Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T00:09:20.359Z Has data issue: false hasContentIssue false

Chapter 7 - Structure and Dynamics of the Ribosome as Revealed by Cryo-Electron Microscopy

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Protein synthesis is a central process for living entities. In all kingdoms of life, the key component of this process is the ribosome, a large macromolecular assembly composed of two distinctly sized subunits, whose cores are largely composed of ribosomal RNA, or rRNA. This molecular machine mediates the sequential incorporation of amino acids carried by the transfer RNAs (tRNAs) into the nascent protein chain. This process is also known as translation, because the genetic message encoded in the messenger RNA (mRNA) is deciphered into the language of proteins (Figure 7.1).

The functional complexity of molecular machines such as the ribosome is coupled to their structural intricacy. Whereas initial imaging by electron microscopy showed nothing but dense granules ∼200Å in diameter (Palade, 1955), decades later the development of cryo-electron microscopy (cryo-EM), combined with image processing methodology, brought evidence for the extreme complexity of the ribosome with its multiple mobile and flexible parts. Recently, as the quality of electron density maps has greatly improved thanks to methodological advances in this field (see Chapter 2 in this volume by Joachim Frank), new intermediate states have been observed and the dynamic behavior of the ribosome and its ligands has been further characterized in conjunction with other biophysical techniques such as X-ray crystallography, kinetic analysis, and single-molecule fluorescent resonance energy transfer (smFRET) (see Figure 7.2). Considering that the 3D reconstructions obtained by cryo-EM are snapshots representing functional states along the translation pathway, it is now widely acknowledged that this experimental approach has been indispensable in unraveling essential processes that cooperate in translation. Furthermore, many structural insights that have come from cryo-EM work currently drive experimental design in a wide range of studies of the ribosome, from biochemical to crystallographic studies and single-molecule FRET.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 117 - 141
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, M. GLorsch, J. R 2008 Mechanism of ribosomal subunit joining during eukaryotic translation initiationBiochem Soc Trans 36 653CrossRefGoogle ScholarPubMed
Aevarsson, ABrazhnikov, EGarber, MZheltonosova, JChirgadze, YAl-Karadaghi, SSvensson, L. ALiljas, A 1994 Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilusEMBO J 13 3669Google ScholarPubMed
Agirrezabala, XFrank, J 2009 Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-TuQ Rev Biophys 42 159CrossRefGoogle ScholarPubMed
Agirrezabala, XFrank, J 2010 From DNA to proteins via the ribosome: structural insights into the workings of the translation machineryHum Genomics 4 226CrossRefGoogle ScholarPubMed
Agirrezabala, XLei, JBrunelle, J. LOrtiz-Meoz, R. FGreen, RFrank, J 2008 Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosomeMol Cell 32 190CrossRefGoogle ScholarPubMed
Agrawal, R. KHeagle, A. BPenczek, PGrassucci, R. AFrank, J 1999 EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosomeNat Struct Biol 6 643CrossRefGoogle ScholarPubMed
