Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T06:35:31.233Z Has data issue: false hasContentIssue false

Chapter 3 - Statistical Mechanical Treatment of Molecular Machines

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Molecular machines (Mavroidis et al. 2004) are devices that convert one form of energy into another. Just like their macroscopic counterparts, molecular machines have an “engine”, an input and an output. Most of the machines I consider in this chapter are motors (Howard 2001, Kolomeisky and Fisher 2007, Schliwa 2003) which are enzymes that convert chemical energy into mechanical work.

In spite of the striking similarities, it is the differences between molecular machines and their macroscopic counterparts that makes the studies of these systems so interesting from the perspective of physicists. Biomolecular machines are usually single proteins or macromolecular complexes comprising several proteins and/or RNAs. These operate in a domain where the appropriate units of length, time, force and energy are nano-meter, milli-second, pico-Newton and kBT, respectively (kB being the Boltzmann constant and T is the absolute temperature). Already in the first half of the twentieth century D’Arcy Thompson, father of modern bio-mechanics, realized the importance of viscous drag and Brownian forces in this domain. He pointed out that (Thompson 1963) “where bacillus lives, gravitation is forgotten, and the viscosity of the liquid, the resistance defined by Stokes’ law, the molecular shocks of the Brownian movement, doubtless also the electric charges of the ionized medium, make up the physical environment and have their potent and immediate influence on the organism. The predominant factors are no longer those of our scale; we have come to the edge of a world of which we have no experience, and where all our preconceptions must be recast”.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 38 - 58
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agirrezabala, XFrank, J 2009 Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-TuQuart. Rev. Biophys 42 159CrossRefGoogle ScholarPubMed
Andrews, S SArkin, A P 2006 Simulating cell biologyCurr. Biol 16 R523CrossRefGoogle ScholarPubMed
Astumian, R D 1997 Thermodynamics and kinetics of a Brownian motorScience 276 917CrossRefGoogle ScholarPubMed
Astumian, R D 2001 Making molecules into motorsSci. Am 285 56CrossRefGoogle ScholarPubMed
Astumian, R DHänggi, P 2002 Brownian motorsPhys. Today 55 33CrossRefGoogle Scholar
Astumian, R D 2007 Design principles of Brownian molecular machines: how to swim in molasses and walk in a hurricanePhys. Chem. Phys 7 5067CrossRefGoogle Scholar
Basu, AChowdhury, D 2007 Traffic of interacting ribosomes: effects of single-machine mechano-chemistry on protein synthesisPhys. Rev. E 75CrossRefGoogle Scholar
Berg, H C 1993 Random walks in biologyPrinceton university pressGoogle Scholar
Binnig, GRohrer, H 1999 In touch with atomsRev. Mod. Phys 71 S324CrossRefGoogle Scholar
Blanchard, S CGonzalez Jr, R LKim, H DChu, SPuglisi, J D 2004 tRNA selection and kinetic proofreading in translationNat. Str. & Mol. Biol 11 1008CrossRefGoogle ScholarPubMed
Blanchard, S C 2009 Single molecule observations of ribosome functionCurr. Opin. Struct. Biol 19 1CrossRefGoogle ScholarPubMed
Bray, DDuke, T 2004 Conformational spread: the propagation of allosteric states in large multiprotein complexesAnnu. Rev. Biophys. and Biomol. Str 33 53CrossRefGoogle ScholarPubMed
Bustamante, CKeller, DOster, G 2001 The physics of molecular motorsAcc. Chem. Res 34 412CrossRefGoogle ScholarPubMed
Bustamante, CChemla, Y RForde, N RIzhaky, D 2004 Mechanical processes in biochemistryAnnu. Rev. Biochem 73 705CrossRefGoogle ScholarPubMed
Cornish, P VErmolenko, D NNoller, H FHa, T 2008 Spontaneous intersubunit rotation in single ribosomesMolecular Cell 30 578CrossRefGoogle ScholarPubMed
