Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T05:28:19.480Z Has data issue: false hasContentIssue false

Chapter 1 - Single-Molecule FRET: Technique and Applications to the Studies of Molecular Machines

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Properties of Molecular Machines

Molecular machines are molecule-based devices, typically on the nanometer scale, that are capable of generating physical motions, for example, translocation, in response to certain inputs from the outside such as a chemical, electrical, or light stimulus. A large number of such sophisticated small devices are found in Nature, including the many biological motors discussed in this chapter, such as helicases and polymerases. These tiny nanomachines work in many ways just like an automobile on the highway, and many consume fuels on a molecular level, for instance, through the hydrolysis of adenosine-5ʹ-triphosphate (ATP) molecules, to power their motions on their tracks. As a result, when lacking the required fuel, these nanomachines tend to slow down and even stop, same as a motor vehicle would. In addition, these biological motors often move in a directional manner with variable speeds, and their processivity characteristics can be described by how far they move on their track of a molecular highway, often formed by a biopolymer such as a nucleic acid or actin filament, before taking off at a later time. Motions of individual components within these protein machines, for example, the ribosome which is discussed in great detail throughout this book, are often nicely coordinated like in any sophisticated, larger-scaled mechanical machines. In recent years, details of the composition, stoichiometry, and three-dimensional arrangement of components within many nanomachines have become available, thanks to the ever-increasing number of high-resolution crystal structures that have been solved, which have provided valuable insights into the mechanisms of how these biological motors accomplish their tasks. In the past two decades, researchers have also brought these machines under scrutiny by a number of novel and powerful methods with ultra-high sensitivity, watching their motions one molecule at a time, and have learned a great deal of previously hidden mechanistic details about their action and dynamics, such as the size of the fundamental steps taken by these motorized nanodevices. In a simplified view of the mechanism of action of biological motors, their strokes of physical translocation are powered by processes such as ATP hydrolysis through a modulation of their conformation, thus converting the chemical energy stored in the molecular fuel, in a stepwise fashion, into directed motions.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 4 - 19
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbondanzieri, E. ABokinsky, GRausch, J. WZhang, J. XLe Grice, S. F 2008 Dynamic binding orientations direct activity of HIV reverse transcriptaseNature 453 184CrossRefGoogle ScholarPubMed
Andersen, C. BBallut, LJohansen, J. SChamieh, HNielsen, K. H 2006 Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNAScience 313 1968CrossRefGoogle ScholarPubMed
Aregger, RKlostermeier, D 2009 The DEAD box helicase YxiN maintains a closed conformation during ATP hydrolysisBiochemistry 48 10679CrossRefGoogle ScholarPubMed
Atkinson, J. BGomperts, E. DKang, RLee, MArensman, R. M 1997 Prospective, randomized evaluation of the efficacy of fibrin sealant as a topical hemostatic agent at the cannulation site in neonates undergoing extracorporeal membrane oxygenationAm J Surg 173 479CrossRefGoogle ScholarPubMed
Benkovic, S. JValentine, A. MSalinas, F 2001 Replisome-mediated DNA replicationAnnu Rev Biochem 70 181CrossRefGoogle ScholarPubMed
Bianco, P. RBrewer, L. RCorzett, MBalhorn, RYeh, Y 2001 Processive translocation and DNA unwinding by individual RecBCD enzyme moleculesNature 409 374CrossRefGoogle ScholarPubMed