Agrawal, R. KPenczek, PGrassucci, R. AFrank, J 1998 Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocationProc Natl Acad Sci USA 95 6134CrossRefGoogle ScholarPubMed
Agrawal, R. KSharma, M. RKiel, M. CHirokawa, GBooth, T. MSpahn, C. MGrassucci, R. AKaji, AFrank, J 2004 Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implicationsProc Natl Acad Sci USA 101 8900CrossRefGoogle ScholarPubMed
Al-Karadaghi, SAevarsson, AGarber, MZheltonosova, JLiljas, A 1996 The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchangeStructure 4 555CrossRefGoogle ScholarPubMed
Algire, M. AMaag, DSavio, PAcker, M. GTarun, S. ZSachs, A. BAsano, KNielsen, K. HOlsen, D. SPhan, LHinnebusch, A. GLorsch, J. R 2002 Development and characterization of a reconstituted yeast translation initiation systemRNA 8 382CrossRefGoogle ScholarPubMed
Allen, G. SFrank, J 2007 Structural insights on the translation initiation complex: ghosts of a universal initiation complexMol Microbiol 63 941CrossRefGoogle ScholarPubMed
Allen, G. SZavialov, AGursky, REhrenberg, MFrank, J 2005 The cryo-EM structure of a translation initiation complex from Escherichia coliCell 121 703CrossRefGoogle ScholarPubMed
Andersen, C. BBecker, TBlau, MAnand, MHalic, MBalar, BMielke, TBoesen, TPedersen, J. SSpahn, C. MKinzy, T. GAndersen, G. RBeckmann, R 2006 Structure of eEF3 and the mechanism of transfer RNA release from the E-siteNature 443 663CrossRefGoogle ScholarPubMed
Antoun, APavlov, M. YAndersson, KTenson, TEhrenberg, M 2003 The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesisEMBO J 22 5593CrossRefGoogle ScholarPubMed
Antoun, APavlov, M. YLovmar, MEhrenberg, M 2006 How initiation factors tune the rate of initiation of protein synthesis in bacteriaEMBO J 25 2539CrossRefGoogle ScholarPubMed
Barat, CDatta, P. PRaj, V. SSharma, M. RKaji, HKaji, AAgrawal, R. K 2007 Progression of the ribosome recycling factor through the ribosome dissociates the two ribosomal subunitsMol Cell 27 250CrossRefGoogle ScholarPubMed
Becker, TBhushan, SJarasch, AArmache, J. PFunes, SJossinet, FGumbart, JMielke, TBerninghausen, OSchulten, KWesthof, EGilmore, RMandon, E. CBeckmann, R 2009 Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosomeScience 326 1369CrossRefGoogle ScholarPubMed
Beckmann, RBubeck, DGrassucci, RPenczek, PVerschoor, ABlobel, GFrank, J 1997 Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complexScience 278 2123CrossRefGoogle ScholarPubMed
Beckmann, RSpahn, C. MEswar, NHelmers, JPenczek, P. ASali, AFrank, JBlobel, G 2001 Architecture of the protein-conducting channel associated with the translating 80S ribosomeCell 107 361CrossRefGoogle ScholarPubMed
Ben-Shem, AYusupov, M 2010 Crystal structure of the eukaryotic ribosome. Science 26 1203
Beringer, MRodnina, M. V 2007 The ribosomal peptidyl transferaseMol Cell 26 311CrossRefGoogle ScholarPubMed
Bhushan, SGartmann, MHalic, MArmache, J. PJarasch, AMielke, TBerninghausen, OWilson, D. NBeckmann, R 2010 alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnelNat Struct Mol Biol 17 313CrossRefGoogle ScholarPubMed
Blaha, GStanley, R. ESteitz, T. A 2009 Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosomeScience 325 966CrossRefGoogle ScholarPubMed
Blanchard, S. CGonzalez, R. LKim, H. DChu, SPuglisi, J. D 2004 tRNA selection and kinetic proofreading in translationNat Struct Mol Biol 11 1008CrossRefGoogle ScholarPubMed
