Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T03:28:21.013Z Has data issue: false hasContentIssue false

Chapter 4 - Exploring the Functional Landscape of Biomolecular Machines via Elastic Network Normal Mode Analysis

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Proteins fold into unique three-dimensional structures predefined by their specific amino acid sequences (Brooks et al. 1998). However, proteins are not static and in their “folded state”; they can interconvert between multiple conformations as a result of thermal energy (Frauenfelder et al. 1988). In fact, protein motions display a hierarchy of timescales, with side-chain fluctuations occurring in the pico- to nanosecond timescale range whereas large-scale domain motions occur in the micro- to millisecond range or slower (Henzler-Wildman et al. 2007). Of these motions, slow-timescale (i.e., ms–μs range), large-amplitude collective motions between a relatively small number of states are of particular interest because they are linked to protein functions such as in enzyme catalysis, drug binding, signal transduction, immune response, protein folding, and protein-protein interactions (Henzler-Wildman and Kern 2007). Large-amplitude conformational changes in biomolecules are often associated with the binding or release of ligands. X-ray crystallography and NMR experiments provide crucial structural information on the conformation of the biomolecule before and after the conformation changes but reveal less about the transition dynamics between two end structures. Moreover, because proteins can sample an ensemble of conformations around the average structure, a complete understanding of protein dynamics requires the knowledge of the multi-dimensional free-energy landscape (functional landscape) that defines the relative probabilities of thermally accessible conformational states and the free-energy barriers between them. This crucial information about the system can be obtained from molecular dynamics (MD) simulations that can pinpoint the precise position and energy of each atom at any instant in time for a single structurally well-resolved protein molecule. Thus molecular dynamics simulations can connect structure and function through a wide range of thermally accessible states, and they have become an important tool for investigating the dynamics of biological molecules (Karplus and McCammon 2002).

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 59 - 77
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agirrezabala, XLei, J.Brunelle, J. LOrtiz-Meoz, R. FGreen, R.Frank, J. 2008 Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosomeMol. Cell 32 190CrossRefGoogle ScholarPubMed
Agrawal, R. K.Heagle, A. B.Penczek, P.Grassucci, R. A.Frank, J. 1999 EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosomeNat. Struct. Biol 6 643CrossRefGoogle ScholarPubMed
Agrawal, R. K.Penczek, P.Grassucci, R. ABurkhardt, NNierhaus, K. HFrank, J. 1999 Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopyJ. Biol. Chem 274 8723CrossRefGoogle ScholarPubMed
Arora, KBrooks, C. L. 2007 Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanismProc. Natl. Acad. Sci. USA 104 18496CrossRefGoogle ScholarPubMed
Arora, K.Brooks, C. L. 2009 Functionally Important Conformations of the Met20 Loop in Dihydrofolate Reductase are Populated by Rapid Thermal FluctuationsJ. Am. Chem. Soc 131 5642CrossRefGoogle ScholarPubMed
