Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T21:12:28.709Z Has data issue: false hasContentIssue false

Chapter 12 - ATP-Dependent Proteases: The Cell's Degradation Machines

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Protein concentration in the cell is a function of the rates of protein synthesis and destruction, and the regulation of both processes is necessary for a properly functioning cell. The degradation of proteins is mainly performed by a small number of ATP-dependent cellular proteases. ATP-dependent proteases are molecular motors that degrade substrates by translocating along the substrates’ polypeptide chain. Degradation is directional, highly processive, and requires energy from ATP hydrolysis (Kim et al., 2000; Lee et al., 2001; Reid et al., 2001; Kenniston et al., 2003; Aubin-Tam et al., 2011; Maillard et al., 2011). In this manner, these proteases control the concentrations of hundreds of regulatory proteins involved in processes such as the cell cycle, transcription, and signal transduction and play an important housekeeping role by destroying misfolded and damaged proteins (Ciechanover, 1994; Glickman and Ciechanover, 2002; Goldberg, 2003; Collins and Tansey, 2006). Despite this wide range of substrates, proteases have to act specifically to avoid the unintended degradation of the rest of the cellular proteins. ATP-dependent proteases in Bacteria, Archaea, and Eukaryotes have evolved a similar way of solving this problem: their proteolytic sites are encapsulated within the protease structure where they are inaccessible to folded proteins (Baumeister et al., 1998). Substrates are targeted to the proteases via specific degradation signals, to be unraveled and translocated into the proteolytic chamber (Baker and Sauer, 2006; Schrader et al., 2009). The unfolding and translocation of substrates is accelerated by ATP hydrolysis and is catalyzed by ATPase domains or subunits that flank the proteolytic barrel and pull at the substrates’ polypeptide chains (Prakash and Matouschek, 2004, Sauer et al., 2004; Aubin-Tam et al., 2011; Maillard et al., 2011). In this chapter, we will introduce the main ATP-dependent proteases in Bacteria, Archaea, and Eukaryotes and attempt to describe the common mechanisms through which they recognize and degrade their substrates.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 239 - 260
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amerik, A. Y.Hochstrasser, M. 2004 Mechanism and function of deubiquitinating enzymesBiochim Biophys Acta 1695 189CrossRefGoogle ScholarPubMed
Aubin-Tam, M. E.Olivares, A. O.Sauer, R. T.Baker, T. A.Lang, M. J. 2011 Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machineCell 145 257CrossRefGoogle ScholarPubMed
Augustin, S.Gerdes, F.Lee, S.Tsai, F. T. F.Langer, T.Tatsuta, T. 2009 An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteasesMol Cell 35 574CrossRefGoogle ScholarPubMed
Aza-Blanc, P.Ramirez-Weber, F. A.Laget, M. P.Schwartz, C.Kornberg, T. B. 1997 Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressorCell 89 1043CrossRefGoogle ScholarPubMed
Bachmair, A.Finley, D.Varshavsky, A. 1986 In vivo half-life of a protein is a function of its amino-terminal residueScience 234 179CrossRefGoogle ScholarPubMed
Baker, T. A.Sauer, R. T. 2006 ATP-dependent proteases of bacteria: recognition logic and operating principlesTrends Biochem Sci 31 647CrossRefGoogle ScholarPubMed
Baugh, J. M.Viktorova, E. G.Pilipenko, E. V. 2009 Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitinationJ Mol Biol 386 814CrossRefGoogle ScholarPubMed
Baumeister, W.Walz, J.Zühl, F.Seemüller, E. 1998 The proteasome: paradigm of a self-compartmentalizing proteaseCell 92 367CrossRefGoogle ScholarPubMed
Bech-Otschir, D.Helfrich, A.Enenkel, C.Consiglieri, G.Seeger, M.Holzhütter, H.-G.Dahlmann, B.Kloetzel, P.-M. 2009 Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasomeNat Struct Mol Biol 16 219CrossRefGoogle ScholarPubMed
Bedford, L.Paine, S.Sheppard, P. W.Mayer, R. J.Roelofs, J. 2010 Assembly, structure, and function of the 26S proteasomeTrends Cell Biol 20 391CrossRefGoogle ScholarPubMed
Benaroudj, N.Goldberg, A. L. 2000 PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperoneNat Cell Biol 2 833CrossRefGoogle ScholarPubMed
Benaroudj, N.Zwickl, P.Seemüller, E.Baumeister, W.Goldberg, A. L. 2003 ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradationMol Cell 11 69CrossRefGoogle ScholarPubMed
Bieniossek, C.Schalch, T.Bumann, M.Meister, M.Meier, R.Baumann, U. 2006 The molecular architecture of the metalloprotease FtsHProc Natl Acad Sci USA 103 3066CrossRefGoogle ScholarPubMed
Bieniossek, C.Niederhauser, B.Baumann, U. M. 2009 The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocationProc Natl Acad Sci USA 106 21579CrossRefGoogle ScholarPubMed
Bochtler, M.Ditzel, L.Groll, M.Huber, R. 1997 Crystal structure of heat shock locus V (HslV) from Proc Natl Acad Sci USA 94 6070CrossRefGoogle Scholar
Bochtler, M.Hartmann, C.Song, H. K.Bourenkov, G. P.Bartunik, H. D.Huber, R. 2000 The structures of HsIU and the ATP-dependent protease HsIU-HsIVNature 403 800CrossRefGoogle ScholarPubMed
Bohn, S.Beck, F.Sakata, E.Walzthoeni, T.Beck, M.Aebersold, R.Fõrster, F.Baumeister, W.Nickell, S. 2010 From the cover: structure of the 26S proteasome from at subnanometer resolutionProc Natl Acad Sci USA 107 20992CrossRefGoogle Scholar
