Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T04:00:17.816Z Has data issue: false hasContentIssue false

Chapter 2 - Visualization of Molecular Machines by Cryo-Electron Microscopy

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Introduction

It is difficult nowadays to provide an introduction into cryo-EM within the space of a book chapter, given the current plethora of different methods, and the fact that there are as yet no agreed-on standards in the field. In view of this situation, the best course for the author is to provide the reader with an illustrated introduction into important concepts and strategies. However, at the same time, the focus on the molecular machine invites an expansion of scope in the most relevant section (Section IV), which concerns itself with heterogeneity, and the challenge to obtain an inventory of conformational states of a molecular machine in a single scoop.

Preliminaries: Cryo-EM as a Technique of Visualization

The transmission electron microscope (TEM) produces images that are projections of a three-dimensional object. To be more precise, the projections are line integrals of the three-dimensional Coulomb potential distribution representing the object. (For all practical purposes, especially in the resolution range down to to ∼3 Å, the Coulomb potential distribution is identical to the electron density distribution “seen” by X-rays). Visualizing a molecular machine in three dimensions therefore entails the collection of multiple images showing the molecule in the same processing state (and hence, identical structure) but in different views. Thus the term “3D electron microscopy” is understood as a combination of two-dimensional imaging, following a particular data collection strategy, with three-dimensional reconstruction.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 20 - 37
Publisher: Cambridge University Press
Print publication year: 2011

References

Agirrezabala, XFrank, J 2009 Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-TuQ. Rev. Biophys 42 139CrossRefGoogle ScholarPubMed
Agirrezabala, XFrank, J 2010 From DNA to proteins via the ribosome: structural insights into the workings of the translational machineryHuman Genomics 4 226CrossRefGoogle Scholar
Agirrezabala, XLei, JBrunelle, J. LOrtiz-Meoz, R. F. 2008 Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosomeMol. Cell 32 190CrossRefGoogle ScholarPubMed
Al-Amoudi, ANorlen, L. P.Dubochet, J 2004 Cryo-electron microscopy of vitreous sections of native biological cells and tissuesJ. Struct. Biol 148 131CrossRefGoogle ScholarPubMed
Barnard, D.Lu, Z.Shaikh, T. R.Yassin, A.Mohamed, H.Agrawal, R.Lu, T.-M.Wagenknecht, T. 2009 Time resolved cryo-electron microscopy of ribosome assembly using microfluidic mixingMicrosc. Microan 15 942CrossRefGoogle Scholar
Berman, H. M.Burley, S. K.Chiu, WSali, AAdzhubei, ABourne, P. E.Bryant, S. H.Fidelis, KFrank, JAdam Godzik, AHenrick, KJoachimiak, AHeymann, BJones, DMarkley, J. L.Moult, JMontelione, G. T.Orengo, CRossmann, M. G.Rost, BSaibil, HSchwede, TStandley, D. M.Westbrook, J. D. 2006 Outcome of a workshop on archiving structural models of biological macromoleculesStructure 14 1211CrossRefGoogle ScholarPubMed
Berriman, JUnwin, N 1994 Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray dropletsUltramicroscopy 56 241CrossRefGoogle ScholarPubMed
Boehr, D. D.McElheny, DDyson, H. J.Wright, P. E 2006 The dynamic energy landscape of dihydrofolate reductase catalysisScience 313 1638CrossRefGoogle ScholarPubMed
Borland, Lvan Heel, M 1990 Classification of image data in conjugate representation spacesJ. Opt. Soc. Am A7 601CrossRefGoogle Scholar
Brueggeler, PMayer, E 1980 Complete vitrification in pure liquid water and dilute aqueous solutionsNature 288 569CrossRefGoogle Scholar