Atilgan, ADurell, S.Jernigan, R.Demirel, MKeskin, O.Bahar, I. 2001 Anisotropy of fluctuation dynamics of proteins with an elastic network modelBiophys. J 80 505CrossRefGoogle ScholarPubMed
Ban, N.Nissen, P.Hansen, J.Moore, P. B.Steitz, T. A. 2000 The complete atomic structure of the large ribosomal subunit at 2.4 Å resolutionScience 289 905CrossRefGoogle ScholarPubMed
Beckstein, O.Denning, E. J.Perilla, J. RWoolf, T. B 2009 Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open-closed transitionsJ. Mol. Biol 394 160CrossRefGoogle ScholarPubMed
Berg, J. M.Tymoczko, J. L.Stryer, L. 2006 BiochemistryNew YorkW. H. Freeman and CompanyGoogle Scholar
Bolhuis, P. G.Chandler, D.Dellago, C.Geissler, P. L 2002 Transition path sampling: throwing ropes over rough mountain passes, in the darkAnn. Rev. Phys. Chem 53 291CrossRefGoogle Scholar
Brooks, B.Janezic, D.Karplus, M. 1995 Harmonic-analysis of large systems. 1. MethodologyJ. Comput. Chem 16 1522CrossRefGoogle Scholar
Brooks, B.Karplus, M. 1985 Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozymeProc. Natl. Acad. Sci. USA 82 4995CrossRefGoogle ScholarPubMed
Brooks, C. L.Gruebele, M.Onuchic, J. N.Wolynes, P. G. 1998 Chemical physics of protein foldingProc. Natl. Acad. Sci. USA 95 11037CrossRefGoogle ScholarPubMed
Canady, M. A.Tihova, M.Hanzlik, T. N.Johnson, J. E.Yeager, M. 2000 Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV)J. Mol. Biol 299 573CrossRefGoogle Scholar
Caspar, D.Klug, A. 1962 Physical principles in the construction of regular virusesCold Spring Harb Symp Quant Biol 27 1CrossRefGoogle ScholarPubMed
Cavasotto, C. N.Kovacs, J. A.Abagyan, R. A. 2005 Representing Receptor Flexibility in Ligand Docking through Relevant Normal ModesJ. Am. Chem. Soc 127 9632CrossRefGoogle ScholarPubMed
Chacon, P.Tama, F.Wriggers, W. 2003 Mega-Dalton biomolecular motion captured from electron microscopy reconstructionsJ. Mol. Biol 326 485CrossRefGoogle ScholarPubMed
Chu, J.-W.Trout, B. L.Brooks, B. R. 2003 A super-linear minimzation scheme for the nudged elastic band methodJ. Chem. Phys 119 12708CrossRefGoogle Scholar
Chu, J.-W.Voth, G. A. 2007 Coarse-grained free energy functions for studying protein conformational changes: a double-well network modelBiophys. J 93 3860CrossRefGoogle ScholarPubMed
Conway, J. F.Duda, R. L.Cheng, N.Hendrix, R. W.Steven, A. C. 1995 Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 systemJ. Mol. Biol 253 86CrossRefGoogle ScholarPubMed
Conway, J. F.Wikoff, W. R.Cheng, N.Duda, R. L.Hendrix, R. W.Johnson, J. E.Steven, A. C. 2001 Virus maturation involving large subunit rotations and local refoldingScience 292 744CrossRefGoogle ScholarPubMed
Cornish, P. V.Ermolenko, D. N.Noller, H. F.Ha, T. 2008 Spontaneous intersubunit rotation in single ribosomesMol. Cell 30 578CrossRefGoogle ScholarPubMed
Crick, F.Waton, J. 1956 Structure of small virusesNature 177 473CrossRefGoogle ScholarPubMed
Cui, Q.Li, G.Ma, J.Karplus, M. 2004 A normal mode analysis of structural plasticity in the biomolecular motor F-1-ATPaseJ. Mol. Biol 340 345CrossRefGoogle ScholarPubMed
Dahnke, T.Shi, Z.Yan, H.Jiang, R. T.Tsai, M. D. 1992 Mechanism of adenylate kinase. Structural and functional roles of the conserved arginine-97 and arginine-132Biochemistry 31 6318CrossRefGoogle ScholarPubMed