Cross, R A 1997 A protein-making motor proteinNature 385 18CrossRefGoogle ScholarPubMed
Daviter, TGromadski, K BRodnina, M V 2006 The ribosomes response to codonanticodon mismatchesBiochimie 88 1001CrossRefGoogle Scholar
Dixon, MWebb, E C 1979 EnzymesAcademic PressGoogle Scholar
English, B PMin, Wvan Oijen, A MLee, K TLuo, GSun, HCherayil, B JKou, S CXie, X S 2006 Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisitedNat. Chem. Biol 2 87CrossRefGoogle ScholarPubMed
Gillespie, D T 2005 Stochastic chemical kinetics, in: Handbook of materials modelingSpringerCrossRefGoogle Scholar
Grima, RSchnell, S 2008 Modelling reaction kinetics inside cellsEssays Biochem 45 41CrossRefGoogle ScholarPubMed
Howard, J 2001 Mechanics of motor proteins and the cytoskeletonSinauer AssociatesSunderlandGoogle Scholar
Howard, J 2006 Protein power strokesCurr. Biol 16 R517CrossRefGoogle ScholarPubMed
Changeux, J PEdelstein, S J 1998 Allosteric receptors after 30 yearsNeuron 21 959CrossRefGoogle ScholarPubMed
Changeux, J PEdelstein, S J 2005 Allosteric mechanisms of signal transductionScience 308 1424CrossRefGoogle ScholarPubMed
Derenyi, IBier, MAstumian, R D 1999 Generalized efficiency and its application to microscopic enginesPhys. Rev. Lett 83 903CrossRefGoogle Scholar
Derrida, B 1983 Velocity and diffusion constant of a periodic one-dimensional hopping modelJ. Stat. Phys 31 433CrossRefGoogle Scholar
Fastrez, J 2009 Engineering allosteric regulation into biological catalystsChemBioChem 10 2824CrossRefGoogle ScholarPubMed
Frank, JAgrawal, R K 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, JSpahn, C M T 2006 The ribosome and the mechanism of protein synthesisRep. Prog. Phys 69 1383CrossRefGoogle Scholar
Frank, JGao, HSengupta, JGao, NTaylor, D J 2007 The process of mRNA-tRNA translocationPNAS 104 19671CrossRefGoogle ScholarPubMed
Frank, JGonzalez, R L 2010 Structure and dynamics of a processive Brownian motor: the translating ribosomeAnnu. Rev. Biochem 79 381CrossRefGoogle ScholarPubMed
Garai, AChowdhury, DChowdhury, DRamakrishnan, T V 2009 Stochastic kinetics of ribosomes: Single motor properties and collective behaviorPhys. Rev. E 80CrossRefGoogle ScholarPubMed
Greulich, PGarai, ANishinari, KSchadschneider, AChowdhury, D 2007 Intracellular transport by single-headed kinesin KIF1A: effects of single-motor mechanochemistry and steric interactionsPhys. Rev. E 75CrossRefGoogle ScholarPubMed
Hill, T L 2005 Free energy transduction and biochemical cycle kineticsDoverGoogle Scholar
Hirokawa, NNitta, ROkada, Y 2009 The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1ANat. Rev. Mol. Cell Biol 10 877CrossRefGoogle ScholarPubMed
Horan, L HNoller, H F 2007 Intersubunit movement is required for ribosomal translocationPNAS 104 4881CrossRefGoogle ScholarPubMed
Jülicher, FAjdari, AProst, J 1997 Modeling molecular motorsRev. Mod. Phys 69 1269CrossRefGoogle Scholar
Keller, DBustamante, C 2000 The mechanochemistry of molecular motorsBiophys. J 78 541CrossRefGoogle ScholarPubMed
Khan, SSheetz, M P 1997 Force effects on biochemical kineticsAnnu Rev. Biochem 66 785CrossRefGoogle ScholarPubMed
Kikkawa, MSablin, E POkada, YYajima, HFletterick, R JHirokawa, N 2001 Switch-based mechanism of kinesin motorsNature 411 439CrossRefGoogle ScholarPubMed
Kolomeisky, A BFisher, M E 2007 Molecular motors: a theorist's perspectiveAnnu. Rev. Phys. Chem 58 675CrossRefGoogle ScholarPubMed
Korostelev, AErmolenko, D NNoller, H F 2008 Structural dynamics of the ribosomeCurr. Opin. Chem. Biol 12 674CrossRefGoogle ScholarPubMed
Koshland, Jr. D EHamadani, K 2002 Proteomics and models for enzyme cooperativityJ. Biol. Chem 277 46841CrossRefGoogle ScholarPubMed
Kou, S CCherayil, B JMin, WEnglish, B PXie, X S 2005 Single-molecule Michaelis-Menten equationsJ. Phys. Chem. B 109 19068CrossRefGoogle ScholarPubMed
Lindsley, J ERutter, J 2006 Whence cometh the allosterome?PNAS 103 10533CrossRefGoogle ScholarPubMed
