Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T23:13:46.764Z Has data issue: false hasContentIssue false

Chapter 9 - The Ribosome as a Brownian Ratchet Machine

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Ribosomes are ribonucleoprotein nanoparticles responsible for the synthesis of all proteins in living cells. The function of a ribosome is to translate the genetic information encoded in the nucleotide sequence of mRNA into the amino acid sequence of a protein. During this process, the ribosome performs the unidirectional driving of a single mRNA chain and numerous mRNA-bound tRNA macromolecules through itself. In this process, the free energies of the transpeptidation reaction and GTP hydrolysis are consumed. Thus, the translating ribosome can be considered as a conveying protein-synthesizing molecular machine (Spirin 2002, 2004, 2009a; Frank & Gonzalez 2010). The purpose of this chapter is to analyze the conveying mechanism of this machine.

Subdivision of the Ribosome into Two Unequal Subunits

At first approximation, the ribosome can be described as a compact, almost spherical body with linear dimensions of 25 to 35 nm (reviewed in Spirin 1999, pp. 50–51). Detailed structural analyses reveal the highly complex, asymmetric quaternary structure of the ribosome (Ban et al. 2000; Wimberly et al. 2000; Harms et al. 2001; Yusupov et al. 2001; Ramakrishnan 2002; Gao et al. 2003; Schuwirth et al. 2005; Selmer et al. 2006).

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 158 - 190
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, KJurnak, F 1996 A complex profile of protein elongation: translating chemical energy into molecular movementStructure 4 229CrossRefGoogle ScholarPubMed
Abel, KYoder, MDHilgenfeld, RJurnak, F 1996 An alpha to beta conformational switch in EF-TuStructure 4 1153CrossRefGoogle ScholarPubMed
Agirrezabala, XLei, JBrunelle, JLOrtiz-Meoz, RFGreen, RFrank, J 2008 Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosomeMolecular Cell 32 190CrossRefGoogle ScholarPubMed
Agrawal, RKHeagle, ABPenczek, PGrassucci, RAFrank, J 1999 EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosomeNature Structural Biology 6 643CrossRefGoogle ScholarPubMed
Agrawal, RKPenczek, PGrassucci, RAFrank, J 1998 Visualization of elongation factor G on the 70S ribosome: the mechanism of translocationProceeding of the National Academy of Sciences of the USA 95 6134CrossRefGoogle ScholarPubMed
Ait-Haddou, RHerzog, W 2003 Brownian ratchet models of molecular motorsCell Biochemistry and Biophysics 38 191CrossRefGoogle ScholarPubMed
Aitken, CEPuglisi, JD 2010 Following the intersubunit conformation of the ribosome during translation in real timeNature Structural and Molecular Biology 17 793CrossRefGoogle Scholar
Astumian, RDDerényi, I 1998 Fluctuation driven transport and models of molecular motors and pumpsEuropean Biophysics Journal 27 474CrossRefGoogle ScholarPubMed
Ban, NNissen, PHansen, JMoore, PBSteitz, TA 2000 The complete atomic structure of the large ribosomal subunit at 2.4 A resolutionScience 289 905CrossRefGoogle ScholarPubMed
Baranov, VIBelitsina, NVSpirin, AS 1979 The use of columns with matrix-bound polyuridylic acid for isolation of translating ribosomesMethods in Enzymology 59 382CrossRefGoogle ScholarPubMed
Belitsina, NVGlukhova, MASpirin, AS 1975 Translocation in ribosomes by attachment-detachment of elongation factor G without GTP cleavage: Evidence from a column-bound ribosome systemFEBS Letters 54 35CrossRefGoogle ScholarPubMed