Blanchard, S. CGonzalez, R. LKim, H. DChu, SPuglisi, J. D 2004 tRNA selection and kinetic proofreading in translationNat Struct Mol Biol 11 1008CrossRefGoogle ScholarPubMed
Blanchard, S. CKim, H. DGonzalez, R. LPuglisi, J. DChu, S 2004 tRNA dynamics on the ribosome during translationProc Natl Acad Sci U S A 101 12893CrossRefGoogle ScholarPubMed
Blosser, T. RYang, J. GStone, M. DNarlikar, G. JZhuang, X 2009 Dynamics of nucleosome remodelling by individual ACF complexesNature 462 1022CrossRefGoogle ScholarPubMed
Carpousis, A. JGralla, J. D 1985 Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiationJ Mol Biol 183 165CrossRefGoogle ScholarPubMed
Cheng, WBrendza, K. MGauss, G. HKorolev, SWaksman, G 2002 The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activityProc Natl Acad Sci U S A 99 16006CrossRefGoogle Scholar
Cheng, WHsieh, JBrendza, K. MLohman, T. M 2001 E. coli Rep oligomers are required to initiate DNA unwinding in vitroJ Mol Biol 310 327CrossRefGoogle ScholarPubMed
Christian, T. DRomano, L. JRueda, D 2009 Single-molecule measurements of synthesis by DNA polymerase with base-pair resolutionProc Natl Acad Sci U S A 106 21109CrossRefGoogle ScholarPubMed
Cisse, IOkumus, BJoo, C 2007 Fueling protein DNA interactions inside porous nanocontainersProc Natl Acad Sci U S A 104 12646CrossRefGoogle ScholarPubMed
Clamme, J. PDeniz, A. A 2005 Three-color single-molecule fluorescence resonance energy transferChemphyschem 6 74CrossRefGoogle ScholarPubMed
Cornish, P. VErmolenko, D. NNoller, H. FHa, T 2008 Spontaneous intersubunit rotation in single ribosomesMol Cell 30 578CrossRefGoogle ScholarPubMed
Cornish, P. VErmolenko, D. NStaple, D. WHoang, LHickerson, 2009 Following movement of the L1 stalk between three functional states in single ribosomesProc Natl Acad Sci U S A 106 2571CrossRefGoogle ScholarPubMed
Cornish, P. VHa, T 2007 A survey of single-molecule techniques in chemical biologyACS Chem Biol 2 53CrossRefGoogle ScholarPubMed
Dohoney, K. MGelles, J 2001 Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease moleculesNature 409 370CrossRefGoogle ScholarPubMed
Edel, J. BEid, J. SMeller, A 2007 Accurate single molecule FRET efficiency determination for surface immobilized DNA using maximum likelihood calculated lifetimesJ Phys Chem B 111 2986CrossRefGoogle ScholarPubMed
Eid, JFehr, AGray, JLuong, KLyle, J 2009 Real-time DNA sequencing from single polymerase moleculesScience 323 133CrossRefGoogle ScholarPubMed
Fei, JBronson, J. EHofman, J. MSrinivas, R. LWiggins, C. H 2009 Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translationProc Natl Acad Sci U S A 106 15702CrossRefGoogle ScholarPubMed
Fei, JKosuri, PMacdougall, D. DGonzalez, R. L 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMol Cell 30 348CrossRefGoogle ScholarPubMed
Graneli, AYeykal, C. CPrasad, T. KGreene, E. C 2006 Organized arrays of individual DNA molecules tethered to supported lipid bilayersLangmuir 22 292CrossRefGoogle ScholarPubMed
Grashoff, CHoffman, B. DBrenner, M. DZhou, RParsons, M 2010 Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamicsNature 466 263CrossRefGoogle ScholarPubMed
Ha, TEnderle, TOgletree, D. FChemla, D. SSelvin, P. R 1996 Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptorProc Natl Acad Sci U S A 93 6264CrossRefGoogle Scholar
Ha, TRasnik, ICheng, WBabcock, H. PGauss, G. H 2002 Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicaseNature 419 638CrossRefGoogle ScholarPubMed
Hohng, SJoo, CHa, T 2004 Single-molecule three-color FRETBiophys J 87 1328CrossRefGoogle ScholarPubMed
Hohng, SZhou, RNahas, M. KYu, JSchulten, K 2007 Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junctionScience 318 279CrossRefGoogle ScholarPubMed
Joo, CBalci, HIshitsuka, YBuranachai, CHa, T 2008 Advances in single-molecule fluorescence methods for molecular biologyAnnu Rev Biochem 77 51CrossRefGoogle ScholarPubMed
Joo, CMckinney, S. ANakamura, MRasnik, IMyong, SReal-time observation of RecA filament dynamics with single monomer resolutionCell 126 515CrossRef