Lipowsky, RLiepelt, S 2008 Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditionsJ. Stat. Phys 130 39CrossRefGoogle Scholar
Ma, J 2005 Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexesStructure 13 373CrossRefGoogle ScholarPubMed
Marshall, R AAitken, C EDorywalska, MPuglisi, J D 2008 Translation at the single-molecule levelAnnu. Rev. Biochem 77 177CrossRefGoogle ScholarPubMed
Mavroidis, CDubey, AYarmush, M L 2004 Molecular Machines, in: Annual Rev. BiomedEngg 6 363Google Scholar
Min, WEnglish, B PLuo, GCherayil, B JKou, S CXie, X S 2005 Fluctuating enzymes: lessons from single-molecule studiesAcc. Chem. Res 38CrossRefGoogle ScholarPubMed
Min, WGopich, I VEnglish, B PKou, S CXie, X SSzabo, A 2006 When does the Michaslis-Menten equation hold for fluctuating enzymes?J. Phys. Chem. B 110 20093CrossRefGoogle ScholarPubMed
Mitra, KFrank, J 2006 Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy mapsAnnu. Rev. Biophys. Biomol. Struct 35 299CrossRefGoogle ScholarPubMed
Moazed, DNoller, H F 1989 Intermediate states in the movement of transfer RNA in the ribosomeNature 342 142CrossRefGoogle ScholarPubMed
Mogilner, AWollman, RMarshall, W F 2006 Quantitative modeling in cell biology: what is it good for?Developmental Cell 11 279CrossRefGoogle Scholar
Moran, S JFlanagan, J FNamy, OStuart, D IBrierley, IGilbert, R J C 2008 The mechanics of translocation: a molecular spring-and-ratchet systemStructure 16 664CrossRefGoogle ScholarPubMed
Munro, J BVaiana, ASanbonmatsu, K YBlanchard, S C 2008 A new view of protein synthesis: mapping the free-energy landscape of the ribosome using single-molecule FRETBiopolymers 89 565CrossRefGoogle ScholarPubMed
Munro, J BSanbonmatsu, K YSpahn, C M TBlanchard, S C 2009 Navigating the ribosome's metastable energy landscapeTrends in Biochem. Sci 34 390CrossRefGoogle ScholarPubMed
Nishinari, KOkada, YSchadschneider, AChowdhury, D 2005 Intracellular transport of single-headed molecular motors KIF1APhys. Rev. Lett 95CrossRefGoogle ScholarPubMed
Nitta, RKikkawa, MOkada, YHirokawa, N 2004 KIF1A alternately uses two loops to bind microtubulesScience 305 678CrossRefGoogle ScholarPubMed
Noller, H FYusupov, M MYusupova, G ZBaucom, ACate, J H D 2002 Translocation of tRNA during protein synthesisFEBS Lett 514 11CrossRefGoogle ScholarPubMed
Ogle, J MRamakrishnan, V 2005 Structural insights into translational fidelityAnnu. Rev. Biochem 74 129CrossRefGoogle ScholarPubMed
Okada, YHirokawa, N 1999 A processive single-headed motor: kinesin superfamily protein KIF1AScience 283 1152CrossRefGoogle ScholarPubMed
Okada, YHirokawa, N 2000 Mechanism of single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulinPNAS 97 640CrossRefGoogle Scholar
Okada, YHiguchi, HHirokawa, N 2003 Processivity of the single-headed kinesin KIF1A through biased binding to tubulinNature 424 574CrossRefGoogle ScholarPubMed
Oosawa, F 2000 The loose coupling mechanism in molecular machines of living cellsGenes to cells 5 9CrossRefGoogle ScholarPubMed
Pan, DKirillov, S VCooperman, B S 2007 Kinetically competent intermediates in the translocation step of protein synthesisMol. Cell 25 519CrossRefGoogle ScholarPubMed
Parmeggiani, AJülicher, FAjdari, AProst, J 1999 Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibriumPhys. Rev. E 60 2127CrossRefGoogle ScholarPubMed
Phair, R DMisteli, T 2001 Kinetic modelling approaches to in-vivo imagingNat. Rev. Mol. Cell Biol 2 898CrossRefGoogle ScholarPubMed
Qian, H 2006 Open-system nonequilibrium steady-state: statistical thermodynamics, fluctuations, and chemical oscillationsJ. Phys. Chem. B 110 15063CrossRefGoogle ScholarPubMed
Ramakrishnan, V 2002 Ribosome structure and the mechanism of translationCell 108 557CrossRefGoogle Scholar
Ramakrishnan, V 2010 Unraveling the structure of the ribosomeAngew. Chem. Int. Ed 49 4355CrossRefGoogle ScholarPubMed
Reimann, P 2002 Brownian motors: noisy transport far from equilibriumPhys. Rep 361 57CrossRefGoogle Scholar
