed
Vassylyev, D. GVassylyeva, M. NZhang, JPalangat, MArtsimovitch, ILandick, R 2007 Structural basis for substrate loading in Bacterial RNA polymeraseNature 448 163CrossRefGoogle ScholarPubMed
Walmacq, CKireeva, M. LIrvin, JNedialkov, YLubkowska, LMalagon, FStrathern, J. NKashlev, M 2009 Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase IIJ Biol Chem 284 19601CrossRefGoogle ScholarPubMed
Watson, J. DCrick, F. H 1953 A structure for deoxyribose nucleic acidNature 171 737CrossRefGoogle ScholarPubMed
Werner, F 2007 Structure and function of Archaeal RNA polymerasesMol Microbiol 65 1395CrossRefGoogle ScholarPubMed
Werner, F 2008 Structural evolution of multi-subunit RNA polymerasesTrends Microbiol 16 247CrossRefGoogle Scholar
Werner, FEloranta, J. JWeinzierl, R. O 2000 Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12Nucleic Acids Res 28 4299CrossRefGoogle ScholarPubMed
Werner, FWeinzierl, R. O 2002 A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcriptionMol Cell 10 635CrossRefGoogle ScholarPubMed
Werner, FWeinzierl, R. O 2005 Direct modulation of RNA polymerase core functions by basal transcription factorsMol Cell Biol 25 8344CrossRefGoogle ScholarPubMed
Whittington, J. EDelgadillo, R. FAttebury, T. JParkhurst, L. KDaugherty, M. AParkhurst, L. J 2008 TATA-binding protein recognition and bending of a consensus promoter are protein species dependentBiochemistry 47 7264CrossRefGoogle ScholarPubMed
Woychik, N. AYoung, R. A 1989 RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growthMol Cell Biol 9 2854CrossRefGoogle ScholarPubMed
Ziegler, L. MKhaperskyy, D. AAmmerman, M. LPonticelli, A. S 2003 Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIFJ Biol Chem 278 48950CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×