Cabrita, L. D.Hsu, S. T.Launay, HDobson, C. M.Christodoulou, J 2009 Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopyProc. Natl. Acad. Sci. USA 106 22239CrossRefGoogle ScholarPubMed
Chapman, M. S. 1995 Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron density functionActa Crystallogr69CrossRefGoogle Scholar
Connell, S. R.Takemoto, CWilson, D. N.Wang, HMurayama, KTerada, TShirouzu, MRost, MSchüler, MGiesebrecht, JDabrowski, MMielke, TFucini, PYokoyama, SSpahn, C. M. T. 2007 Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factorsMol. Cell 25 751CrossRefGoogle ScholarPubMed
Cornish, P. V.Ermolenko, D. N.Noller, H. F.Ha, T 2008 Spontaneous intersubunit rotation in single ribosomesMol Cell 30 578CrossRefGoogle ScholarPubMed
Crowther, R. A.Henderson, RSmith, J. M 1996 MRC image processing programsJ. Struct. Biol 116 9CrossRefGoogle ScholarPubMed
Picker, DoGPicker, Tiltsoftware tools to facilitate particle selection in single particle electron microscopyJ. Struct. Biol 166 205
Dubochet, JAdrian, MChang, JHomo, J.-C.Lepault, JMcDowell, A. WSchultz, P 1988 Cryo-electron microscopy of vitrified specimensQ. Rev. Biophys 21 129CrossRefGoogle ScholarPubMed
Dubochet, JLepault, JFreeman, Z. R.Berriman, J. AHomo, J.-C. 1982 Electron microscopy of frozen water and aqueous solutionsJ. Microsc 128 219CrossRefGoogle Scholar
Elad, NClare, D. K.Saibil, H. R.Orlova, E. V. 2008 Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projectionsJ. Struct. Biol 162 108CrossRefGoogle ScholarPubMed
Elmlund, HBaraznenok, V.Linder, T.Szilagyi, Z.Rofougaran, R.Hofer, A.Hebert, H.Lindahl, M.Gustafsson, C. M. 2009 Cryo-EM reveals promoter DNA binding and conformational flexibility of the general transcription factor TFIIDStructure 17 1442CrossRefGoogle ScholarPubMed
Elmlund, DDavis, RElmlund, H 2010 Ab initio structure determination from electron microscopic images of single molecules coexisting in different functional statesStructure 18 777CrossRefGoogle ScholarPubMed
Faruqi, A. R. 2009 Principles and prospects of direct high-resolution electron image acquisition with CMOS detectors at low energiesJ. Phys.: Condens. Matter 21Google ScholarPubMed
Fei, JKosuri, PMacDougall, D. D.Gonzalez, R. L. Jr 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMol. Cell 30 348CrossRefGoogle ScholarPubMed
Fischer, NKonevega, A. L.Wintermeyer, WRodnina, M. V.Stark, H. 2010 Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopyNature 466 329CrossRefGoogle ScholarPubMed
Frank, J 1990 Classification of macromolecular assemblies studied as single particlesQuart. Rev. Biophys 23CrossRefGoogle Scholar
Frank, J 1998 How the ribosome worksAmerican Scientist 86 428CrossRefGoogle Scholar
Frank, J 2006 Electron tomography – methods for three-dimensional visualization of structures in the cellNew YorkSpringer VerlagGoogle Scholar
Frank, J 2006 Three-dimensional electron microscopy of macromolecular assemblies – visualization of biological molecules in their native stateNew YorkOxford University PressCrossRefGoogle Scholar
Frank, J 2009 Single-particle reconstruction of biological macromolecules in electron microscopy – 30 yearsQuart. Rev. Biophys 42 139CrossRefGoogle ScholarPubMed
Frank, J 2010 The ribosome comes aliveIsraeli J. Chem 50 95CrossRefGoogle ScholarPubMed
Frank, JGonzalez, R 2010 Structure and dynamics of a processing Brownian motor: the translating ribosomeAnn. Rev. Biochem 79CrossRefGoogle Scholar
Frank, JRadermacher, MPenczek, PZhu, JLi, YLadjadj, MLeith, A 1996 SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fieldsJ. Struct. Biol 116 190CrossRefGoogle ScholarPubMed
Frederik, P. MStorms, M. H. 2005 Automated robotic preparation of vitrified samples for 2D and 3D cryo electron microscopyMicrosc. Today 13 32CrossRefGoogle Scholar