Delarue, M.Sanejouand, Y.-H. 2002 Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network modelJ. Mol. Biol 320 1011CrossRefGoogle ScholarPubMed
Doruker, P.Jernigan, R. L.Bahar, I. 2002 Dynamics of large proteins through hierarchial levels of coarse-grained structuresJ. Comput. Chem 23 119CrossRefGoogle Scholar
Duda, R. L. 1998 Protein chainmail: catenated protein in viral capsidsCell 94 55CrossRefGoogle ScholarPubMed
Duda, R. L.Hempel, J.Michel, H.Shabanowitz, J.Hunt, D.Hendrix, R. W. 1995 Structural transitions during bacteriophage HK97 head assemblyJ. Mol. Biol 247 618CrossRefGoogle ScholarPubMed
Duda, R. L.Martincic, K.Hendrix, R. W. 1995 Genetic basis of bacteriophage HK97 prohead assemblyJ. Mol. Biol 247 636CrossRefGoogle ScholarPubMed
Duong, T.Zakrzewska, K. 1997 Calculation and analysis of low frequency normal modes for DNAJ. Comput. Chem 18 7963.0.CO;2-N>CrossRefGoogle Scholar
Duong, T.Zakrzewska, K. 1998 Sequence specificity of bacteriophage 434 repressor-operator complexationJ. Mol. Biol 280 31CrossRefGoogle ScholarPubMed
Enemark, E. J.Joshua-Tor, L. 2006 Mechanism of DNA translocation in a replicative hexameric helicaseNature 442 270CrossRefGoogle Scholar
Ermolenko, D. N.Majumdar, Z. K.Hickerson, R. P.Spiegel, P. C.Clegg, R. M.Noller, H. F. 2007 Observation of intersubunit movement of the ribosome in solution using FRETJ. Mol. Biol 370 530CrossRefGoogle ScholarPubMed
Erzberger, J. P.Berger, J. M. 2006 Evolutionary relationships and structural mechanisms of AAA+ proteinsAnn. Rev. Biophys. Biomol. Struct 35 93CrossRefGoogle ScholarPubMed
Fei, J.Bronson, J. E.Hofman, J. M.Srinivas, R. L.Wiggins, C. H.Gonzalez, R. L 2009 Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translationProc. Natl. Acad. Sci. USA 106 15702CrossRefGoogle ScholarPubMed
Fei, J.Kosuri, P.MacDougall, D. D.Gonzalez, R. L. 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMol. Cell 30 348CrossRefGoogle ScholarPubMed
Feng, Y.Yang, L.Kloczkowski, A.Jernigan, R. L. 2009 The energy profiles of atomic conformational transition intermediates of adenylate kinaseProteins 77 551CrossRefGoogle ScholarPubMed
Fouts, E. T.Yu, X.Egelman, E. HBotchan, M. R 1999 Biochemical and electron microscopic image analysis of the hexameric E1 helicaseJ. Biol. Chem 274 4447CrossRefGoogle ScholarPubMed
Frank, J.Agrawal, R. K. 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, J.Gonzalez, R. L. 2010 Structure and Dynamics of a Processive Brownian Motor: The Translating RibosomeAnnu. Rev. Biochem 79 381CrossRefGoogle ScholarPubMed
Frauenfelder, H.Parak, F.Young, R. D. 1988 Conformational substates in proteinsAnnu. Rev. Biophys. Biophys. Chem 17 451CrossRefGoogle ScholarPubMed
Freddolino, P. L.Arkhipov, A. S.Larson, S. B.McPherson, A.Schulten, K. 2006 Molecular dynamics simulations of the complete satellite tobacco mosaic virusStructure 14 437CrossRefGoogle ScholarPubMed
Freddolino, P. L.Liu, F.Gruebele, M.Schulten, K. 2008 Ten-microsecond molecular dynamics simulation of a fast-folding WW domainBiophys. J 94 L75CrossRefGoogle ScholarPubMed
Gai, D.Zhao, R.Li, D.Finkielstein, C. V.Chen, X. S. 2004 Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigenCell 119 47CrossRefGoogle ScholarPubMed