Belitsina, NVGlukhova, MASpirin, AS 1976 Stepwise elongation factor G-promoted elongation of polypeptides on the ribosome without GTP cleavageJournal of Molecular Biology 108 609CrossRefGoogle ScholarPubMed
Belitsina, NVSpirin, AS 1970 Studies on the structure of ribosomes. IV. Participation of aminoacyl-transfer RNA and peptidyl-transfer RNA in the association of ribosomal subparticlesJournal of Molecular Biology 52 45CrossRefGoogle ScholarPubMed
Belitsina, NVSpirin, AS 1979 Ribosomal translocation assayed by the matrix-bound poly(uridylic acid) column techniqueEuropean Journal of Biochemistry 94 315CrossRefGoogle ScholarPubMed
Belitsina, NVTnalina, GZSpirin, AS 1981 Template-free ribosomal synthesis of polylysine from lysyl-tRNAFEBS Letters 131 289CrossRefGoogle ScholarPubMed
Belitsina, NVTnalina, GZSpirin, AS 1982 Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNAsBioSystems 15 233CrossRefGoogle ScholarPubMed
Berchtold, HReshetnikova, LReiser, COSchirmer, NKSprinzl, MHilgenfeld, R 1993 Crystal structure of active elongation factor Tu reveals major domain rearrangementsNature 365 126CrossRefGoogle ScholarPubMed
Berk, VZhang, WPai, RDCate, JHD 2006 Structural basis for mRNA and tRNA positioning on the ribosomeProceeding of the National Academy of Sciences of the USA 103 15830CrossRefGoogle ScholarPubMed
Bieling, PBeringer, MAdio, SRodnina, MV 2006 Peptide bond formation does not involve acid-base catalysis by ribosomal residuesNature Structural and Molecular Biology 13 423CrossRefGoogle Scholar
Blanchard, SCGonzalez, RLKim, HDChu, SPuglisi, JD 2004 tRNA selection and kinetic proofreading inNature Structural and Molecular Biology 11 1008CrossRefGoogle Scholar
Blanchard, SCKim, HDGonzalez, RLPuglisi, JDChu, S 2004 tRNA dynamics on the ribosome during translationProceeding of the National Academy of Sciences of the USA 101 12893CrossRefGoogle ScholarPubMed
Bretscher, MS 1968 Translocation in protein synthesis: a hybrid structure modelNature 218 675CrossRefGoogle ScholarPubMed
Chetverin, ABSpirin, AS 1982 Bioenergetics and protein synthesisBiochimica et Biophysica Acta 683 153CrossRefGoogle ScholarPubMed
Connell, SRTakemoto, CWilson, DNWang, HMurayama, KTerada, TShirouzu, MRost, MSchüler, MGiesebrecht, JDabrowski, MMielke, TFucini, PYokoyama, SSpahn, CM 2007 Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factorsMolecular Cell 25 751CrossRefGoogle ScholarPubMed
Cordova, NJErmentrout, BOster, GF 1992 Dynamics of single-motor molecules: the thermal ratchet modelProceeding of the National Academy of Sciences of the USA 89 339CrossRefGoogle ScholarPubMed
Cornish, PVErmolenko, DNNoller, HFHa, T 2008 Spontaneous intersubunit rotation in single ribosomesMolecular Cell 30 578CrossRefGoogle ScholarPubMed
Cornish, PVErmolenko, DNStaple, DWHoang, LHickerson, RPNoller, HFHa, T 2009 Following movement of the L1 stalk between three functional states in single ribosomesProceeding of the National Academy of Sciences of the USA 106 2571CrossRefGoogle ScholarPubMed
Cukras, ARSouthworth, DRBrunelle, JLCulver, GMGreen, R 2003 Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complexMolecular Cell 12 321CrossRefGoogle ScholarPubMed
Ermolenko, DNMajumdar, ZKHickerson, RPSpiegel, PCClegg, RMNoller, HF 2007 Observation of intersubunit movement of the ribosome in solution using FRETJournal of Molecular Biology 370 530CrossRefGoogle ScholarPubMed