Borodovsky, A.Kessler, B. M.Casagrande, R.Overkleeft, H. S.Wilkinson, K. D.Ploegh, H. L. 2001 A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14EMBO J 20 5187CrossRefGoogle ScholarPubMed
Botos, I.Melnikov, E. E.Cherry, S.Tropea, J. E.Khalatova, A. G.Rasulova, F.Dauter, Z.Maurizi, M. R.Rotanova, T. V.Wlodawer, A.Gustchina, A. 2004 The catalytic domain of Lon protease has a unique fold and a Ser-Lys dyad in the active siteJ Biol Chem 279 8140CrossRefGoogle Scholar
Brockwell, D. J.Paci, E.Zinober, R. C.Beddard, G. S.Olmsted, P. D.Smith, D. A.Perham, R. N.Radford, S. E. 2003 Pulling geometry defines the mechanical resistance of a β-sheet proteinNat Struct Biol 10 731CrossRefGoogle ScholarPubMed
Brooks, P.Fuertes, G.Murray, R. Z.Bose, S.Knecht, E.Rechsteiner, M. C.Hendil, K. B.Tanaka, K.Dyson, J.Rivett, J. 2000 Subcellular localization of proteasomes and their regulatory complexes in mammalian cellsBiochem J 1 155CrossRefGoogle Scholar
Burns, K. E.Liu, W.-T.Boshoff, H. I. M.Dorrestein, P. C.Barry, C. E. 2009 Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like proteinJ Biol Chem 284 3069CrossRefGoogle ScholarPubMed
Cadwell, K.Coscoy, L. 2005 Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligaseScience 309 127CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M.Marszalek, P. E.Oberhauser, A. F.Fernandez, J. M. 2003 The mechanical stability of ubiquitin is linkage dependentNat Struct Biol 10 738CrossRefGoogle ScholarPubMed
Cascio, P.Call, M.Petre, B. M.Walz, T.Goldberg, A. L. 2002 Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexesEMBO J 21 2636CrossRefGoogle ScholarPubMed
Cha, S. SLee, C. R.Lee, H. S.Kim, Y. G.Kim, S. J.Kwon, K. K.Donatis, G. M.Lee, J. H.Maurizi, M. R.Kang, S. G. 2010 Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamberEMBO J 29 3520CrossRefGoogle ScholarPubMed
Chau, V.Tobias, J. W.Bachmair, A.Marriott, D.Ecker, D. J.Gonda, D. K.Varshavsky, A. 1989 A multiubiquitin chain is confined to specific lysine in a targeted short-lived proteinScience 243 1576CrossRefGoogle Scholar
Chen, L.Madura, K. 2002 Rad23 promotes the targeting of proteolytic substrates to the proteasomeMol Cell Biol 22 4902CrossRefGoogle ScholarPubMed
Choi, K.-H.Licht, S. 2005 Control of peptide product sizes by the energy-dependent protease ClpAPBiochemistry 44 13921CrossRefGoogle ScholarPubMed
Ciechanover, A. 1998 The ubiquitin-proteasome pathway: on protein death and cell lifeEMBO J 17 7151CrossRefGoogle ScholarPubMed
Ciechanover, A.Ben-Saadon, R. 2004 N-terminal ubiquitination: more protein substrates join inTrends Cell Biol 14 103CrossRefGoogle Scholar
Colland, F. 2010 The therapeutic potential of deubiquitinating enzyme inhibitorsBiochem Soc Trans 38 137CrossRefGoogle ScholarPubMed
Collins, G. A.Tansey, W. P. 2006 The proteasome: a utility tool for transcriptionCurr Opin Genet Dev 16 197CrossRefGoogle ScholarPubMed
Crosas, B.Hanna, J.Kirkpatrick, D. S.Zhang, D. P.Tone, Y.Hathaway, N. A.Buecker, C.Leggett, D. S.Schmidt, M.King, R. W.Gygi, S. P.Finley, D. 2006 Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activitiesCell 127 1401CrossRefGoogle ScholarPubMed
D’andrea, A.Pellman, D. 1998 Deubiquitinating enzymes: a new class of biological regulatorsCrit Rev Biochem Mol Biol 33 337CrossRefGoogle ScholarPubMed
Fonseca, DA 2008 Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic coreJ Biol Chem 283 23305CrossRefGoogle ScholarPubMed
Demartino, G. N.Gillette, T. G. 2007 Proteasomes: machines for all reasonsCell 129 659CrossRefGoogle ScholarPubMed
Deshaies, R. J.Joazeiro, C. A. P. 2009 RING domain E3 ubiquitin ligasesAnnu Rev Biochem 78 399CrossRefGoogle ScholarPubMed
Deveraux, Q.Ustrell, V.Pickart, C.Rechsteiner, M. 1994 A 26 S protease subunit that binds ubiquitin conjugatesJ Biol Chem 269 7059Google ScholarPubMed
Djuranovic, S.Hartmann, M. D.Habeck, M.Ursinus, A.Zwickl, P.Martin, J.Lupas, A. N.Zeth, K. 2009 Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPasesMol Cell 34 580CrossRefGoogle ScholarPubMed
Dougan, D. A.Mogk, A.Zeth, K.Turgay, K.Bukau, B. 2002 AAA+ proteins and substrate recognition, it all depends on their partner in crimeFEBS Lett 529 6CrossRefGoogle ScholarPubMed
Dougan, D. A.Reid, B. G.Horwich, A. L.Bukau, B. 2002 ClpS, a substrate modulator of the ClpAP machineMol Cell 9 673CrossRefGoogle ScholarPubMed
Effantin, G.Maurizi, M. R.Steven, A. C. 2010 Binding of the CLP-A unfoldase opens the axial gate of CLP-P peptidaseJ Biol Chem 269 18201Google Scholar
Elsasser, S.Chandler-Militello, D.Müller, B.Hanna, J.Finley, D. 2004 Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasomeJ Biol Chem 279 26817CrossRefGoogle ScholarPubMed
Elsasser, S.Gali, R. R.Schwickart, M.Larsen, C. N.Leggett, D. S.Müller, B.Feng, M. T.Tübing, F.Dittmar, G. A. G.Finley, D. 2002 Proteasome subunit Rpn1 binds ubiquitin-like protein domainsNat Cell Biol 4 725CrossRefGoogle ScholarPubMed
Erbse, A.Schmidt, R.Bornemann, T.Schneider-Mergener, J.Mogk, A.Zahn, R.Dougan, D. A.Bukau, B. 2006 ClpS is an essential component of the N-end rule pathway in Nature 439 753CrossRefGoogle ScholarPubMed
Finley, D. 2009 Recognition and processing of ubiquitin-protein conjugates by the proteasomeAnnu Rev Biochem 78 477CrossRefGoogle ScholarPubMed
Flynn, J. M.Levchenko, I.Seidel, M.Wickner, S. H.Sauer, R. T.Baker, T. A. 2001 Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysisProc Natl Acad Sci USA 98 10584CrossRefGoogle ScholarPubMed
Flynn, J. M.Neher, S. B.Kim, Y. I.Sauer, R. T.Baker, T. A. 2003 Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signalsMol Cell 11 671CrossRefGoogle ScholarPubMed