Fu, J.Gao, H.Frank, J. 2007 Unsupervised classification of single particles by cluster tracking in multi-dimensional spaceJ. Struct. Biol 157 226CrossRefGoogle ScholarPubMed
Fu, JKennedy, DMunro, J.B.Lei, JBlanchard, S. C.Frank, J 2009 The P-site tRNA reaches the P/E position through intermediate positionsJ. Biomol. Struct. Dyn 26 794Google Scholar
Gao, HFrank, J 2005 Molding atomic structures into intermediate-resolution cryo-EM density maps of ribosomal complexes using real-space refinementStructure 13 401CrossRefGoogle ScholarPubMed
Gao, HSengupta, JValle, MKorostelev, AEswar, NStagg, S. MVan Roey, PAgrawal, R. K.Harvey, S. C.Sali, AChapman, M. S.Frank, J 2003 Study of the structural dynamics of the 70S ribosome using real space refinementCell 113 789CrossRefGoogle ScholarPubMed
Glaeser, R. M.Downing, K. H.DeRosier, DChiu, WFrank, J 2007 Electron crystallography of biological macromoleculesNew YorkOxford University PressGoogle Scholar
Glaeser, R. M.Taylor, K. A. 1978 Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: reviewJ. Microsc 112 127CrossRefGoogle ScholarPubMed
Grassucci, R. ATaylor, D. JFrank, J 2007 Preparation of macromolecular complexes for cryo-electron microscopyNat. Protoc3239CrossRefGoogle ScholarPubMed
Grassucci, R.ATaylor, DFrank, J 2008 Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopesNat. Protoc 3 330CrossRefGoogle ScholarPubMed
Grigorieff, N 2007 FREALIGN: High-resolution refinement of single particle structuresJ. Struct. Biol 157 117CrossRefGoogle ScholarPubMed
Grubisic, IShokhirev, M. N.Orzechowski, MMiyashita, OTama, F 2010 Biased coarse-grained molecular dynamics simulation approach for flexible fitting of X-ray structure into cryo electron microscopy mapsJ. Struct. Biol 169 95CrossRefGoogle ScholarPubMed
Hall, R. J.Siridechadilok, BNogales, E 2007 Cross-correlation of common lines: a novel approach for single-particle reconstruction of a structure containing a flexible domainJ. Struct. Biol 159 474CrossRefGoogle ScholarPubMed
Halle, B 2004 Biomolecular cryocrystallography: structural changes during flash-coolingProc. Natl. Acad. Sci. USA 101 4793CrossRefGoogle ScholarPubMed
Hartl, F. U.Hayer-Hartl, M 2009 Converging concepts of protein folding andStruct. Mol. Biol 16 574CrossRefGoogle Scholar
Herman, G. T.Kalinowski, M 2007 Classification of heterogeneous electron microscopic projections into homogeneous subsetsUltramicroscopy 108 327CrossRefGoogle ScholarPubMed
Heymann, J. B.Cheng, NNewcomb, W. W.Trus, B. L.Brown, J. C.Steven, A. C. 2003 Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopyNat. Struct. Biol 10Google ScholarPubMed
Heymann, J. B.Conway, J. F.Steven, A. C. 2004 Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopyJ. Struct. Biol 147 291CrossRefGoogle ScholarPubMed
Horst, RBertelsen, E. B.Fiaux, JWider, GHorwich, A. L.Wüthrich, K 2005 Direct NMR observation of a substrate protein bound to the chaperonin GroELProc. Natl. Acad. Sci. USA 102 12748CrossRefGoogle ScholarPubMed
Hsieh, C.-E.Marko, MFrank, JMannella, C. A. 2002 Electron tomographic analysis of frozen-hydrated tissue sectionsJ. Struct. Biol 138 63CrossRefGoogle ScholarPubMed
Kelly, D. F.Abeyrathne, P. D.Dukovski, DWalz, T 2008 The affinity grid: a prefabricated EM grid for monolayer purificationJ. Mol. Biol 382 423CrossRefGoogle Scholar
Kelly, D. F.Dukovski, DWalz, T 2008 Monolayer purification: a rapid method for isolating protein complexes for single-particle electron microscopyProc. Natl. Acad. Sci. USA 105 4703CrossRefGoogle ScholarPubMed
Kelly, D. F.Dukovski, DWalz, T 2010 Strategy for the use of affinity grids to prepare non-His-tagged macromolecular complexes for single-particle electron microscopyJ. Mol. Biol 400 675CrossRefGoogle ScholarPubMed
Keramisanou, DBiris, NGelis, ISianidis, GKaramanou, SEconomou, AKalodimos, C. G 2006 Disorder-order folding transitions underlie catalysis in the helicase motor of SecANat. Struct. Mol. Biol 13 594CrossRefGoogle ScholarPubMed