Ermolenko, DNSpiegel, PCMajumdar, ZKHickerson, RPClegg, RMNoller, HF 2007 The antibiotic viomycin traps the ribosome in an intermediate state of translocationNature Structural and Molecular Biology 14 493CrossRefGoogle Scholar
Ermolenko, DNNoller, HF 2011 mRNA translocation occurs during the second step of ribosomal intersubunit rotationNature Structural & Molecular Biology 18 457CrossRefGoogle ScholarPubMed
Fei, JBronson, JEHofman, JMSrinivas, RLWiggins, CHGonzalez, RL 2009 Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translationProceeding of the National Academy of Sciences of the USA 106 15702CrossRefGoogle ScholarPubMed
Fei, JKosuri, PMacDougall, DDGonzalez, RL 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMolecular Cell 30 348CrossRefGoogle ScholarPubMed
Feynman, RLeighton, RSands, M 1963 The Feynman Lectures on Physics1Addison-Wesley Publishing CompanyInc., Reading, MAGoogle Scholar
Finkelstein, AVPtitsyn, OB 2002 Protein PhysicsAcademic PressLondonGoogle Scholar
Fischer, NKonevega, ALWintermeyer, WRodnina, MVStark, H 2010 Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopyNature 466 329CrossRefGoogle ScholarPubMed
Fourmy, DYoshizawa, SPuglisi, JD 1998 Paromomycin binding induces a local conformational change in the A-site of 16 S rRNAJournal of Molecular Biology 277 333CrossRefGoogle ScholarPubMed
Frank, JAgrawal, RK 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, JGao, HSengupta, JGao, NTaylor, DJ 2007 The process of mRNA-tRNA translocationProceeding of the National Academy of Sciences of the USA 104 19671CrossRefGoogle ScholarPubMed
Frank, JGonzalez, RL 2010 Structure and dynamics of a processive Brownian motor: The translating ribosomeAnnual Review of Biochemistry 79 CrossRefGoogle ScholarPubMed
Fredrick, KNoller, HF 2003 Catalysis of ribosomal translocation by sparsomycinScience 300 1159CrossRefGoogle ScholarPubMed
Gabashvili, ISAgrawal, RKSpahn, CMGrassucci, RASvergun, DIFrank, JPenczek, P 2000 ‘Solution structure of the E. coli 70S ribosome at 11.5 A resolutionCell 100 537CrossRefGoogle Scholar
Gao, HSengupta, JValle, MKorostelev, AEswar, NStagg, SMVan Roey, PAgrawal, RKHarvey, SCSali, AChapman, MSFrank, J 2003 Study of the structural dynamics of the E coli 70S ribosome using real-space refinementCell 113 789CrossRefGoogle Scholar
Gao, YGSelmer, MDunham, CMWeixlbaumer, AKelley, ACRamakrishnan, V 2009 The structure of the ribosome with elongation factor G trapped in the posttranslocational stateScience 326 694CrossRefGoogle ScholarPubMed
Gavrilova, LPKostiashkina, OEKoteliansky, VERutkevitch, NMSpirin, AS 1976 Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by ribosomesJournal of Molecular Biology 101 537CrossRefGoogle ScholarPubMed
Gavrilova, LPKoteliansky, VESpirin, AS 1974 Ribosomal protein S12 and “non-enzymatic” translocationFEBS Letters 45 324CrossRefGoogle ScholarPubMed
Gavrilova, LPPerminova, INSpirin, AS 1981 Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systemsJournal of Molecular Biology 149 69CrossRefGoogle ScholarPubMed
Gavrilova, LPSpirin, AS 1971 Stimulation of “non-enzymic” translocation in ribosomes by ρ-chloromercuribenzoateFEBS Letters 17 324CrossRefGoogle Scholar
Gavrilova, LPSpirin, AS 1972 A modification of the 30S ribosomal subparticle is responsible for stimulation of “non-enzymatic” translocation by -chloromercuribenzoateFEBS Letters 22 91CrossRefGoogle Scholar