Förster, A.Masters, E. I.Whitby, F. G.Robinson, H.Hill, C. P. 2005 The 1.Mol Cell 18 589CrossRefGoogle ScholarPubMed
Förster, F.Lasker, K.Nickell, S.Sali, A.Baumeister, W. 2010 Toward an integrated structural model of the 26S proteasomeMol Cell Proteomics 9 1666CrossRefGoogle ScholarPubMed
Frank, J. 2002 Single-particle imaging of macromolecules by cryo-electron microscopyAnnu Rev Biophys Biomol Struct 31 303CrossRefGoogle ScholarPubMed
Wower, I.Lei, J.Liao, H. Y.Zwieb, C.Wower, J.Frank, J. 2010 Visualizing the transfer-messenger RNA as the ribosome resumes translationEMBO J 29 3819Google Scholar
Funakoshi, M.Tomko, R. J.Kobayashi, H.Hochstrasser, M. 2009 Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle baseCell 137 887CrossRefGoogle ScholarPubMed
Gillette, T. G.Kumar, B.Thompson, D.Slaughter, C. A.Demartino, G. N. 2008 Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasomeJ Biol Chem 283 31813CrossRefGoogle Scholar
Glickman, M. H.Ciechanover, A. 2002 The ubiquitin-proteasome proteolytic pathway: destruction for the sake of constructionPhysiol Rev 82 373CrossRefGoogle ScholarPubMed
Glickman, M. H.Rubin, D. M.Coux, O.Wefes, I.Pfeifer, G.Cjeka, Z.Baumeister, W.Fried, V. A.Finley, D. 1998 A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3Cell 94 615CrossRefGoogle ScholarPubMed
Glynn, S. E.Martin, A.Nager, A. R.Baker, T. A.Sauer, R. T. 2009 Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machineCell 139 744CrossRefGoogle Scholar
Goldberg, A. L. 2003 Protein degradation and protection against misfolded or damaged proteinsNature 426 895CrossRefGoogle ScholarPubMed
Goldenberg, S. J.Marblestone, J. G.Mattern, M. R.Nicholson, B. 2010 Strategies for the identification of ubiquitin ligase inhibitorsBiochem Soc Trans 38 132CrossRefGoogle ScholarPubMed
Gonzalez, M.Frank, E. G.Levine, A. S.Woodgate, R. 1998 Lon-mediated proteolysis of the UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysisGenes Dev 12 3889CrossRefGoogle ScholarPubMed
Gottesman, S.Roche, E.Zhou, Y.Sauer, R. T. 1998 The ClpXP and ClpAP proteases degrade proteins with carboxyterminal peptide tails added by the SsrA-tagging systemGenes Dev 12 1338CrossRefGoogle Scholar
Gottesman, S. 2003 Proteolysis in bacterial regulatory circuitsAnnu. Rev.Cell Dev.Biol. 19 565CrossRefGoogle ScholarPubMed
Grimaud, R.Kessel, M.Beuron, F.Steven, A. C.Maurizi, M. R. 1998 Enzymatic and structural similarities between the ATP-dependent proteases, ClpXP and ClpAPJ Biol Chem 273 12476CrossRefGoogle ScholarPubMed
Groettrup, M.Soza, A.Eggers, M.Kuehn, L.Dick, T. P.Schild, H.Rammensee, H. G.Koszinowski, U. H.Kloetzel, P. M. 1996 A role for the proteasome regulator PA28alpha in antigen presentationNature 381 166CrossRefGoogle ScholarPubMed
Groll, M.Bajorek, M.Köhler, A.Moroder, L.Rubin, D. M.Huber, R.Glickman, M. H.Finley, D. 2000 A gated channel into the proteasome core particleNat Struct Biol 7 1062CrossRefGoogle ScholarPubMed
Groll, M.Ditzel, L.Löwe, J.Stock, D.Bochtler, M.Bartunik, H. D.Huber, R. 1997 Structure of 20S proteasome from yeast at 24 Å resolution. Nature 386 463Google ScholarPubMed
Guo, F.Maurizi, M. R.Esser, L.Xia, D. 2002 Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP proteaseJ Biol Chem 277 46743CrossRefGoogle ScholarPubMed
Guo, F.Esser, L.Singh, S. K.Maurizi, M. R.Xia, D. 2002 Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone ClpAJ Biol Chem 277 46753CrossRefGoogle ScholarPubMed
Gur, E.Sauer, R. T. 2009 Degrons in protein substrates program the speed and operating efficiency of the AAA Lon proteolytic machineProc Natl Acad Sci USA 106 18503CrossRefGoogle ScholarPubMed
Hanna, J.Hathaway, N. A.Tone, Y.Crosas, B.Elsasser, S.Kirkpatrick, D. S.Leggett, D. S.Gygi, S. P.King, R. W.Finley, D. 2006 Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradationCell 127 99CrossRefGoogle ScholarPubMed
Hanson, P. I.Whiteheart, S. W. 2005 AAA+ proteins: have engine, will workNat Rev Mol Cell Biol 6 519CrossRefGoogle ScholarPubMed
Hasegawa, M.Fujiwara, H.Nonaka, T.Wakabayashi, K.Takahashi, H.Lee, V. M.-Y.Trojanowski, J. Q.Mann, D.Iwatsubo, T. 2002 Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesionsJ Biol Chem 277 49071CrossRefGoogle ScholarPubMed
Hendil, K. B.Khan, S.Tanaka, K. 1998 Simultaneous binding of PA28 and PA700 activators to 20 S proteasomesBiochem J 332 749CrossRefGoogle ScholarPubMed
Herman, C.Prakash, S.Lu, C. Z.Matouschek, A.Gross, C. A. 2003 Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsHMol Cell 11 659CrossRefGoogle ScholarPubMed
Herman, C.Thévenet, D.Bouloc, P.Walker, G. C.D’ari, R. 1998 Degradation of carboxy-terminal-tagged cytoplasmic proteins by the protease HflB (FtsH)Genes Dev 12 1348CrossRefGoogle Scholar
Hersch, G. L.Burton, R. E.Bolon, D. N.Baker, T. A.Sauer, R. T. 2005 Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machineCell 121 1017CrossRefGoogle ScholarPubMed
Hinnerwisch, J.Fenton, W. A.Furtak, K. J.Farr, G. W.Horwich, A. L. 2005 Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocationCell 121 1029CrossRefGoogle ScholarPubMed
Hochstrasser, M. 2006 Lingering mysteries of ubiquitin-chain assemblyCell 124 27CrossRefGoogle ScholarPubMed
Hoppe, T. 2005 Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit allTrends Biochem Sci 30 183CrossRefGoogle Scholar
Hoppe, T.Matuschewski, K.Rape, M.Schlenker, S.Ulrich, H. D.Jentsch, S. 2000 Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processingCell 102 577CrossRefGoogle ScholarPubMed