Gan, L.Conway, J. F.Firek, B. A.Cheng, N.Hendrix, R. W.Steven, A. C.Johnson, J. E.Duda, R. L. 2004 Control of crosslinking by quaternary structure changes during bacteriophage HK97 maturationMol. Cell 14 559CrossRefGoogle ScholarPubMed
Garcea, R. L.Gissmann, L. 2004 Virus-like particles as vaccines and vessels for the delivery of small moleculesCurr. Opin. Biotech 15 513CrossRefGoogle ScholarPubMed
Gertsman, I.Gan, L.Guttman, M.Lee, K.Speir, J. A.Duda, R. L.Hendrix, R. W.Komives, E. A.Johnson, J. E. 2009 An unexpected twist in viral capsid maturationNature 458 646CrossRefGoogle ScholarPubMed
Go, N.Noguti, T.Nishikawa, T. 1983 Dynamics of a small globular proteins in terms of low frequency vibrational modesProc. Natl. Acad. Sci. USA 80 3696CrossRefGoogle ScholarPubMed
Goldstein, H. 1950 Classical MechanicsReading, MA, Addison-WesleyGoogle Scholar
Gomez-Lorenzo, M. G.Spahn, C. M.Agrawal, R. K.Grassucci, R. A.Penczek, P.Chakraburtty, K.Ballesta, J. P.Lavandera, J. L.Garcia-Bustos, J. F.Frank, J. 2000 Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolutionEMBO J 19 2710CrossRefGoogle ScholarPubMed
Hanson, J.Duderstadt, K.Watkins, L.Bhattacharyya, A.Brokaw, J.Chu, J.Yang, H. 2007 Illuminating the mechanistic roles of enzyme conformational dynamicsProc. Natl. Acad. Sci. U S A 104 18055CrossRefGoogle ScholarPubMed
Harms, J.Schluenzen, F.Zarivach, R.Bashan, A.Gat, S.Agmon, I.Bartels, H.Franceschi, F.Yonath, A. 2001 High resolution structure of the large ribosomal subunit from a mesophilic eubacteriumCell 107 679CrossRefGoogle ScholarPubMed
Helgstrand, C.Wikoff, W. R.Duda, R. L.Hendrix, R. W.Johnson, J. E.Liljas, L. 2003 The refined structure of a protein catenane: the HK97 bacteriophage capsid at 3.44 Å resolutionJ. Mol. Biol 334 885CrossRefGoogle ScholarPubMed
Henzler-Wildman, K.Kern, D. 2007 Dynamic personalities of proteinsNature 450 964CrossRefGoogle ScholarPubMed
Henzler-Wildman, K.Thai, V.Lei, M.Ott, M.Vendruscolo, P. G.Fenn, T.Pozharski, E.Venkatramani, R.Pedersen, G. A.Karplus, M.Hübner, C.Kern, D. 2007 Intrinsic motions along an enzymatic reaction trajectoryNature 450 838CrossRefGoogle ScholarPubMed
Henzler-Wildman, K. A.Lei, M.Thai, V.Kerns, S. JKarplus, M.Kern, D. 2007 A hierarchy of timescales in protein dynamics is linked to enzyme catalysisNature 450 913CrossRefGoogle ScholarPubMed
Hinsen, K 1998 Analysis of domain motions by approximate normal mode calculationsProteins 33 4173.0.CO;2-8>CrossRefGoogle ScholarPubMed
Jensen, M. O.Borhani, D. W.Lindorff-Larsen, K.Maragakis, P.Jogini, V.Eastwood, M. P.Dror, R. O.Shaw, D. E. 2010 Principles of conduction and hydrophobic gating in K+ channelsProc Natl Acad Sci U S A 107 5833CrossRefGoogle ScholarPubMed
Jiang, W.Li, Z.Zhang, Z.Baker, M. L.Prevelige, P. E.Chiu, W. 2003 Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutionsNat. Struc. Biol 10 131CrossRefGoogle ScholarPubMed
Karplus, M.McCammon, J. A. 2002 Molecular dynamics simulations of biomoleculesNat. Struct. Biol 9 646CrossRefGoogle ScholarPubMed
Khavrutskii, I. V.Arora, K.Brooks, C. L. 2006 Harmonic Fourier beads method for studying rare events on rugged energy surfacesJ. Chem. Phys 125 174108CrossRefGoogle ScholarPubMed
Kidera, A.Go, N. 1990 Refinement of protein dynamic structure: normal mode refinementProc. Natl. Acad. Sci. USA 87 3718CrossRefGoogle ScholarPubMed