Boelens, RGualerzi, C. O 2002 Structure and function of bacterial initiation factorsCurr Protein Pept Sci 3 107CrossRefGoogle ScholarPubMed
Borovinskaya, M. APai, R. DZhang, WSchuwirth, B. SHolton, J. MHirokawa, GKaji, HKaji, ACate, J. H 2007 Structural basis for aminoglycoside inhibition of bacterial ribosome recyclingNat Struct Mol Biol 14 727CrossRefGoogle ScholarPubMed
Bretscher, M. S 1968 Translocation in protein synthesis: a hybrid structure modelNature 218 675CrossRefGoogle ScholarPubMed
Carter, A. PClemons, W. MBrodersen, D. EMorgan-Warren, R. JHartsch, TWimberly, B. TRamakrishnan, V 2001 Crystal structure of an initiation factor bound to the 30S ribosomal subunitScience 291 498CrossRefGoogle ScholarPubMed
Chandramouli, PTopf, MMenetret, J. FEswar, NCannone, J. JGutell, R. RSali, AAkey, C. W 2008 Structure of the mammalian 80S ribosome at 87 A resolution. Structure 16 535Google ScholarPubMed
Connell, S. RTakemoto, CWilson, D. NWang, HMurayama, KTerada, TShirouzu, MRost, MSchuler, MGiesebrecht, JDabrowski, MMielke, TFucini, PYokoyama, SSpahn, C. M 2007 Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factorsMol Cell 25 751CrossRefGoogle ScholarPubMed
Connell, S. RTopf, MQin, YWilson, D. NMielke, TFucini, PNierhaus, K. HSpahn, C. M 2008 A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocationNat Struct Mol Biol 15 910CrossRefGoogle ScholarPubMed
Cornish, P. VErmolenko, D. NNoller, H. FHa, T 2008 Spontaneous inter-subunit rotation in single ribosomesMol Cell 30 578CrossRefGoogle Scholar
Cornish, P. VErmolenko, D. NStaple, D. WHoang, LHickerson, R. PNoller, H. FHa, T 2009 Following movement of the L1 stalk between three functional states in single ribosomesProc Natl Acad Sci USA 106 2571CrossRefGoogle ScholarPubMed
Czworkowski, JWang, JSteitz, T. AMoore, P. B 1994 The crystal structure of elongation factor G complexed with GDP, at 2.7 EMBO J 13 3661Google ScholarPubMed
Datta, P. PSharma, M. RQi, LFrank, JAgrawal, R. K 2005 Interaction of the G’ domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EMMol Cell 20 723CrossRefGoogle ScholarPubMed
Dinman, J. D 2009 The eukaryotic ribosome: current status and challengesJ Biol Chem 284 11761CrossRefGoogle ScholarPubMed
Dorner, SBrunelle, J. LSharma, DGreen, R 2006 The hybrid state of tRNA binding is an authentic translation elongation intermediateNat Struct Mol Biol 13 234CrossRefGoogle ScholarPubMed
Ermolenko, D. NMajumdar, Z. KHickerson, R. PSpiegel, P. CClegg, R. MNoller, H. F 2007 Observation of intersubunit movement of the ribosome in solution using FRETJ Mol Biol 370 530CrossRefGoogle ScholarPubMed
Ermolenko, D. NSpiegel, P. CMajumdar, Z. KHickerson, R. PClegg, R. MNoller, H. F 2007 The antibiotic viomycin traps the ribosome in an intermediate state of translocationNat Struct Mol Biol 14 493CrossRefGoogle Scholar
Fei, JKosuri, PMacdougall, D. DGonzalez, R. L 2008 Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongationMol Cell 30 348CrossRefGoogle ScholarPubMed
Frank, JAgrawal, R. K 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, JGao, HSengupta, JGao, NTaylor, D. J 2007 The process of mRNA-tRNA translocationProc Natl Acad Sci USA 104 19671CrossRefGoogle ScholarPubMed
Frank, JGonzalezJr, R. L 2010 Structure and Dynamics of a Processive Brownian Motor: The Translating RibosomeAnnu Rev Biochem 79 381CrossRefGoogle ScholarPubMed