Hoskins, J. R.Kim, S. Y.Wickner, S. 2000 Substrate recognition by the ClpA chaperone component of ClpAP proteaseJ Biol Chem 275 35361CrossRefGoogle ScholarPubMed
Hoskins, J. R.Pak, M.Maurizi, M. R.Wickner, S. 1998 The role of the ClpA chaperone in proteolysis by ClpAPProc Natl Acad Sci USA 95 12135CrossRefGoogle ScholarPubMed
Hoskins, J. R.Singh, S. K.Maurizi, M. R.Wickner, S. 2000 Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAPProc Natl Acad Sci USA 97 8892CrossRefGoogle ScholarPubMed
Hoskins, J.Yanagihara, K.Mizuuchi, K.Wickner, S. 2002 ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequenceProc Natl Acad Sci USA 99 11037CrossRefGoogle ScholarPubMed
Hou, J. Y.Sauer, R. T.Baker, T. A. 2008 Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAPNat Struct Mol Biol 15 288CrossRefGoogle ScholarPubMed
Humbard, M. A.Miranda, H. V.Lim, J.-M.Krause, D. J.Pritz, J. R.Zhou, G.Chen, S.Wells, L.Maupin-Furlow, J. A. 2010 Ubiquitin-like small archaeal modifier proteins (SAMPs) in Nature 463 54CrossRefGoogle Scholar
Huang, S.Ratliff, K. S.Schwarz, M. P.Spenner, J. M.Matouschek, A. 1999 Mitochondria unfold precursor proteins by unraveling them from their N-terminiNat Struct Biol 6 1132Google ScholarPubMed
Huang, S.Murphy, S.Matouschek, A. 2000 Effect of the protein import machinery at the mitochondrial surface on precursor stabilityProc Natl Acad Sci USA 97 12991CrossRefGoogle ScholarPubMed
Husnjak, K.Elsasser, S.Zhang, N.Chen, X.Randles, L.Shi, Y.Hofmann, K.Walters, K. J.Finley, D.Dikic, I. 2008 Proteasome subunit Rpn13 is a novel ubiquitin receptorNature 453 481CrossRefGoogle ScholarPubMed
Imoto, T.Yamada, H.Ueda, T. 1986 Unfolding rates of globular proteins determined by kinetics of proteolysisJ Mol Biol 190 647CrossRefGoogle ScholarPubMed
Ishikawa, T.Beuron, F.Kessel, M.Wickner, S.Maurizi, M. R.Steven, A. C. 2001 Translocation pathway of protein substrates in ClpAP proteaseProc Natl Acad Sci USA 98 4328CrossRefGoogle ScholarPubMed
Ishikawa, T.Maurizi, M. R.Steven, A. C. 2004 The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP proteaseJ Struct Biol 146 180CrossRefGoogle ScholarPubMed
Ito, K.Akiyama, Y. 2005 Cellular functions, mechanism of action, and regulation of FtsH proteaseAnnu Rev Microbiol 59 211CrossRefGoogle ScholarPubMed
Iyer, L. M.Burroughs, A. M.Aravind, L. 2006 The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domainsGenome BiolCrossRefGoogle ScholarPubMed
Iyer, L. M.Burroughs, A. M.Aravind, L. 2008 Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitinationBiol DirectCrossRefGoogle ScholarPubMed
Iyer, L. M.Leipe, D. D.Koonin, E. V.Aravind, L. 2004 Evolutionary history and higher order classification of AAA+ ATPasesJ Struct Biol 146 11CrossRefGoogle ScholarPubMed
Jariel-Encontre, I.Bossis, G.Piechaczyk, M. 2008 Ubiquitin-independent degradation of proteins by the proteasomeBiochim Biophys Acta 1786 153Google ScholarPubMed
Jin, L.Williamson, A.Banerjee, S.Philipp, I.Rape, M. 2008 Mechanism of ubiquitin-chain formation by the human anaphase-promoting complexCell 133 570CrossRefGoogle ScholarPubMed
Johnston, J. A.Johnson, E. S.Waller, P. R.Varshavsky, A. 1995 Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathwayJ Biol Chem 270 8172CrossRefGoogle ScholarPubMed
Joshi, S. A.Hersch, G. L.Baker, T. A.Sauer, R. T. 2004 Communication between ClpX and ClpP during substrate processing and degradationNat Struct Mol Biol 11 404CrossRefGoogle ScholarPubMed
Kaganovich, D.Kopito, R.Frydman, J. 2008 Misfolded proteins partition between two distinct quality control compartmentsNature 454 1088CrossRefGoogle ScholarPubMed
Kalchman, M. A.Graham, R. K.Xia, G.Koide, H. B.Hodgson, J. G.Graham, K. C.Goldberg, Y. P.Gietz, R. D.Pickart, C. M.Hayden, M. R. 1996 Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzymeJ Biol Chem 271 19385CrossRefGoogle ScholarPubMed
Kaneko, T.Hamazaki, J.Iemura, S.-I.Sasaki, K.Furuyama, K.Natsume, T.Tanaka, K.Murata, S. 2009 Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperonesCell 137 914CrossRefGoogle ScholarPubMed
Karata, K.Inagawa, T.Wilkinson, A. J.Tatsuta, T.Ogura, T. 1999 Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsHJ Biol Chem 274 26225CrossRefGoogle ScholarPubMed
Keiler, K. C.Waller, P. R.Sauer, R. T. 1996 Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNAScience 271 990CrossRefGoogle ScholarPubMed
Kenniston, J. A.Baker, T. A.Fernandez, J. M.Sauer, R. T. 2003 Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machineCell 114 511CrossRefGoogle ScholarPubMed
Kenniston, J. A.Baker, T. A.Sauer, R. T. 2005 Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processingProc Natl Acad Sci USA 102 1390CrossRefGoogle ScholarPubMed
Kim, Y. I.Burton, R. E.Burton, B. M.Sauer, R. T.Baker, T. A. 2000 Dynamics of substrate denaturation and translocation by the ClpXP degradation machineMol Cell 5 639CrossRefGoogle ScholarPubMed
Kim, D. Y.Kim, K. K. 2003 Crystal structure of ClpX molecular chaperone from Helicobacter pyloriJ Biol Chem 278 50664CrossRefGoogle ScholarPubMed
Kim, I.MiRao, H. 2004 Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysisMol Biol Cell 15 3357CrossRefGoogle ScholarPubMed
Kim, Y. I.Levchenko, I.Fraczkowska, K.Woodruff, R. V.Sauer, R. T.Baker, T. A. 2001 Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidaseNat Struct Biol 8 230CrossRefGoogle ScholarPubMed