Koster, A. J.Barcena, M 2006 Cryotomography: low-dose automated tomography of frozen-hydrated specimensElectron tomography – methods for three-dimensional visualization of structures in the cellFrank, J.New YorkSpringerGoogle Scholar
Lander, G. C.Stagg, S. M.Voss, N. R.Cheng, AFellmann, DPulokas, JYoshioka, CIrving, CMulder, ALau, P.-WLyumkis, DPotter, C. S.Carragher, B 2009 Appion: an integrated, database-driven pipeline to facilitate EM image processingJ. Struct. Biol 166 95CrossRefGoogle ScholarPubMed
Lange, O. F.Lakomek, N. A.Farès, CSchröder, G. F.Walter, K. FBecker, SMeiler, JGrubmüller, HGriesinger, Cde Groot, B. L. 2008 Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solutionScience 320 1471CrossRefGoogle ScholarPubMed
Langlois, R.Pallesen, J.Frank, J. 2011
Lawson, C. L.Baker, M. L.Best, CBi, CDougherty, MFeng, Pvan Ginkel, GDevkota, BLagerstedt, ILudtke, SNewman, R. H.Oldfield, T. J.Rees, ISahni, GSala, RVelankar, SWarren, JWestbrook, J. D.Henrisck, KKleywegt, G. J.Berman, H. MChiu, W 2011 EMDataBankorg: unified data resource for cryoEM 34Google Scholar
Lawson, C. L. 2010 Unified data resource for Cryo-EMMethods Enzymol 483 73CrossRefGoogle ScholarPubMed
Lebart, LMaurineau, AWarwick, K. M. 1984 Multivariate descriptive statistical analysisNew YorkJohn WileyGoogle Scholar
Liao, HFrank, J 2010 Definition and estimation of resolution in single-particle reconstructionsStructure 18 768CrossRefGoogle ScholarPubMed
Lindert, SStewart, P. L.Meiler, J 2009 Hybrid approaches: applying computational methods in cryo-electron microscopyCurr. Opin. Struct. Biol 19 218CrossRefGoogle ScholarPubMed
Lu, ZShaikh, T. R.Barnard, DMeng, XMohamed, HYassin, AMannella, C. A.Agrawal, R. K.Lu, T.-M.Wagenknecht, T 2009 Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopyJ. Struct. Biol 168 388CrossRefGoogle ScholarPubMed
Ludtke, S. J.Baker, M .LChen, D.-HSong, J.-L.Chuang, D. T.Wah Chiu, W 2008 backbone trace of GroEL from single particle electron cryomicroscopyStructure 16 441CrossRefGoogle ScholarPubMed
Ludtke, S. J.Baldwin, P. R.Chiu, W 1999 EMAN: semiautomated software for high-resolution single-particle reconstructionsJ. Struct. Biol 128 82CrossRefGoogle ScholarPubMed
Mulder, A. M.Yoshioka, CBeck, A. H.Bunner, A. E.Milligan, R. A.Potter, C. S.Carragher, BWilliamson, J. R. 2010 Visualizing ribosome assembly: a structural mechanism for 30S subunit assemblyScience 330 673CrossRefGoogle Scholar
Munro, J. B.Altman, R. B.O’Connor, N.Blanchard, S. C. 2007 Identification of two distinct hybrid state intermediates on the ribosomeMol. Cell 25 505CrossRefGoogle ScholarPubMed
Munro, J. B.Sanbonmatsu, K. Y.Spahn, C. M.Blanchard, S. C. 2009 Navigating the ribosome's metastable energy landscapeTrends Biochem. Sci 34 390CrossRefGoogle ScholarPubMed
Orzechowski, MTama, F 2008 Flexible fitting of high-resolution X-Ray structures into cryoelectron microscopy maps using biased molecular dynamics simulationsBiophys. J 95 5692CrossRefGoogle ScholarPubMed
Penczek, P. A.Frank, JSpahn, C. M. T. 2006 A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocationJ. Struct. Biol 154 184CrossRefGoogle ScholarPubMed
Penczek, PGrassucci, RFrank, J 1994 The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo electron microscopy of biological particlesUltramicroscopy 53 251CrossRefGoogle ScholarPubMed
Penczek, P. A.Renka, RSchomberg, H 2004 Gridding-based direct Fourier inversion of the three-dimensional ray transformJ. Opt. Soc. Amer A21 499CrossRefGoogle Scholar
Penczek, P. A.Zhu, JFrank, J 1996 A common-lines based method for determining orientations for N>3 particle projections simultaneouslyUltramicroscopy 63 205CrossRefGoogle ScholarPubMed