Gavrilova, LPSpirin, AS 1974 Nonenzymatic” translationMethods in Enzymology 30 452CrossRefGoogle ScholarPubMed
Girshovich, ASBochkareva, ESVasiliev, VD 1986 Localization of elongation factor Tu on the ribosomeFEBS Letters 197 1CrossRefGoogle ScholarPubMed
Girshovich, ASKurtskhalia, TVOvchinnikov, YuAVasiliev, VD 1981 Localization of the elongation factor G on Escherichia coli ribosomeFEBS Letters 130 54CrossRefGoogle ScholarPubMed
Gomez-Lorenzo, MGSpahn, CMAgrawal, RKGrassucci, RAPenczek, PAChakraburtty, KBallesta, JPLavandera, JLGarcia-Bustos, JFFrank, J 2000 Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolutionThe EMBO Journal 19 2710CrossRefGoogle ScholarPubMed
Gongadze, GMGudkov, ATBushuev, VNSepetov, NF 1984 The attachment of elongation factor G to the ribosome changes intramolecular mobility of protein L7/L12Doklady Akademii Nauk SSSR 279 230Google Scholar
Gonzalez, RLChu, SPuglisi, JD 2007 Thiostrepton inhibition of tRNA delivery to the ribosomeRNA 13 2091CrossRefGoogle ScholarPubMed
Gottesman, ME 1967 Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycinThe Journal of Biological Chemistry 242 5564Google ScholarPubMed
Gudkov, ATGongadze, GMBushuev, VNOkon, MS 1982 Proton nuclear magnetic resonance study of the ribosomal protein L7/L12 in situFEBS Letters 138 229CrossRefGoogle ScholarPubMed
Gumbart, JTrabuco, LGSchreiner, EVilla, ESchulten, K 2009 Regulation of the protein-conducting channel by a bound ribosomeStructure 17 1453CrossRefGoogle ScholarPubMed
Hansen, JLSchmeing, TMMoore, PBSteitz, TA 2002 Structural insights into peptide bond formationProceeding of the National Academy of Sciences of the USA 99 11670CrossRefGoogle ScholarPubMed
Harms, JSchluenzen, FZarivach, RBashan, AGat, SAgmon, IBartels, HFranceschi, FYonath, A 2001 High resolution structure of the large ribosomal subunit from a mesophilic eubacteriumCell 107 679CrossRefGoogle ScholarPubMed
Horan, LHNoller, HF 2007 Intersubunit movement is required for ribosomal translocationProceeding of the National Academy of Sciences of the USA 104 4881CrossRefGoogle ScholarPubMed
Julián, PKonevega, ALScheres, SHLázaro, MGil, DWintermeyer, WRodnina, MVValle, M 2008 Structure of ratcheted ribosomes with tRNAs in hybrid statesProceeding of the National Academy of Sciences of the USA 105 16924CrossRefGoogle ScholarPubMed
Kaji, AKaji, H 1963 Specific interaction of soluble RNA and polyribonucleic acid induced polysomesBiochemical and Biophysical Research Communications 13 186CrossRefGoogle Scholar
Kakhniashvili, DGSpirin, AS 1977 ‘Dependence of factor-free and factor-promoted translation systems on temperature. Absence of effects of the elongation factors and GTP on the activation energyDoklady Akademii Nauk SSSR 234 958Google Scholar
Kaltschmidt, EWittmann, HG 1970 ‘Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of as determined by two-dimensional gel electrophoresisProceeding of the National Academy of Sciences of the USA 67 1276CrossRefGoogle ScholarPubMed
Kim, HDPuglisi, JDChu, S 2007 Fluctuations of transfer RNAs between classical and hybrid statesBiophysical Journal 93 3575CrossRefGoogle ScholarPubMed
Kjeldgaard, MNissen, PThirup, SNyborg, J 1993 The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformationStructure 1 35CrossRefGoogle ScholarPubMed
Korostelev, ANoller, HF 2007 Analysis of structural dynamics in the ribosome by TLS crystallographic refinementJournal of Molecular Biology 373 1058CrossRefGoogle ScholarPubMed