Kirstein, J.Hoffmann, A.Lilie, H.Schmidt, R.Rübsamen-Waigmann, H.Brötz-Oesterhelt, H.Mogk, A.Turgay, K. 2009 The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled proteaseEMBO Mol Med 1 37CrossRefGoogle Scholar
Kirstein, J.Molière, N.Dougan, D. A.Turgay, K. 2009 Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteasesNat Rev Microbiol 7 589CrossRefGoogle ScholarPubMed
Kirstein, J.Strahl, H.Molière, N.Hamoen, L. W.Turgay, K. 2008 Localization of general and regulatory proteolysis in Bacillus subtilis cellsMol Microbiol 70 682CrossRefGoogle ScholarPubMed
Koegl, M.Hoppe, T.Schlenker, S.Ulrich, H. D.Mayer, T. U.Jentsch, S. 1999 A novel ubiquitination factor, E4, is involved in multiubiquitin chain assemblyCell 96 635CrossRefGoogle ScholarPubMed
Koga, N.Kameda, T.Okazaki, K.-I.Takada, S. 2009 Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulationsProc Natl Acad Sci USA 106 18237CrossRefGoogle ScholarPubMed
Köhler, A.Cascio, P.Leggett, D. S.Woo, K. M.Goldberg, A. L.Finley, D. 2001 The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product releaseMol Cell 7 1143CrossRefGoogle ScholarPubMed
Kolygo, K.Ranjan, N.Kress, W.Striebel, F.Hollenstein, K.Neelsen, K.Steiner, M.Summer, H.Weber-Ban, E. 2009 Studying chaperone-proteases using a real-time approach based on FRETJ Struct Biol 168 267CrossRefGoogle ScholarPubMed
Koodathingal, P.Jaffe, N. E.Kraut, D. A.Prakash, S.Fishbain, S.Herman, C.Matouschek, A. 2009 ATP-dependent proteases differ substantially in their ability to unfold globular proteinsJ Biol Chem 284 18674CrossRefGoogle ScholarPubMed
Kress, W.Maglica, Z.Weber-Ban, E. 2009 Clp chaperone-proteases: structure and functionRes Microbiol 160 618CrossRefGoogle ScholarPubMed
Lam, Y. A.Lawson, T. G.Velayutham, M.Zweier, J. L.Pickart, C. M. 2002 A proteasomal ATPase subunit recognizes the polyubiquitin degradation signalNature 416 763CrossRefGoogle ScholarPubMed
Lam, Y. A.Demartino, G. N.Cohen, R. E. 1997 Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasomeNature 385 737CrossRefGoogle ScholarPubMed
Lee, B.-G.Park, E. Y.Lee, K.-E.Jeon, H.Sung, K. H.Paulsen, H.Rübsamen-Schaeff, H.Brötz-Oesterhelt, H.Song, H. K. 2010 Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanismNat Struct Mol Biol 17 471CrossRefGoogle ScholarPubMed
Lee, C.Schwartz, M. P.Prakash, S.Iwakura, M.Matouschek, A. 2001 ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signalMol Cell 7 627CrossRefGoogle ScholarPubMed
Leggett, D. S.Hanna, J.Borodovsky, A.Crosas, B.Schmidt, M.Baker, R. T.Walz, T.Ploegh, H.Finley, D. 2002 Multiple associated proteins regulate proteasome structure and functionMol Cell 10 495CrossRefGoogle ScholarPubMed
Lenzen, C. U.Steinmann, D.Whiteheart, S. W.Weis, W. I. 1998 Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion proteinCell 94 525CrossRefGoogle ScholarPubMed
Levchenko, I.Luo, L.Baker, T. A. 1995 Disassembly of the Mu transposase tetramer by the ClpX chaperoneGenes Dev 9 2399CrossRefGoogle ScholarPubMed
Levchenko, I.Seidel, M.Sauer, R. T.Baker, T. A. 2000 A specificity-enhancing factor for the ClpXP degradation machineScience 289 2354CrossRefGoogle ScholarPubMed
Li, W.Bengtson, M. H.Ulbrich, A.Matsuda, A.Reddy, V. A.Orth, A.Chanda, S. K.Batalov, S.Joazeiro, C. A. P. 2008 Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signalingPLoS ONE 3Google ScholarPubMed
Li, XDemartino, G. N 2009 Variably modulated gating of the 26S proteasome by ATP and polyubiquitinBiochem J 421 397CrossRefGoogle ScholarPubMed
Liu, C.-W.Li, X.Thompson, D.Wooding, K.Chang, T.-L.Tang, Z.Thomas, P. J.Demartino, G. N. 2006 ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasomeMol Cell 24 39CrossRefGoogle ScholarPubMed
Löwe, J.Stock, D.Jap, B.Zwickl, P.Baumeister, W.Huber, R. 1995 Crystal structure of the 20S proteasome from the archaeon Science 268 533CrossRefGoogle ScholarPubMed
Lupas, A. N.Martin, J. 2002 AAA proteinsCurr Opin Struct Biol 12 746CrossRefGoogle ScholarPubMed
Maillard, R. A.Chistol, G.Sen, M.Righini, M.Tan, J.Kaiser, C. M.Hodges, C.Martin, A.Bustamante, C. 2011 ClpX(P) generates mechanical force to unfold and translocate its protein substratesCell 145 459CrossRefGoogle ScholarPubMed
Martin, A.Baker, T. A.Sauer, R. T. 2005 Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machinesNature 437 1115CrossRefGoogle ScholarPubMed
Martin, A.Baker, T. A.Sauer, R. T. 2007 Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ proteaseMol Cell 27 41CrossRefGoogle Scholar
Martin, A.Baker, T. A.Sauer, R. T. 2008 Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfoldingNat Struct Mol Biol 15 1147CrossRefGoogle Scholar
Martin, A.Baker, T. A.Sauer, R. T. 2008 Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapesNat Struct Mol Biol 15 139CrossRefGoogle ScholarPubMed
Maurizi, M. R.Clark, W. P.Kim, S. H.Gottesman, S. 1990 Clp P represents a unique family of serine proteasesJ Biol Chem 265 12546Google ScholarPubMed
Mogk, A.Haslberger, T.Tessarz, P.Bukau, B. 2008 Common and specific mechanisms of AAA+ proteins involved in protein quality controlBiochem Soc Trans 36 120CrossRefGoogle ScholarPubMed
Mogk, A.Schmidt, R.Bukau, B. 2007 The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategiesTrends Cell Biol 17 165CrossRefGoogle ScholarPubMed
Morishima-Kawashima, M.Hasegawa, M.Takio, K.Suzuki, M.Titani, K.Ihara, Y. 1993 Ubiquitin is conjugated with amino-terminally processed tau in paired helical filamentsNeuron 10 1151CrossRefGoogle ScholarPubMed