Kapanidis, A. NLee, N. KLaurence, T. ADoose, SMargeat, E 2004 Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single moleculesProc Natl Acad Sci U S A 101 8936CrossRefGoogle ScholarPubMed
Kapanidis, A. NMargeat, EHo, S. OKortkhonjia, EWeiss, S 2006 Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanismScience 314 1144CrossRefGoogle ScholarPubMed
Kapanidis, A. NMargeat, ELaurence, T. ADoose, SHo, S. O 2005 Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysisMol Cell 20 347CrossRefGoogle ScholarPubMed
Kim, J. LMorgenstern, K. AGriffith, J. PDwyer, M. DThomson, J. A 1998 Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwindingStructure 6 89CrossRefGoogle ScholarPubMed
Krummel, BChamberlin, M. J 1989 RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexesBiochemistry 28 7829CrossRefGoogle ScholarPubMed
Lee, JLee, SRagunathan, KJoo, CHa, T 2010 Single-Molecule Four-Color FRETAngew. Chem. Int. Ed 49 9922CrossRefGoogle ScholarPubMed
Lee, J. BHite, R. KHamdan, S. MXie, X. SRichardson, C. C 2006 DNA primase acts as a molecular brake in DNA replicationNature 439 621CrossRefGoogle ScholarPubMed
Lee, N. KKapanidis, A. NKoh, H. RKorlann, YHo, S. O 2007 Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distancesBiophys J 92 303CrossRefGoogle ScholarPubMed
Levene, M. JKorlach, JTurner, S. WFoquet, MCraighead, H. G 2003 Zero-mode waveguides for single-molecule analysis at high concentrationsScience 299 682CrossRefGoogle ScholarPubMed
Linden, M. HHartmann, R. KKlostermeier, D 2008 The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activityNucleic Acids Res 36 5800CrossRefGoogle ScholarPubMed
Liu, H. WZeng, YLandes, C. FKim, Y. JZhu, Y 2007 Insights on the role of nucleic acid/protein interactions in chaperoned nucleic acid rearrangements of HIV-1 reverse transcriptionProc Natl Acad Sci U S A 104 5261CrossRefGoogle ScholarPubMed
Liu, SAbbondanzieri, E. ARausch, J. WLe Grice, S. FZhuang, X 2008 Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substratesScience 322 1092CrossRefGoogle ScholarPubMed
Lohman, T. MFerrari, M. E 1994 Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativitiesAnnu Rev Biochem 63 527CrossRefGoogle ScholarPubMed
Margeat, EKapanidis, A. NTinnefeld, PWang, YMukhopadhyay, J 2006 Direct observation of abortive initiation and promoter escape within single immobilized transcription complexesBiophys J 90 1419CrossRefGoogle ScholarPubMed
Marians, K. J 2004 Mechanisms of replication fork restart in Escherichia coliPhilos Trans R Soc Lond B Biol Sci 359 71CrossRefGoogle ScholarPubMed
Michalet, XWeiss, SJager, M 2006 Single-molecule fluorescence studies of protein folding and conformational dynamicsChem Rev 106 1785CrossRefGoogle ScholarPubMed
Myong, SBruno, M. MPyle, A. MHa, T 2007 Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicaseScience513CrossRefGoogle ScholarPubMed
Myong, SCui, SCornish, P. VKirchhofer, AGack, M. U 2009 Cytosolic viral sensor RIG-I is a 5ʹ-triphosphate-dependent translocase on double-stranded RNAScience1070CrossRefGoogle ScholarPubMed
Myong, SRasnik, IJoo, CLohman, T. MHa, T 2005 Repetitive shuttling of a motor protein on DNANature 437 1321CrossRefGoogle Scholar
Niedziela-Majka, AChesnik, M. ATomko, E. JLohman, T. M 2007 Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitroJ Biol Chem 282 27076CrossRefGoogle Scholar
O’donnell, M 2006 Replisome architecture and dynamics in Escherichia coliJ Biol Chem 281 10653CrossRefGoogle ScholarPubMed
Orr, A. WHelmke, B. PBlackman, B. RSchwartz, M. A 2006 Mechanisms of mechanotransductionDev Cell 10 11CrossRefGoogle ScholarPubMed
Pal, MPonticelli, A. SLuse, D. S 2005 The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase IIMol Cell 19 101CrossRefGoogle ScholarPubMed
Pandey, MSyed, SDonmez, IPatel, G 2009 Coordinating DNA replication by means of priming loop and differential synthesis rateNature 462 940CrossRefGoogle ScholarPubMed
Park, JMyong, SNiedziela-Majka, ALee, K. S 2010 PcrA helicase dismantles RecA filaments by reeling in DNA in uniform stepsCell 142 544CrossRefGoogle ScholarPubMed