Frank, JSengupta, JGao, HLi, WValle, MZavialov, AEhrenberg, M 2005 The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transferFEBS Lett 579 959CrossRefGoogle ScholarPubMed
Gao, HAyub, M. JLevin, M. JFrank, J 2005 The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA componentsProc Natl Acad Sci USA 102 10206CrossRefGoogle ScholarPubMed
Gao, HZhou, ZRawat, UHuang, CBouakaz, LWang, CCheng, ZLiu, YZavialov, AGursky, RSanyal, SEhrenberg, MFrank, JSong, H 2007 RF3 induces ribosomal conformational changes responsible for dissociation of class I release factorsCell 129 929CrossRefGoogle ScholarPubMed
Gao, NZavialov, A. VLi, WSengupta, JValle, MGursky, R. PEhrenberg, MFrank, J 2005 Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studiesMol Cell 18 663CrossRefGoogle ScholarPubMed
Gao, Y. GSelmer, MDunham, C. MWeixlbaumer, AKelley, A. CRamakrishnan, V 2009 The structure of the ribosome with elongation factor G trapped in the posttranslocational stateScience 326 694CrossRefGoogle ScholarPubMed
Gilbert, R. JFucini, PConnell, SFuller, S. DNierhaus, K. HRobinson, C. VDobson, C. MStuart, D. I 2004 Three-dimensional structures of translating ribosomes by Cryo-EMMol Cell 14 57CrossRefGoogle ScholarPubMed
Gilbert, R. JGordiyenko, YVon Der Haar, TSonnen, A. FHofmann, GNardelli, MStuart, D. IMccarthy, J. E 2007 Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complexProc Natl Acad Sci USA 104 5788CrossRefGoogle ScholarPubMed
Gomez-Lorenzo, M. GSpahn, C. MAgrawal, R. KGrassucci, R. APenczek, PChakraburtty, KBallesta, J. PLavandera, J. LGarcia-Bustos, J. FFrank, J 2000 Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolutionEMBO J 19 2710CrossRefGoogle ScholarPubMed
Gromadski, K. BRodnina, M. V 2004 Kinetic determinants of high-fidelity tRNA discrimination on the ribosomeMol Cell 13 191CrossRefGoogle ScholarPubMed
Gualerzi, C. OPon, C. L 1990 Initiation of mRNA translation in prokaryotesBiochemistry 29 5881CrossRefGoogle ScholarPubMed
Halic, MBecker, TPool, M. RSpahn, C. MGrassucci, R. AFrank, JBeckmann, R 2004 Structure of the signal recognition particle interacting with the elongation-arrested ribosomeNature 427 808CrossRefGoogle ScholarPubMed
Halic, MBlau, MBecker, TMielke, TPool, M. RWild, KSinning, IBeckmann, R 2006 Following the signal sequence from ribosomal tunnel exit to signal recognition particleNature 444 507CrossRefGoogle ScholarPubMed
Halic, MGartmann, MSchlenker, OMielke, TPool, M. RSinning, IBeckmann, R 2006 Signal recognition particle receptor exposes the ribosomal translocon binding siteScience 312 745CrossRefGoogle ScholarPubMed
Hansson, SSingh, RGudkov, A. TLiljas, ALogan, D. T 2005 Crystal structure of a mutant elongation factor G trapped with a GTP analogueFEBS Lett 579 4492CrossRefGoogle ScholarPubMed
Hansson, SSingh, RGudkov, A. TLiljas, ALogan, D. T 2005 Structural insights into fusidic acid resistance and sensitivity in EF-GJ Mol Biol 348 939CrossRefGoogle ScholarPubMed
Jenner, LRees, BYusupov, MYusupova, G 2007 Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallographyEMBO Rep 8 846CrossRefGoogle Scholar
Jenner, LRomby, PRees, BSchulze-Briese, CSpringer, MEhresmann, CEhresmann, BMoras, DYusupova, GYusupov, M 2005 Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome bindingScience 308 120CrossRefGoogle ScholarPubMed
Jorgensen, RMerrill, A. RYates, S. PMarquez, V. ESchwan, A. LBoesen, TAndersen, G. R 2005 Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicryNature 436 979CrossRefGoogle ScholarPubMed