Murakami, Y.Matsufuji, S.Kameji, T.Hayashi, S.Igarashi, K.Tamura, T.Tanaka, K.Ichihara, A. 1992 Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitinationNature 360 597CrossRefGoogle ScholarPubMed
Navon, A.Ciechanover, A. 2009 The 26 S proteasome: from basic mechanisms to drug targetingJ Biol Chem 284 33713CrossRefGoogle ScholarPubMed
Neher, S. B.Flynn, J. M.Sauer, R. T.Baker, T. A. 2003 Latent ClpX-recognition signals ensure LexA destruction after DNA damageGenes Dev 17 1084CrossRefGoogle ScholarPubMed
Neuwald, A. F.Aravind, L.Spouge, J. L.Koonin, E. V. 1999 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexesGenome Res 9 27Google ScholarPubMed
Nickell, S.Beck, F.Scheres, S. H. W.Korinek, A.Förster, F.Lasker, K.Mihalache, O.Sun, N.Nagy, I.Sali, A.Plitzko, J. M.Carazo, J.-M.Mann, M.Baumeister, W. 2009 Insights into the molecular architecture of the 26S proteasomeProc Natl Acad Sci USA 106 11943CrossRefGoogle ScholarPubMed
Nussbaum, A. K.Dick, T. P.Keilholz, W.Schirle, M.Stevanović, S.Dietz, K.Heinemeyer, W.Groll, M.Wolf, D. H.Huber, R.Rammensee, H. G.Schild, H. 1998 Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1Proc Natl Acad Sci USA 95 12504CrossRefGoogle ScholarPubMed
Ogura, T.Wilkinson, A. J. 2001 AAA+ superfamily ATPases: common structure–diverse functionGenes Cells 6 575CrossRefGoogle ScholarPubMed
Okuno, T.Yamada-Inagawa, T.Karata, K.Yamanaka, K.Ogura, T. 2004 Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsHJ Struct Biol 146 148CrossRefGoogle ScholarPubMed
Ortega, J.Singh, S. K.Ishikawa, T.Maurizi, M. R.Steven, A. C. 2000 Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXPMol Cell 6 1515CrossRefGoogle ScholarPubMed
Palombella, V. J.Rando, O. J.Goldberg, A. L.Maniatis, T. 1994 The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa BCell 78 773CrossRefGoogle ScholarPubMed
Park, C.Marqusee, S. 2005 Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand bindingNat Methods 2 207CrossRefGoogle ScholarPubMed
Park, E.Rho, Y. M.Koh, O.-J.Ahn, S. W.Seong, I. S.Song, J.-J.Bang, O.Seol, J. H.Wang, J.Eom, S. H.Chung, C. H. 2005 Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidaseJ Biol Chem 280 22892CrossRefGoogle ScholarPubMed
Pearce, M. J.Mintseris, J.Ferreyra, J.Gygi, S. P.Darwin, K. H. 2008 Ubiquitin-like protein involved in the proteasome pathway of Science 322 1104CrossRefGoogle ScholarPubMed
Peth, A.Besche, H. C.Goldberg, A. L. 2009 Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate openingMol Cell 36 794CrossRefGoogle ScholarPubMed
Peth, A.Uchiki, T.Goldberg, A. L. 2010 ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradationMol Cell 40 671CrossRefGoogle ScholarPubMed
Pickart, C. M. 2001 Mechanisms underlying ubiquitinationAnnu Rev Biochem 70 503CrossRefGoogle ScholarPubMed
Pickart, C. M. 2004 Back to the future with ubiquitinCell 116 181CrossRefGoogle ScholarPubMed
Pickart, C. M.Cohen, R. E. 2004 Proteasomes and their kin: proteases in the machine ageNat Rev Mol Cell Biol 5 177CrossRefGoogle ScholarPubMed
Pickart, C. M.Fushman, D. 2004 Polyubiquitin chains: polymeric protein signalsCurr Opin Chem Biol 8 610CrossRefGoogle ScholarPubMed
Prakash, S.Inobe, T.Hatch, A. J.Matouschek, A. 2009 Substrate selection by the proteasome during degradation of protein complexesNat Chem Biol 5 29CrossRefGoogle ScholarPubMed
Prakash, S.Matouschek, A. 2004 Protein unfolding in the cellTrends Biochem Sci 29 593CrossRefGoogle Scholar
Prakash, S.Tian, L.Ratliff, K. S.Lehotzky, R. E.Matouschek, A. 2004 An unstructured initiation site is required for efficient proteasome-mediated degradationNat Struct Mol Biol 11 830CrossRefGoogle ScholarPubMed
Rabl, J.Smith, D. M.Chang, S.-C.Goldberg, A. L.Cheng, Y. 2008 Mechanism of gate opening in the 20S proteasome by the proteasomal ATPasesMol Cell 30 360CrossRefGoogle ScholarPubMed
Rao, H.Sastry, A. 2002 Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23J Biol Chem 277 11691CrossRefGoogle ScholarPubMed
Ravid, T.Hochstrasser, M. 2008 Diversity of degradation signals in the ubiquitin-proteasome systemNat Rev Mol Cell Biol 9 679CrossRefGoogle ScholarPubMed
Reid, B. G.Fenton, W. A.Horwich, A. L.Weber-Ban, E. U. 2001 ClpA mediates directional translocation of substrate proteins into the ClpP proteaseProc Natl Acad Sci USA 98 3768CrossRefGoogle ScholarPubMed
Rock, K. L.Goldberg, A. L. 1999 Degradation of cell proteins and the generation of MHC class I-presented peptidesAnnu Rev Immunol 17 739CrossRefGoogle ScholarPubMed
Rohrwild, M.Pfeifer, G.Santarius, U.Müller, S. A.Huang, H. C.Engel, A.Baumeister, W.Goldberg, A. L. 1997 The ATP-dependent HslVU protease from is a four-ring structure resembling the proteasomeNat Struct Biol 4 133CrossRefGoogle ScholarPubMed
Ross, C. A.Poirier, M. A. 2004 Protein aggregation and neurodegenerative diseaseNat MedS10CrossRefGoogle ScholarPubMed
Rubin, D. M.Glickman, M. H.Larsen, C. N.Dhruvakumar, S.Finley, D. 1998 Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasomeEMBO J 17 4909CrossRefGoogle ScholarPubMed
Saeki, Y.Kudo, T.Sone, T.Kikuchi, Y.Yokosawa, H.Toh-E, A.Tanaka, K. 2009 Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasomeEMBO J 28 359CrossRefGoogle ScholarPubMed
Sakamoto, K. M.Kim, K. B.Kumagai, A.Mercurio, F.Crews, C. M.Deshaies, R. J. 2001 Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradationProc Natl Acad Sci USA 98 8554CrossRefGoogle ScholarPubMed
Sauer, R. T.Bolon, D. N.Burton, B. M.Burton, R. E.Flynn, J. M.Grant, R. A.Hersch, G. L.Joshi, S. A.Kenniston, J. A.Levchenko, I.Neher, S. B.Oakes, E. S. C.Siddiqui, S. M.Wah, D. A.Baker, T. A. 2004 Sculpting the proteome with AAA(+) proteases and disassembly machinesCell 119 9CrossRefGoogle ScholarPubMed