Korostelev, ATrakhanov, SLaurberg, MNoller, HF 2006 Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangementsCell 126 1065CrossRefGoogle ScholarPubMed
Lee, THBlanchard, SCKim, HDPuglisi, JDChu, S 2007 The role of fluctuations in tRNA selection by the ribosomeProceeding of the National Academy of Sciences of the USA 104 13661CrossRefGoogle ScholarPubMed
Lim, VISpirin, AS 1986 Stereochemical analysis of ribosomal transpeptidation: Conformation of nascent peptideJournal of Molecular Biology 188 565CrossRefGoogle ScholarPubMed
Lodish, HFJacobsen, M 1972 ‘Regulation of hemoglobin synthesis. Equal rates of translation and termination of α- and β-globin chainsThe Journal of Biological Chemistry 247 3622Google Scholar
Marshall, RADorywalska, MPuglisi, JD 2008 Irreversible chemical steps control intersubunit dynamics during translationProceeding of the National Academy of Sciences of the USA 105 15364CrossRefGoogle ScholarPubMed
Moazed, DNoller, HF 1986 Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probesCell 47 985CrossRefGoogle ScholarPubMed
Moazed, DNoller, HF 1989 Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sitesCell 57 585CrossRefGoogle ScholarPubMed
Moazed, DNoller, HF 1989 Intermediate states in the movement of transfer RNA in the ribosomeNature 342 142CrossRefGoogle ScholarPubMed
Moazed, DRobertson, JMNoller, HF 1988 Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNANature 334 362CrossRefGoogle ScholarPubMed
Munro, JBAltman, RBO’Connor, NBlanchard, SC 2007 Identification of two distinct hybrid state intermediates on the ribosomeMolecular Cell 25 505CrossRefGoogle ScholarPubMed
Nakamoto, TConway, TWAllende, JESpyrides, GILipmann, F 1963 ‘Formation of peptide bonds. I. Peptide formation from aminoacyl-sRNACold Spring Harbor Symposia on Quantitative Biology 28 227CrossRefGoogle Scholar
Nishiyama, MHiguchi, HIshii, YTaniguchi, YYanagida, T 2003 Single molecule processes on the stepwise movement of ATP-driven molecular motorsBioSystems 71 1CrossRefGoogle ScholarPubMed
Nissen, PHansen, JBan, NMoore, PBSteitz, TA 2000 The structural basis of ribosome activity in peptide bond synthesisScience 289 920CrossRefGoogle ScholarPubMed
Nyborg, JKjeldgaard, M 1996 Elongation in bacterial protein synthesisCurrent Opinion in Biotechnology 7 369CrossRefGoogle Scholar
Nyborg, JLiljas, A 1998 Protein biosynthesis: structural studies of the elongation cycleFEBS Letters 430 1CrossRefGoogle ScholarPubMed
Ogle, JMBrodersen, DEClemons, WMTarry, MJCarter, APRamakrishnan, V 2001 Recognition of cognate transfer RNA by the 30S ribosomal subunitScience 292 897CrossRefGoogle ScholarPubMed
Ogle, JMMurphy, FVTarry, MJRamakrishnan, V 2002 Selection of tRNA by the ribosome requires a transition from an open to a closed formCell 111 721CrossRefGoogle ScholarPubMed
Pan, DKirillov, SVCooperman, BS 2007 Kinetically competent intermediates in the translocation step of protein synthesisMolecular Cell 25 519CrossRefGoogle ScholarPubMed
Pape, TWintermeyer, WRodnina, M 1999 Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosomeThe EMBO Journal 18 3800CrossRefGoogle ScholarPubMed
Perutz, MF 1970 Stereochemistry of cooperative effects in haemoglobinNature 228 726CrossRefGoogle ScholarPubMed
Pestka, S 1968 ‘Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymesThe Journal of Biological Chemistry 243 2810Google ScholarPubMed
Pestka, S 1969 ‘Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factorsThe Journal of Biological Chemistry 244 1533Google ScholarPubMed