Radermacher, M 1988 The three-dimensional reconstruction of single particles from random and non-random tilt seriesJ. Electron Microsc. Tech 9 359CrossRefGoogle Scholar
Radermacher, M. 1991 Three-dimensional reconstructionof single particles in electron microscopyImage Analysis in BiologyHaeder, D.-PBoca RatonGoogle Scholar
Radermacher, MWagenknecht, TVerschoor, AFrank, J 1987 Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit ofEscherichia coli. J. Microsc 146 113Google Scholar
Reimer, LKohl, H 2008 Transmission electron microscopy: physics of image formation (5th EditionNew YorkSpringer VerlagGoogle Scholar
Religa, T. L.Sprangers, RKay, L. E. 2010 Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMRScience 328 98CrossRefGoogle ScholarPubMed
Rodnina, M. V.Daviter, TGromadski, KWintermeyer, W 2002 Structural dynamics of ribosomal RNA during decoding on the ribosomeBiochimie 84 745CrossRefGoogle ScholarPubMed
Scheres, S. H. 2010 Visualizing molecular machines in action: single particle analysis with structural variabilityRecent advances in electron cryomicroscopyLudtke, SteveAdvances in ProteinGoogle Scholar
Scheres, S. H.Gao, HValle, MHerman, G. T.Eggermont, P. P.Frank, JCarazo, J. M. 2007 Disentangling conformational states of macromolecules in 3D-EM through likelihood optimizationNat. Methods 4 27CrossRefGoogle ScholarPubMed
Scheres, S. H.Valle, MNunez, RSorzano, C. O.Marabini, RHerman, G. T.Carazo, J. M. 2005 Maximum-likelihood multi-reference refinement for electron microscopy imagesJ. Mol. Biol 348 139CrossRefGoogle ScholarPubMed
Schuwirth, B .S.Borovinskaya, M. A.Hau, C. W.Zhang, WVila-Sanjurjo, AHolton, J. M.Doudna Cate, J. H. 2005 Structures of the bacterial ribosome at 3.5 ÅScience 310CrossRefGoogle ScholarPubMed
Seidelt, BInnis, C. A.Wilson, D. N.Gartmann, MArmache, J.-P.Villa, ETrabuco, L. G.Becker, TMielke, TSchulten, KSteitz, T. A.Beckmann, R 2009 Structural insight into nascent polypeptide chain–mediated translational stallingScience 326 1412CrossRefGoogle ScholarPubMed
Shaikh, T. R.Gao, HBaxter, W. T.Asturias, F. J.Boisset, NLeith, AFrank, J 2008 SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographsNat. Protoc 3 1941CrossRefGoogle ScholarPubMed
Shaikh, T. R.Yassin, A.Lu, Z.Barnard, D.Meng, X.Mohamed, H.Lu, T.-M.Wagenknecht, T.Agrawal, R. K. 2010 Association of the ribosomal subunits as studied by time-resolved cryo-EMMicroscopy and Microanalysis 15Google Scholar
Shatsky, MHall, R. J.Nogales, EMalik, JBrenner, S 2010 Automated multi-model reconstruction from single-particle electron microscopy dataJ. Struct. Biol 170 98CrossRefGoogle ScholarPubMed
Singer, ACoifman, R. R.Sigworth, F. J.Chester, D. W.Shkolnisky, Y 2009 Detecting consistent common lines in cryo-EM by votingJ. Struct. Biol 169 312CrossRefGoogle ScholarPubMed
Sorzano, C. O.Marabini, RVelázquez-Muriel, JBilbao-Castro, J. R.Scheres, S. H.Carazo, J. M.Pascual-Montano, A 2004 XMIPP: a new generation of an open-source image processing package for electron microscopyJ. Struct. Biol 148 194CrossRefGoogle ScholarPubMed
Sorzano, C. O. SJonić, SEl-Bez, CCarazo, J. M.De Carloe, SThévenaz, PUnser, M 2009 A multiresolution approach to orientation assignment in 3D electron microscopy of single particlesJ. Struct. Biol 146 381CrossRefGoogle Scholar
Sorzano, C. O. S.Recarte, E.Alcorlo, M.Bilbao-Castro, J. R.San-Martín, C.Marabini, R.Carazo, J. M. 2009 Automatic particle selection from electron micrographs using machine learning techniquesJ. Struct. Biol 167 252CrossRefGoogle ScholarPubMed
Spence, J 2003 Experimental HREMNew YorkOxford University PressGoogle Scholar
Stagg, S. M.Lander, J. C.Pulokas, JFellmann, DCheng, AQuispe, J. D.Mallick, S. P.Avila, R. M.Carragher, BPotter, C.S 2006 Automated cryoEM data acquisition and analysis of 284 742 particles of GroELJ. Struct. Biol 155 470CrossRefGoogle Scholar