Kidera, A.Go, N. 1992 Normal mode refinement: crystallographic refinement of protein dynamic structure. 1. Theory and test by simulated diffraction dataJ. Mol. Biol 225 457CrossRefGoogle Scholar
Korkut, A.Hendrickson, W. A. 2009 Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinaseProc. Natl. Acad. Sci. USA 106 15673CrossRefGoogle ScholarPubMed
Kuhn, R. JZhang, W.Rossmann, M. G.Pletnev, S. V.Corver, J.Lenches, E.Jones, C. T.Mukhopadhyay, S.Chipman, P. R.Strauss, E. G.Baker, T. S.Strauss, J. H. 2002 Structure of dengue virus: implications for flavivirus organization, maturation, and fusionCell 108 717CrossRefGoogle ScholarPubMed
Lata, R.Conway, J.Cheng, N.Duda, R.Hendrix, R. 2000 Maturation dynamics of a viral capsid: visualization of transitional intermediate statesCell 100 253CrossRefGoogle ScholarPubMed
Levitt, M.Sander, C.Stern, P. S. 1985 Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozymeJ. Mol. Biol 181 423CrossRefGoogle ScholarPubMed
Lewis, J. K.Bothner, B.Smith, T. J.Siuzdak, G. 1998 Antiviral agent blocks breathing of the common cold virusProc. Natl. Acad. Sci. U S A 95 6774CrossRefGoogle ScholarPubMed
Li, D.Zhao, R.Lilyestrom, W.Gai, D.Zhang, R.DeCaprio, J. A.Fanning, E.Jochimiak, A.Szakonyi, G.Chen, X. S. 2003 Structure of the replicative helicase of the oncoprotein SV40 large tumour antigenNature 423 512CrossRefGoogle ScholarPubMed
Li, G.Cui, Q. 2002 A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPaseBiophys. J 83 2457CrossRefGoogle Scholar
Liu, H.Shi, Y.Chen, X. S.Warshel, A. 2009 Simulating the electrostatic guidance of the vectorial translocations in hexameric helicases and translocasesProc. Natl. Acad. Sci. USA 106 7449CrossRefGoogle ScholarPubMed
Lou, H.Cukier, R. I. 2006 Molecular dynamics of apo-adenylate kinase: a distance replica exchange method for the free energy of conformational fluctuationsJ. Phys. Chem. B 110 24121CrossRefGoogle ScholarPubMed
Lou, H.Cukier, R. I. 2006 Molecular dynamics of apo-adenylate kinase: a principal component analysisJ. Phys. Chem. B 110 12796CrossRefGoogle ScholarPubMed
Ma, J. 2005 Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexesStructure 13 373CrossRefGoogle ScholarPubMed
Ma, J.Karplus, M. 1997 Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysisJ. Mol. Biol 274 114CrossRefGoogle ScholarPubMed
Maragakis, P.Karplus, M. 2005 Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinaseJ. Mol. Biol 352 807CrossRefGoogle ScholarPubMed
Maragakis, P.Lindorff-Larsen, K.Eastwood, M. P.Dror, R. O.Klepeis, J. LArkin, I. T.Jensen, M.Xu, H.Trbovic, N. 2008 Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteinsJ. Phys. Chem. B 112 6155CrossRefGoogle ScholarPubMed
Marques, O.Sanejouand, Y. 1995 Hinge-bending motion in citrate synthase arising from normal mode calculationsProteins 23 557CrossRefGoogle ScholarPubMed
Miyashita, O.Onuchic, J. N.Wolynes, P. G. 2003 Non-linear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteinsProc. Natl. Acad. Sci. USA 100 12570CrossRefGoogle Scholar
Miyashita, O.Wolynes, P. G.Onuchic, J. N. 2005 Simple energy landscape model for the kinetics of functional transitions in proteinsJ. Phys. Chem. B 109 1959CrossRefGoogle ScholarPubMed
Mohaghegh, P.Hickson, I. 2001 DNA helicase deficiencies associated with cancer predisposition and premature ageing disordersHum. Mol. Genet 10 741CrossRefGoogle ScholarPubMed