Pestova, TVLorsh, JRHellen, CUT 2007 The mechanism of translation initiation in eukaryotesTranslational Control in Biology and MedicineMathews, MBSonenberg, NHershey, JWBCold Spring Harbor Laboratory PressPlainview, NY87Google Scholar
Polekhina, GThirup, SKjeldgaard, MNissen, PLippmann, CNyborg, J 1996 Helix unwinding in the effector region of elongation factor EF-Tu-GDPStructure 4 1141CrossRefGoogle ScholarPubMed
Purich, DL 2001 Enzyme catalysis: a new definition accounting for noncovalent substrate- and product-like statesTrends in Biochemical Sciences 26 417CrossRefGoogle ScholarPubMed
Ramakrishnan, V 2002 Ribosome structure and the mechanism of translationCell 108 557CrossRefGoogle Scholar
Riddle, DLCarbon, J 1973 Frameshift suppression: A nucleotide addition in the anticodon of a glycine transfer RNANature New Biology 242 230CrossRefGoogle ScholarPubMed
Robertson, JMWintermeyer, W 1987 ‘Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocationJournal of Molecular Biology 196 525CrossRefGoogle Scholar
Rodnina, MVGromadski, KBKothe, UWieden, H-J 2005 Recognition and selection of tRNA in translationFEBS Letters 579 938CrossRefGoogle ScholarPubMed
Rodnina, MVPape, TFricke, RKuhn, LWintermeyer, W 1996 Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosomeThe Journal of Biological Chemistry 271 646CrossRefGoogle ScholarPubMed
Rodnina, MVWintermeyer, W 2001 Ribosome fidelity: tRNA discrimination, proofreading and inducedTrends in Biochemical Sciences 26 124CrossRefGoogle ScholarPubMed
Schmeing, TMHuang, KSKitchen, DEStrobel, SASteitz, TA 2005 Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferaseMolecular Cell 20 437CrossRefGoogle Scholar
Schmeing, TMHuang, KSStrobel, SASteitz, TA 2005 An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNANature 438 520CrossRefGoogle ScholarPubMed
Schmeing, TMVoorhees, RMKelley, ACGao, YGMurphy, FVWeir, JRRamakrishnan, V 2009 The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNAScience 326 688CrossRefGoogle ScholarPubMed
Schuette, JCMurphy, FVKelley, ACWeir, JRGiesebrecht, JConnell, SRLoerke, JMielke, TZhang, WPenczek, PARamakrishnan, VSpahn, CM 2009 GTPase activation of elongation factor EF-Tu by the ribosome during decodingThe EMBO Journal 28 755CrossRefGoogle ScholarPubMed
Schuwirth, BSBorovinskaya, MAHau, CWZhang, WVila-Sanjurjo, AHolton, JMCate, JH 2005 Structures of the bacterial ribosome at 3.5 A resolutionScience 310 827CrossRefGoogle ScholarPubMed
Selmer, MDunham, CMMurphy, FVWeixlbaumer, APetry, SKelley, ACWeir, JRRamakrishnan, V 2006 Structure of the 70S ribosome complexed with mRNA and tRNAScience 313 1935CrossRefGoogle ScholarPubMed
Semenkov, YPRodnina, MVWintermeyer, W 1996 The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Proceeding of the National Academy of Sciences of the USA 93 12183CrossRefGoogle Scholar
Serdyuk, INBaranov, VITsalkova, TGulyamova, DPavlov, MSpirin, ASMay, R 1992 Structural dynamics of translating ribosomesBiochimie 74 299CrossRefGoogle ScholarPubMed
Serdyuk, INSpirin, AS 1986 Structural dynamics of the translating ribosomesStructure, Function, and Genetics of RibosomesHardesty, BKramer, GSpringer-Verlag New York IncNew York425CrossRefGoogle Scholar
Smoluchowski, M von 1912 Experimentell nachweisbare, der Ublichen Thermodynamik widersprechende MolekularphenomenePhysikalische Zeitschrift 13 1069Google Scholar