Stark, HLührmann, R 2006 Cryo-Electron microscopy of spliceosomal ComponentsAnnu. Rev. Biophys. Biomol. Struct 35 435CrossRefGoogle ScholarPubMed
Suloway, CPulokas, JFellmann, DCheng, AGuerra, FQuispe, JStagg, SPotter, C.S.Carragher, B 2005 Automated molecular microscopy: the new Leginon systemJ. Struct. Biol 151 41CrossRefGoogle ScholarPubMed
Tama, TMiyashita, OBrooks III, C. L. 2004 Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EMJ. Struct. Biol 147 315CrossRefGoogle ScholarPubMed
Taylor, K. A.Glaeser, R. M. 1976 Electron microscopy of frozen-hydrated biological specimensJ. Ultrastruct. Res 55 448CrossRefGoogle ScholarPubMed
Taylor, K. A.Glaeser, R. M. 2008 Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on the opportunities for the futureJ. Struct. Biol 163 214CrossRefGoogle Scholar
Trabucco, L. G.Villa, EMitra, KFrank, JSchulten, K 2008 Flexible fitting of atomic structures into electron microscopy maps using molecular dynamicsStructure 16 673CrossRefGoogle Scholar
Unwin, P. N.Henderson, R. 1975 Molecular structure determination by electron microscopy of unstained crystalline specimensJ. Mol. Biol 94 425CrossRefGoogle ScholarPubMed
Valle, MSengupta, JSwami, N. K.Grassucci, R. A.Burkhardt, NNierhaus, K. H.Agrawal, R. K.Frank, J 2002 Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation processEMBO J 21 3557CrossRefGoogle ScholarPubMed
Vallurupalli, PHansen, D. F.Kay, L. E. 2008 Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopyProc. Natl. Acad. Sci. USA 105 11766CrossRefGoogle ScholarPubMed
van Heel, M 1987 Angular reconstitution – a posteriori assignment of projection directions for 3-D reconstructionUltramicroscopy 21 111CrossRefGoogle Scholar
van Heel, MFrank, J 1981 Use of multivariate statistical analysis in analysing the images of biological macromoleculesUltramicroscopy 6 187Google ScholarPubMed
van Heel, MGowen, BMatadeen, ROrlova, E. L.Finn, RPape, TCohen, DStark, HSchmidt, RSchatz, MPatwardhan, A 2000 Single-particle electron cryo-microscopy: towards atomic resolutionQuart. Rev. Biophys 33 307CrossRefGoogle ScholarPubMed
van Heel, MHarauz, GOrlova, E. V.Schmidt, RSchatz, M 1996 A new generation of the IMAGIC image processing systemJ. Struct. Biol 116 17CrossRefGoogle ScholarPubMed
Velankar, SBest, CBeuth, BBoutselakis, C. H.Cobley, NSousa Da Silva, A. W.Dimitropoulos, DGolovin, AHirshberg, MJohn, MKrissinel, E. B.Newman, ROldfield, TPajon, APenkett, C. J.Pineda-Castillo, JSahni, GSen, SSlowley, RSuarez-Ureuena, ASwaaminathan, Jvan Ginkel, GVranken, W. F.Henrick, KKleywegt, G. J 2010 308
Villa, E.Sengupta, J.Trabuco, L. G.LeBarron, J.Baxter, W. T.Shaikh, T. R.Grassucci, R. A.Nissen, P.Ehrenberg, M.Schulten, K.Frank, J. 2009 Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysisProc Natl Acad Sci USA 106 1063CrossRefGoogle ScholarPubMed
Voss, N. RYoshioka, C. KRadermacher, MPotter, C. SCarragher, B 2009 DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopyJ. Struct. Biol 166 205CrossRefGoogle ScholarPubMed
Wang, LSigworth, F. J. 2006 Cryo-EM and single particlesPhysiology 21 13CrossRefGoogle ScholarPubMed
Wriggers, WChacón, P 2001 Modeling tricks and fitting techniques for multiresolution structuresStructure 9 779CrossRefGoogle ScholarPubMed
Yu, XJin, LZhou, Z. H. 2008 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy 453 415PubMed
Zhang, WDunkle, J. ACate, J. H. 2009 Structures of the ribosome in intermediate states of ratchetingScience 325 1014CrossRefGoogle ScholarPubMed
Zhang, WKirnmel, MSpahn, C. M. T.Penczek, P. A. 2008 Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysisStructure 16 1770CrossRefGoogle ScholarPubMed
Zhou, Z. H. 2008 Towards atomic resolution structural determination by single-particle cryo-electron microscopyCurr. Opin. Struct. Biol 18 218CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×