Mouawad, L.Perahia, D. 1993 Diagonalization in a mixed basis: a method to compute low-frequency normal-modes for large macromoleculesBiopolymers 33 569CrossRefGoogle Scholar
Mouawad, L.Perahia, D. 1996 Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structuresJ. Mol. Biol 258 393CrossRefGoogle ScholarPubMed
Muller, C. W.Schulz, G. E. 1992 Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. A model for a catalytic transition stateJ. Mol. Biol 224 159CrossRefGoogle ScholarPubMed
Muller, C. W.Schulz, G. E. 1993 Crystal structures of two mutants of adenylate kinase from Escherichia coli that modify the Gly-loopProteins 15 42CrossRefGoogle ScholarPubMed
Okazaki, K.Koga, N.Takada, S.Onuchic, J. N.Wolynes, P. G. 2006 Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulationsProc. Natl. Acad. Sci. USA 103 11844CrossRefGoogle ScholarPubMed
Pérez, A.Luque, F. J.Orozco, M. 2007 Dynamics of B-DNA on the microsecond time scaleJ. Amer. Chem. Soc 129 14739CrossRefGoogle ScholarPubMed
Ramakrishnan, V. 2002 Ribosome structure and the mechanism of translationCell 108 557CrossRefGoogle Scholar
Schlick, T. 2002 Molecular Modeling and Simulation: An Interdisciplinary GuideNew YorkSpringer-VerlagCrossRefGoogle Scholar
Schrank, T. P.Bolen, D. W.Hilser, V. J. 2009 Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteinsProc. Natl. Acad. Sci. USA 106 16984CrossRefGoogle ScholarPubMed
Shapiro, Y. E.Meirovitch, E. 2006 Activation energy of catalysis-related domain motion in E. coli adenylate kinaseJ. Phys. Chem. B 110 11519CrossRefGoogle ScholarPubMed
Shapiro, Y. E.Sinev, M. A.Sineva, E. V.Tugarinov, V.Meirovitch, E. 2000 Backbone dynamics of escherichia coli adenylate kinase at the extreme stages of the catalytic cycle studied by (15)N NMR relaxationBiochemistry 39 6634CrossRefGoogle ScholarPubMed
Shaw, D. E.Maragakis, P.Lindorff-Larsen, K.Piana, S.Dror, R. O.Eastwood, M. P.Bank, J. A.Jumper, J. MSalmon, J. K.Shan, Y.Wriggers, W. 2010 Atomic-level characterization of the structural dynamics of proteinsScience 330 341CrossRefGoogle ScholarPubMed
Shi, Y.Liu, H.Gai, D.Ma, J.Chen, X. S. 2009 A computational analysis of ATP binding of SV40 large tumor antigen helicase motorPLoS Comput Biol 5CrossRefGoogle ScholarPubMed
Sinev, M. A.Sineva, E. V.Ittah, V.Haas, E. 1996 Domain closure in adenylate kinaseBiochemistry 35 6425CrossRefGoogle ScholarPubMed
Stark, H.Rodnina, M. V.Wieden, H. J.van Heel, M.Wintermeyer, W. 2000 Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocationCell 100 301CrossRefGoogle ScholarPubMed
Tama, F.Brooks, C. L. 2005 Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysisJ. Mol. Biol 345 299CrossRefGoogle ScholarPubMed
Tama, F.Brooks, C. L. 2006 Symmetry, Form, and Shape: Guiding Principles for Robustness in Macromolecular MachinesAnn. Rev. Biophys. Biomol. Struct 35 115CrossRefGoogle ScholarPubMed
Tama, F.Feig, M.Liu, J.Brooks, C. L.Taylor, K. A. 2005 The requirement for mechanical coupling between head and S2 domains in smooth muscle myosin ATPase regulation and its implications for dimeric motor functionJ. Mol. Biol 345 837CrossRefGoogle ScholarPubMed
Tama, F.Gadea, F. X.Marques, O.Sanejouand, Y. H. 2000 Building-block approach for determining low-frequency normal modes of macromoleculesProteins 41 13.0.CO;2-P>CrossRefGoogle ScholarPubMed