Schirmer, E. C.Glover, J. R.Singer, M. A.Lindquist, S. 1996 HSP100/Clp proteins: a common mechanism explains diverse functionsTrends Biochem Sci 21 289CrossRefGoogle ScholarPubMed
Schmidt, M.Lupas, A. N.Finley, D. 1999 Structure and mechanism of ATP-dependent proteasesCurr Opin Chem Biol 3 584CrossRefGoogle ScholarPubMed
Schrader, E. K.Harstad, K. G.Matouschek, A. 2009 Targeting proteins for degradationNat Chem Biol 5 815CrossRefGoogle ScholarPubMed
Schwartz, A. L.Ciechanover, A. 2009 Targeting proteins for destruction by the ubiquitin system: implications for human pathobiologyAnnu Rev Pharmacol Toxicol 49 73CrossRefGoogle ScholarPubMed
Shah, J. J.Orlowski, R. Z. 2009 Proteasome inhibitors in the treatment of multiple myelomaLeukemia 23 1964CrossRefGoogle ScholarPubMed
Siddiqui, S. M.Sauer, R. T.Baker, T. A. 2004 Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substratesGenes Dev 18 369CrossRefGoogle ScholarPubMed
Singh, S. K.Grimaud, R.Hoskins, J. R.Wickner, S.Maurizi, M. R. 2000 Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAPProc Natl Acad Sci USA 97 8898CrossRefGoogle ScholarPubMed
Singh, S. K.Rozycki, J.Ortega, J.Ishikawa, T.Steven, A. C.Maurizi, M. R. 2001 Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysisJ Biol Chem 276 29420CrossRefGoogle ScholarPubMed
Smith, C. K.Baker, T. A.Sauer, R. T. 1999 Lon and Clp family proteases and chaperones share homologous substrate-recognition domainsProc Natl Acad Sci USA 96 6678CrossRefGoogle ScholarPubMed
Smith, D. M.Benaroudj, N.Goldberg, A. 2006 Proteasomes and their associated ATPases: a destructive combinationJ Struct Biol 156 72CrossRefGoogle ScholarPubMed
Smith, D. M.Chang, S.-C.Park, S.Finley, D.Cheng, Y.Goldberg, A. L. 2007 Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entryMol Cell 27 731CrossRefGoogle ScholarPubMed
Smith, D. M.Kafri, G.Cheng, Y.Walz, T.Goldberg, A. L. 2005 ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteinsMol Cell 20 687CrossRefGoogle ScholarPubMed
Smith, D. M.Fraga, H.Reis, C.Kafri, G.Goldberg, A. L. 2011 ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycleCell 144 526CrossRefGoogle ScholarPubMed
Sousa, M. C.Trame, C. B.Tsuruta, H.Wilbanks, S. M.Reddy, V. S.Mckay, D. B. 2000 Crystal and solution structures of an HslUV protease-chaperone complexCell 103 633CrossRefGoogle ScholarPubMed
Striebel, F.Hunkeler, M.Summer, H.Weber-Ban, E. 2010 The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminusEMBO J 29 1262CrossRefGoogle ScholarPubMed
Striebel, F.Kress, W.Weber-Ban, E. 2009 Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotesCurr Opin Struct Biol 19 209CrossRefGoogle Scholar
Sun, L.Chen, Z. J. 2004 The novel functions of ubiquitination in signalingCurr Opin Cell Biol 16 119CrossRefGoogle ScholarPubMed
Suno, R.Niwa, H.Tsuchiya, D.Zhang, X.Yoshida, M.Morikawa, K. 2006 Structure of the whole cytosolic region of ATP-dependent protease FtsHMol Cell 22 575CrossRefGoogle ScholarPubMed
Takeuchi, J.Chen, H.Coffino, P. 2007 Proteasome substrate degradation requires association plus extended peptideEMBO J 26 123CrossRefGoogle ScholarPubMed
Tanahashi, N.Murakami, Y.Minami, Y.Shimbara, N.Hendil, K. B.Tanaka, K. 2000 Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysisJ Biol Chem 275 14336CrossRefGoogle ScholarPubMed
Thibault, G.Tsitrin, Y.Davidson, T.Gribun, A.Houry, W. A. 2006 Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperoneEMBO J 25 3367CrossRefGoogle ScholarPubMed
Thrower, J. S.Hoffman, L.Rechsteiner, M.Pickart, C. M. 2000 Recognition of the polyubiquitin proteolytic signalEMBO J 19 94CrossRefGoogle ScholarPubMed
Tian, L.Holmgren, R. A.Matouschek, A. 2005 A conserved processing mechanism regulates the activity of transcription factors and NF-kappaBNat Struct Mol Biol 12 1045CrossRefGoogle ScholarPubMed
Tomko, R. J.Funakoshi, M.Schneider, K.Wang, J.Hochstrasser, M. 2010 Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assemblyMol Cell 38 393CrossRefGoogle Scholar
Tomoyasu, T.Gamer, J.Bukau, B.Kanemori, M.Mori, H.Rutman, A. J.Oppenheim, A. B.Yura, T.Yamanaka, K.Niki, H. 1995 Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32EMBO J 14 2551Google ScholarPubMed
Tsilibaris, V.Maenhaut-Michel, G.Melderen, L. 2006 Biological roles of the Lon ATP-dependent proteaseRes Microbiol 157 701CrossRefGoogle ScholarPubMed
Unno, M.Mizushima, T.Morimoto, Y.Tomisugi, Y.Tanaka, K.Yasuoka, N.Tsukihara, T. 2002 The structure of the mammalian 20S proteasome at 2Structure 10 609CrossRefGoogle ScholarPubMed
Valle, M.Gillet, R.Kaur, S.Henne, A.Ramakrishnan, V.Frank, J. 2003 Visualizing tmRNA entry into a stalled ribosomeScience 300 127CrossRefGoogle ScholarPubMed
Varshavsky, A. 1992 The N-end ruleCell 69 725CrossRefGoogle ScholarPubMed
Varshavsky, A. 1996 The N-end rule: Functions, mysteries, usesProc Natl Acad Sci USA 93 12142CrossRefGoogle ScholarPubMed
Varshavsky, A. 2008 The N-end rule at atomic resolutionNat Struct Mol Biol1238CrossRefGoogle ScholarPubMed
Verma, R.Aravind, L.Oania, R.Mcdonald, W. H.Yates, J. R.Koonin, E. V.Deshaies, R. J. 2002 Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasomeScience 298 611CrossRefGoogle ScholarPubMed
Verma, R.Deshaies, R. J. 2000 A proteasome howdunit: the case of the missing signalCell 101 341CrossRefGoogle ScholarPubMed