Southworth, DRBrunelle, JLGreen, R 2002 EFG-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with thiol-specific reagentsJournal of Molecular Biology 324 611CrossRefGoogle ScholarPubMed
Spahn, CMGomez-Lorenzo, MGGrassucci, RAJorgensen, RAndersen, GRBeckmann, RPenczek, PABallesta, JPFrank, J 2004 Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocationThe EMBO Journal 23 1008CrossRefGoogle ScholarPubMed
Spiegel, PCErmolenko, DNNoller, HF 2007 Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosomeRNA 13 1473CrossRefGoogle ScholarPubMed
Spirin, AS 1968 On the mechanism of the ribosome working: Subunits locking-unlocking hypothesisDoklady Akademii Nauk SSSR 179 1467Google Scholar
Spirin, AS 1968 ‘How does the ribosome work? A hypothesis based on the two subunit construction of the ribosomeCurrents in Modern Biology 2 115Google Scholar
Spirin, AS 1969 A model of the functioning ribosome: Locking and unlocking of the ribosome subparticlesCold Spring Harbor Symposia on Quantitative Biology 34 197CrossRefGoogle ScholarPubMed
Spirin, AS 1978 Energetics of the ribosomeProgress in Nucleic Acid Research and Molecular BiologyCohn, WEAcademic Press, IncNew York-London39Google Scholar
Spirin, AS 1984 Testing the classical two-tRNA-site model for the ribosomal elongation cycleFEBS Letters 165 280CrossRefGoogle ScholarPubMed
Spirin, AS 1985 Ribosomal translocation: Facts and modelsProgress in Nucleic Acid Research and Molecular BiologyCohn, WEAcademic Press, IncNew York-London75Google Scholar
Spirin, AS 1988 Energetics and dynamics of the protein-synthesizing machineryThe Roots of Modern BiochemistryKleinkauf, Hvon Dören, HJaenicke, LWalter de Gruyter & CoBerlin511Google Scholar
Spirin, AS 1999 RibosomesKluwer Academic PublishersPlenum PressNew YorkCrossRefGoogle Scholar
Spirin, AS 2002 Ribosome as a molecular machineFEBS Letters 514 2CrossRefGoogle ScholarPubMed
Spirin, AS 2004 The ribosome as an RNA-based molecular machineRNA Biology 1 3CrossRefGoogle ScholarPubMed
Spirin, AS 2009 The ribosome as a conveying thermal ratchet machineThe Journal of Biological Chemistry 284 21103CrossRefGoogle ScholarPubMed
Spirin, AS 2009 How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian ratchet modelBiochemistry 48 10688CrossRefGoogle ScholarPubMed
Spirin, ASBaranov, VIPolubesov, GSSerdyuk, INMay, RP 1987 Translocation makes the ribosome less compactJournal of Molecular Biology 194 119CrossRefGoogle ScholarPubMed
Spirin, ASBelitsina, NVYusupova, GZ 1988 Ribosomal synthesis of polypeptides from aminoacyl-tRNA without polynucleotide templateMethods in Enzymology 164 631CrossRefGoogle ScholarPubMed
Spirin, ASKostiashkina, OEJonak, J 1976 Contribution of the elongation factors to resistance of ribosomes against inhibitors: Comparison of the inhibitor effects on the factor-dependent and factor-free translation systemsJournal of Molecular Biology 101 553CrossRefGoogle Scholar
Stark, HRodnina, MVWieden, HJvan Heel, MWintermeyer, W 2000 Large scale movement of elongation factor G and extensive conformational change of the ribosome during translocationCell 100 301CrossRefGoogle ScholarPubMed
Stark, HRodnina, MVWieden, HJZemlin, FWintermeyer, Wvan Heel, M 2002 Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complexNature Structural Biology 9 849Google ScholarPubMed
Taylor, DJNilsson, JMerrill, ARAndersen, GRNissen, PFrank, J 2007 Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocationThe EMBO Journal 26 2421CrossRefGoogle ScholarPubMed