Tama, F.Miyashita, O.Brooks, C. L. 2004 Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EMJ. Struct. Biol 147 315CrossRefGoogle ScholarPubMed
Tama, F.Sanejouand, Y. 2001 Conformational change of proteins arising from normal mode calculationsProtein. Eng 14 1CrossRefGoogle ScholarPubMed
Tama, F.Valle, M.Frank, J.Brooks, C. L. 2003 Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopyProc. Natl. Acad. Sci. USA 100 9319CrossRefGoogle ScholarPubMed
Temiz, N. A.Meirovitch, E.Bahar, I. 2004 Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation dataProteins 57 468CrossRefGoogle ScholarPubMed
Tirion, M. 1996 Large amplitude elastic motions in proteins from a single-parameter atomic analysisPhys. Rev. Lett 77 1905CrossRefGoogle ScholarPubMed
Torrie, G. M.Valleau, J. P. 1977 Nonphysical sampling distribution in Monte Carlo free-energy estimation: Umbrella samplingJ. Comp. Phys 23 187CrossRefGoogle Scholar
Tsai, C. J.Kumar, S.Ma, B.Nussinov, R. 1999 Folding funnels, binding funnels, and protein functionProtein Sci 8 1181CrossRefGoogle ScholarPubMed
Valle, M.Zavialov, A.Sengupta, J.Rawat, U.Ehrenberg, M.Frank, J. 2003 Locking and unlocking of ribosomal motionsCell 114 123CrossRefGoogle ScholarPubMed
van Brabant, A. J.Stan, R.Ellis, N. A. 2000 DNA helicases, genomic instability, and human genetic diseaseAnnu. Rev. Genomics Hum. Genet 1 409CrossRefGoogle ScholarPubMed
Volkman, B. F.Lipson, D.Wemmer, D. E.Kern, D. 2001 Two-state allosteric behavior in a single-domain signaling proteinScience 291 2429CrossRefGoogle Scholar
Vonrhein, C.Schlauderer, G. J.Schulz, G. E. 1995 Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinasesStructure 3 483CrossRefGoogle ScholarPubMed
Wessel, R.Schweizer, J.Stahl, H. 1992 Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replicationJ. Virol 66 804Google ScholarPubMed
Whitford, P. C.Miyashita, O.Levy, Y.Onuchic, J. N. 2007 Conformational transitions of adenylate kinase: switching by crackingJ. Mol. Biol 366 1661CrossRefGoogle ScholarPubMed
Wikoff, W. R.Liljas, L.Duda, R. L.Tsuruta, H.Hendrix, R. W.Johnson, J. E. 2000 Topologically linked protein rings in the bacteriophage HK97 capsidScience 289 2129CrossRefGoogle ScholarPubMed
Witz, J.Brown, F. 2001 Structural dynamics, an intrinsic property of viral capsidsArch. Virol 146 2263CrossRefGoogle ScholarPubMed
Wolf-Watz, M.Thai, V.Henzler-Wildman, K.Hadjipavlou, G.Eisenmesser, E. Z.Kern, D. 2004 Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pairNat. Struc. Mol. Biol 11 945CrossRefGoogle Scholar
Wynsberghe, A. V.Li, G.Cui, Q. 2004 Normal-mode analysis suggests protein flexibility modulation throughout RNA polymerase's functional cycleBiochemistry 43 13083CrossRefGoogle ScholarPubMed
Yoshimoto, K.Arora, K.Brooks, C. L. 2010 Hexameric helicase deconstructed: interplay of conformational change and substrate couplingBiophys. J 98 1449CrossRefGoogle Scholar
Yu, J.Ha, T.Schulten, K. 2007 How directional translocation is regulated in a DNA helicase motorBiophys J 93 3783CrossRefGoogle Scholar
Yusupov, M.Yusupova, G.Baucom, A.Lieberman, K.Earnest, T.Cate, J.Noller, H. 2001 Crystal structure of the ribosome at 5.5 Å resolutionScience 292 883CrossRefGoogle ScholarPubMed
Zlotnick, A.Stray, S. J. 2003 How does your virus grow? Understanding and interfering with virus assemblyTrends Biotechnol 21 536CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×