Verma, R.Oania, R.Graumann, J.Deshaies, R. J. 2004 Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome systemCell 118 99CrossRefGoogle ScholarPubMed
Voges, D.Zwickl, P.Baumeister, W. 1999 The 26S proteasome: a molecular machine designed for controlled proteolysisAnnu Rev Biochem 68 1015CrossRefGoogle ScholarPubMed
Walz, J.Erdmann, A.Kania, M.Typke, D.Koster, A. J.Baumeister, W. 1998 26S proteasome structure revealed by three-dimensional electron microscopyJ Struct Biol 121 19CrossRefGoogle ScholarPubMed
Wang, J.Hartling, J. A.Flanagan, J. M. 1997 The structure of ClpP at 2.3 Cell 91 447CrossRefGoogle ScholarPubMed
Wang, J.Song, J. J.Franklin, M. C.Kamtekar, S.Rho, S. H.Seong, I. S.Lee, C. S.Chung, C. H.Eom, S. H. 2001 Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanismStructure 9 177CrossRefGoogle ScholarPubMed
Wang, J.Song, J. J.Seong, I. S.Franklin, M. C.Kamtekar, S.Eom, S. H.Chung, C. H. 2001 Nucleotide-dependent conformational changes in a protease-associated ATPase HsIUStructure 9 1107CrossRefGoogle Scholar
Wang, K. H.Roman-Hernandez, G.Grant, R. A.Sauer, R. T.Baker, T. A. 2008 The molecular basis of N-end rule recognitionMol Cell 32 406CrossRefGoogle ScholarPubMed
Wang, X.Herr, R. A.Chua, W.-J.Lybarger, L.Wiertz, E. J. H. J.Hansen, T. H. 2007 Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3J Cell Biol 177 613CrossRefGoogle ScholarPubMed
Wawrzynow, A.Wojtkowiak, D.Marszalek, J.Banecki, B.Jonsen, M.Graves, B.Georgopoulos, C.Zylicz, M. 1995 The ClpX heat-shock protein of EMBO J 14 1867Google Scholar
Weber-Ban, E. U.Reid, B. G.Miranker, A. D.Horwich, A. L. 1999 Global unfolding of a substrate protein by the Hsp100 chaperone ClpANature 401 90CrossRefGoogle ScholarPubMed
Weibezahn, J.Schlieker, C.Bukau, B.Mogk, A. 2003 Characterization of a trap mutant of the AAA+ chaperone ClpBJ Biol Chem 278 32608CrossRefGoogle ScholarPubMed
Weissman, A. M. 2001 Themes and variations on ubiquitylationNat Rev Mol Cell Biol 2 169CrossRefGoogle ScholarPubMed
Wenzel, T.Baumeister, W. 1995 Conformational constraints in protein degradation by the 20S proteasomeNat Struct Biol 3 199CrossRefGoogle Scholar
Whitby, F. G.Masters, E. I.Kramer, L.Knowlton, J. R.Yao, Y.Wang, C. C.Hill, C. P. 2000 Structural basis for the activation of 20S proteasomes by 11S regulatorsNature 408 115Google ScholarPubMed
Wickner, S.Maurizi, M. R.Gottesman, S. 1999 Posttranslational quality control: folding, refolding, and degrading proteinsScience 286 1888CrossRefGoogle ScholarPubMed
Wilcox, A. J.Choy, J.Bustamante, C.Matouschek, A. 2005 Effect of protein structure on mitochondrial importProc Natl Acad Sci USA 102 15435CrossRefGoogle ScholarPubMed
Wilkinson, C. R.Seeger, M.Hartmann-Petersen, R.Stone, M.Wallace, M.Semple, C.Gordon, C. 2001 Proteins containing the UBA domain are able to bind to multi-ubiquitin chainsNat Cell Biol 3 939CrossRefGoogle ScholarPubMed
Wilkinson, K. D. 1997 Regulation of ubiquitin-dependent processes by deubiquitinating enzymesFASEB J 11 1245CrossRefGoogle ScholarPubMed
Wilkinson, K. D. 2009 DUBs at a glanceJ Cell Sci 122 2325CrossRefGoogle ScholarPubMed
Winkler, J.Seybert, A.König, L.Pruggnaller, S.Haselmann, U.Sourjik, V.Weiss, M.Frangakis, A. S.Mogk, A.Bukau, B. 2010 Quantitative and spatio-temporal features of protein aggregation in and consequences on protein quality control and cellular ageingEMBO J 29 910CrossRefGoogle ScholarPubMed
Wolf, S.Nagy, I.Lupas, A.Pfeifer, G.Cejka, Z.Müller, S. A.Engel, A.Mot, R.Baumeister, W. 1998 Characterization of ARC, a divergent member of the AAA ATPase family from J Mol Biol 277 13CrossRefGoogle ScholarPubMed
Yakamavich, J. A.Baker, T. A.Sauer, R. T. 2008 Asymmetric nucleotide transactions of the HslUV proteaseJ Mol Biol 380 946CrossRefGoogle ScholarPubMed
Yamada-Inagawa, T.Okuno, T.Karata, K.Yamanaka, K.Ogura, T. 2003 Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysisJ Biol Chem 278 50182CrossRefGoogle ScholarPubMed
Yao, T.Cohen, R. E. 2002 A cryptic protease couples deubiquitination and degradation by the proteasomeNature 419 403CrossRefGoogle ScholarPubMed
Yao, T.Song, L.Demartino, G. N.Florens, L.Swanson, S. K.Washburn, M. P.Conaway, R. C.Conaway, J. W.Cohen, R. E. 2006 Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1Nat Cell Biol 8 994CrossRefGoogle ScholarPubMed
Zeth, K.Ravelli, R. B.Paal, K.Cusack, S.Bukau, B.Dougan, D. A. 2002 Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpANat Struct Biol 9 906CrossRefGoogle ScholarPubMed
Zhang, F.Tian, G.Zhang, P.Finley, D.Jeffrey, P. D.Shi, Y. 2009 Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschiiMol Cell 34 473CrossRefGoogle ScholarPubMed
Zhang, F.Zhang, P.Tian, G.Finley, D.Shi, Y. 2009 Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Mol Cell 34 485CrossRefGoogle Scholar
Zhang, M.Macdonald, A. I.Hoyt, M. A.Coffino, P. 2004 Proteasomes begin ornithine decarboxylase digestion at the C terminusJ Biol Chem 279 20959CrossRefGoogle ScholarPubMed
Zhang, M.Pickart, C. M.Coffino, P. 2003 Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrateEMBO J 22 1488CrossRefGoogle ScholarPubMed
Zhang, Z.Clawson, A.Realini, C.Jensen, C. C.Knowlton, J. R.Hill, C. P.Rechsteiner, M. 1998 Identification of an activation region in the proteasome activator REGalphaProc Natl Acad Sci USA 95 2807CrossRefGoogle ScholarPubMed
Zwickl, P.Ng, D.Woo, K. M.Klenk, H. P.Goldberg, A. L. 1999 An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomesJ Biol Chem 274 26008CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×