Rodnina, M VWintermeyer, W 2001 Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanismsAnnu. Rev. Biochem 70 415CrossRefGoogle ScholarPubMed
Schliwa, M 2003 Molecular MotorsWiley-VCHGoogle ScholarPubMed
Schmeing, T MRamakrishnan, V 2009 What recent ribosome structures have revealed about the mechanism of translationNature 461 1234CrossRefGoogle Scholar
Sharma, A KChowdhury, D 2010 Quality control by a mobile molecular workshop: quality versus quantityPhys. Rev. E 82CrossRefGoogle ScholarPubMed
Sharma, A KChowdhury, D 2010 Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowdingPhys. Biol 8Google Scholar
Shoji, SWalker, S EFredrick, K 2009 Ribosomal translocation: one step closer to the molecular mechanismACS Chem. Biol 4 93CrossRefGoogle ScholarPubMed
Spirin, A S 2000 RibosomesSpringerGoogle Scholar
Spirin, A S 2002 Ribosome as a molecular machineFEBS Lett 514 2CrossRefGoogle ScholarPubMed
Spirin, A S 2009 The ribosome as a conveying thermal ratchet machineJ. Biol. Chem 284 21103CrossRefGoogle ScholarPubMed
Steitz, T A 2008 A structural understanding of the dynamic ribosome machineNat. Rev. Mol. Cell Biol 9 242CrossRefGoogle ScholarPubMed
Steitz, T A 2010 From the structure and function of the ribosome to new antibioticsAngew. Chem. Int. Ed 49 4381CrossRefGoogle ScholarPubMed
Tama, FBrooks, III C L 2006 Symmetry, form, and shape: guiding principles for robustness in macromolecular machinesAnnu. Rev. Biophys. Biomol. Struct 35 115CrossRefGoogle ScholarPubMed
Thompson, D’Arcy 1963 On Growth and FormCambridge University PressGoogle Scholar
Tinoco, Jr. IBustamante, C 2002 The effect of force on thermodynamics and kinetics of single molecule reactionsBiophys. Chem 101–102 513CrossRefGoogle ScholarPubMed
Tinoco, Jr. IWen, J D 2009 Simulation and analysis of single-ribosome translationPhys. Biol 6CrossRefGoogle ScholarPubMed
Tsai, C Jdel, Sol ANussinov, R 2009 Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanismsMol. Biosyst 5 207CrossRefGoogle ScholarPubMed
Uemura, SAitken, C EFlusberg, B ATurner, S WPuglisi, J D 2010 Real-time tRNA transit on single translocating ribosomes at codon resolutionNature 464 1012CrossRefGoogle Scholar
Vale, R DOosawa, F 1990 Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet?Adv. Biophys 26 97CrossRefGoogle ScholarPubMed
Valle, MZavialov, ASengupta, JRawat, UEhrenberg, MFrank, J 2003 Locking and unlocking of ribosomal motionsCell 114 123CrossRefGoogle ScholarPubMed
Vologodskii, A 2006 Energy transformation in biological molecular motorsPhys. of Life Rev 3 119CrossRefGoogle Scholar
Wang, H 2005 Chemical and mechanical efficiencies of molecular motors and implications for motor mechanismJ. Phys. Condens. Matter 17 S3997CrossRefGoogle Scholar
Wang, HOster, G 2002 Ratchets, power strokes and molecular motorsAppl. Phys. A 75 315CrossRefGoogle Scholar
Wang, HOster, G 2002 The Stokes efficiency for molecular motors and its applicationsEurophys. Lett 57 134CrossRefGoogle Scholar
Wang, HElston, T C 2007 Mathematical and computational methods for studying energy transduction in protein motorsJ. Stat. Phys 128 35CrossRefGoogle Scholar
Wen, J DLancaster, LHodges, CZeri, A CYoshimura, S HNoller, H FBustamante, CTinoco Jr, I 2008 Following translation by single ribosomes one codon at a timeNature 452 598CrossRefGoogle ScholarPubMed
Wildman, K HKern, D 2007 Dynamic personalities of proteinsNature 450 964CrossRefGoogle Scholar
Wilson, K SNoller, H F 1998 Molecular movements in the translational engineCell 92 337CrossRefGoogle ScholarPubMed
Xing, JWang, HOster, G 2005 From continuum Fokker-Planck models to discrete kinetic modelsBiophys. J 89 1551CrossRefGoogle ScholarPubMed
Yonath, A 2010 Polar bears, antibiotics, and the evolving ribosomeAngew. Chem. Int. Ed 49 4340CrossRefGoogle ScholarPubMed
Zaher, H SGreen, R 2009 Fidelity at the molecular level: lessons from protein synthesisCell 136 746CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×