Rasnik, IMyong, SCheng, WLohman, T. MHa, T 2004 DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymesJ Mol Biol 336 395CrossRefGoogle Scholar
Rhoades, EGussakovsky, EHaran, G 2003 Watching proteins fold one molecule at a timeProc Natl Acad Sci U S A 100 3197CrossRefGoogle ScholarPubMed
Rothwell, P. JBerger, SKensch, OFelekyan, SAntonik, M 2003 Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase: primer/template complexesProc Natl Acad Sci U S A 100 1655CrossRefGoogle ScholarPubMed
Roy, RHohng, SHa, T 2008 A practical guide to single-molecule FRETNat Methods 5 507CrossRefGoogle ScholarPubMed
Roy, RKozlov, A. GLohman, T. MHa, T 2007 Dynamic structural rearrangements between DNA binding modes of E. coli SSB proteinJournal of Molecular Biology 369 1244CrossRefGoogle ScholarPubMed
Roy, RKozlov, A. GLohman, T. MHa, T 2009 SSB protein diffusion on single-stranded DNA stimulates RecA filament formationNature 461 1092CrossRefGoogle ScholarPubMed
Sandler, S. J 2000 Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12Genetics 155 487Google ScholarPubMed
Santoso, YJoyce, C. MPotapova, OLe Reste, LHohlbein, J 2010 Conformational transitions in DNA polymerase I revealed by single-molecule FRETProc Natl Acad Sci U S A 107 715CrossRefGoogle ScholarPubMed
Schuler, BLipman, E. AEaton, W. A 2002 Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopyNature 419 743CrossRefGoogle ScholarPubMed
Scott, J. FEisenberg, SBertsch, L. LKornberg, A 1977 A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replicationProc Natl Acad Sci U S A 74 193CrossRefGoogle ScholarPubMed
Selvin, P. RHa, T 2008 Single-molecule techniques: a laboratory manualCold Spring Harbor, NYCold Spring Harbor Laboratory PressGoogle Scholar
Sengoku, TNureki, ONakamura, AKobayashi, SYokoyama, S 2006 Structural basis for RNA unwinding by the DEAD-box protein Drosophila VasaCell 125 287CrossRefGoogle ScholarPubMed
Shi, X
Shi, XBasran, JSeward, H. EChilds, WBagshaw, C. R 2007 Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimersBiochemistry 46 14403CrossRefGoogle ScholarPubMed
Shi, XLim, JHa, T 2010 Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probeAnal Chem 82 6132CrossRefGoogle ScholarPubMed
Shroff, HReinhard, B. MSiu, MAgarwal, HSpakowitz, A 2005 Biocompatible force sensor with optical readout and dimensions of 6 nm3Nano Lett 5 1509CrossRefGoogle ScholarPubMed
Sorokina, MKoh, H. RPatel, S. SHa, T 2009 Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiationJ Am Chem Soc 131 9630CrossRefGoogle ScholarPubMed
Sternberg, S. HFei, JPrywes, NMcgrath, K. AGonzalez, R. L 2009 Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recyclingNat Struct Mol Biol 16 861CrossRefGoogle ScholarPubMed
Straney, D. CCrothers, D. M 1987 A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoterJ Mol Biol 193 267CrossRefGoogle ScholarPubMed
Tarsa, P. BBrau, R. RBarch, MFerrer, J. MFreyzon, Y 2007 Detecting force-induced molecular transitions with fluorescence resonant energy transferAngew Chem Int Ed Engl 46 1999CrossRefGoogle ScholarPubMed
Theissen, BKarow, A. RKohler, JGubaev, AKlostermeier, D 2008 Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicaseProc Natl Acad Sci U S A 105 548CrossRefGoogle Scholar
Uemura, SAitken, C. EKorlach, JFlusberg, B. ATurner, S. W 2010 Real-time tRNA transit on single translating ribosomes at codon resolutionNature 464 1012CrossRefGoogle ScholarPubMed
Velankar, S. SSoultanas, PDillingham, M. SSubramanya, H. SWigley, D. B 1999 Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanismCell 97 75CrossRefGoogle ScholarPubMed
Yildiz, AForkey, J. NMckinney, S. AHa, TGoldman, Y. E 2003 Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localizationScience2061CrossRefGoogle ScholarPubMed
Yodh, J. GStevens, B. CKanagaraj, RJanscak, PHa, T 2009 BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiationEMBO J 28 405CrossRefGoogle ScholarPubMed
Zhuang, XBartley, L. EBabcock, H. PRussell, RHa, T 2000 A single-molecule study of RNA catalysis and foldingScience 288 2048CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×