Trabuco, LGVilla, EMitra, KFrank, JSchulten, K 2008 Flexible fitting of atomic structures into electron microscopy maps using molecular dynamicsStructure 16 673CrossRefGoogle ScholarPubMed
Trobro, SAqvist, J 2005 Mechanism of peptide bond synthesis on the ribosomeProceeding of the National Academy of Sciences of the USA 102 12395CrossRefGoogle ScholarPubMed
Uemura, SAitken, CEKorlach, JFlusberg, BATurner, SWPuglisi, JD 2010 Real-time tRNA transit on single translating ribosomes at codon resolutionNature 464 1012CrossRefGoogle ScholarPubMed
Vale, RD 2003 Myosin V motor proteins: marching stepwise towards a mechanismThe Journal of Cell Biology 163 445CrossRefGoogle ScholarPubMed
Vale, RDOosawa, F 1990 Protein motors and Maxwell's demons: Does mechanochemical transduction involve a thermal ratchet?Advances in Biophysics 26 97CrossRefGoogle ScholarPubMed
Valle, MSengupta, JSwami, NKGrassucci, RABurkhardt, NNierhaus, KHAgrawal, RKFrank, J 2002 Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation processThe EMBO Journal 21 3557CrossRefGoogle ScholarPubMed
Valle, MZavialov, AVSengupta, JRawat, UEhrenberg, MFrank, J 2003 Locking and unlocking of ribosomal motionsCell 114 123CrossRefGoogle ScholarPubMed
Valle, MZavialov, ALi, WStagg, SMSengupta, JNielsen, RCNissen, PHarvey, SCEhrenberg, MFrank, J 2003 Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopyNature Structural Biology 10 899CrossRefGoogle ScholarPubMed
Vasiliev, VDSelivanova, OMKoteliansky, VE 1978 Specific self-packing of the ribosomal 16S RNAFEBS Letters 95 273CrossRefGoogle Scholar
Vasiliev, VDSerdyuk, INGudkov, ATSpirin, AS 1986 Self-organization of ribosomal RNAStructure, Function, and Genetics of RibosomesHardesty, BKramer, GSpringer-VerlagNew York128CrossRefGoogle Scholar
Vasiliev, VDZalite, OM 1980 Specific compact self-packing of the ribosomal 23S RNAFEBS Letters 121 101CrossRefGoogle Scholar
Villa, ESengupta, JTrabuco, LGLeBarron, JBaxter, WTShaikh, TRGrassucci, RANissen, PEhrenberg, MSchulten, KAFrank, J 2009 Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysisProceeding of the National Academy of Sciences of the USA 106 1063CrossRefGoogle ScholarPubMed
Voorhees, RMWeixlbaumer, ALoakes, DKelley, ACRamakrishnan, V 2009 Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosomeNature Structural & Molecular Biology 16 528CrossRefGoogle ScholarPubMed
Wimberly, BTBrodersen, DEClemons, WMMorgan-Warren, RJCarter, APVonrhein, CHartsch, TRamakrishnan, V 2000 Structure of the 30S ribosomal subunitNature 407 327Google ScholarPubMed
Wintermeyer, WRobertson, JM 1982 Transient kinetics of transfer ribonucleic acid binding to ther ribosomal A and P sites: observation of a common intermediate complexBiochemistry 21 2246CrossRefGoogle Scholar
Yarus, MValle, MFrank, J 2003 A twisted tRNA intermediate sets the threshold for decodingRNA 9 384CrossRefGoogle ScholarPubMed
Yusupov, MMYusupova, GZBaucom, ALieberman, KEarnest, TNCate, JHNoller, HF 2001 Crystal structure of the ribosome at 5.5 A resolutionScience 292 883CrossRefGoogle ScholarPubMed
Yusupova, GJenner, LRees, BMoras, DYusupov, M 2006 Structural basis for messenger RNA movement on the ribosomeNature 444 391CrossRefGoogle ScholarPubMed
Yusupova, GZYusupov, MMCate, JHNoller, HF 2001 The path of messenger RNA through the ribosomeCell 106 233CrossRefGoogle ScholarPubMed
Zhang, WDunkle, JACate, JH 2009 Structures of the ribosome in intermediate states of ratchetingScience 325 1014CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×