Jorgensen, ROrtiz, P. ACarr-Schmid, ANissen, PKinzy, T. GAndersen, G. R 2003 Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocaseNat Struct Biol 10 379CrossRefGoogle ScholarPubMed
Jorgensen, RYates, S. PTeal, D. JNilsson, JPrentice, G. AMerrill, A. RAndersen, G. R 2004 Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiaeJ Biol Chem 279 45919CrossRefGoogle ScholarPubMed
Julian, PKonevega, A. LScheres, S. HLazaro, MGil, DWintermeyer, WRodnina, M. VValle, M 2008 Structure of ratcheted ribosomes with tRNAs in hybrid statesProc Natl Acad Sci USA 105 16924CrossRefGoogle ScholarPubMed
Kapp, L. DLorsch, J. R 2004 The molecular mechanics of eukaryotic translationAnnu Rev Biochem 73 657CrossRefGoogle ScholarPubMed
Karimi, RPavlov, M. YBuckingham, R. HEhrenberg, M 1999 Novel roles for classical factors at the interface between translation termination and initiationMol Cell 3 601CrossRefGoogle ScholarPubMed
Kieft, J. SZhou, KJubin, RDoudna, J. A 2001 Mechanism of ribosome recruitment by hepatitis C IRES RNARNA 7 194CrossRefGoogle ScholarPubMed
Kieft, J. SZhou, KJubin, RMurray, M. GLau, J. YDoudna, J. A 1999 The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary foldJ Mol Biol 292 513CrossRefGoogle ScholarPubMed
Kim, H. DPuglisi, J. DChu, S 2007 Fluctuations of transfer RNAs between classical and hybrid statesBiophys J 93 3575CrossRefGoogle ScholarPubMed
Kim, K. KMin, KSuh, S. W 2000 Crystal structure of the ribosome recycling factor from Escherichia coliEMBO J 19 2362CrossRefGoogle ScholarPubMed
Kisselev, LEhrenberg, MFrolova, L 2003 Termination of translation: interplay of mRNA, rRNAs and release factors?EMBO J 22 175CrossRefGoogle ScholarPubMed
Klaholz, B. PMyasnikov, A. GVan Heel, M 2004 Visualization of release factor 3 on the ribosome during termination of protein synthesisNature 427 862CrossRefGoogle ScholarPubMed
Klaholz, B. PPape, TZavialov, A. VMyasnikov, A. GOrlova, E. VVestergaard, BEhrenberg, MVan Heel, M 2003 Structure of the Escherichia coli ribosomal termination complex with release factor 2Nature 421 90CrossRefGoogle ScholarPubMed
Korostelev, AAsahara, HLancaster, LLaurberg, MHirschi, AZhu, JTrakhanov, SScott, W. GNoller, H. F 2008 Crystal structure of a translation termination complex formed with release factor RF2Proc Natl Acad Sci USA 105 19684CrossRefGoogle ScholarPubMed
Korostelev, ATrakhanov, SAsahara, HLaurberg, MLancaster, LNoller, H. F 2007 Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosomeProc Natl Acad Sci USA 104 16840CrossRefGoogle ScholarPubMed
Kressler, DHurt, EBabetaler, J 2010 Driving ribosome assemblyBiochim Biophys Acta 1803Google ScholarPubMed
La Teana, AGualerzi, C. OBrimacombe, R 1995 From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factorsRNA 1 772Google ScholarPubMed
Lancaster, LKiel, M. CKaji, ANoller, H. F 2002 Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probingCell 111 129CrossRefGoogle ScholarPubMed
Laurberg, MAsahara, HKorostelev, AZhu, JTrakhanov, SNoller, H. F 2008 Structural basis for translation termination on the 70S ribosomeNature 454 852CrossRefGoogle ScholarPubMed
Laursen, B. SSorensen, H. PMortensen, K. KSperling-Petersen, H. U 2005 Initiation of protein synthesis in bacteriaMicrobiol Mol Biol Rev 69 101CrossRefGoogle ScholarPubMed
Li, WAgirrezabala, XLei, JBouakaz, LBrunelle, J. LOrtiz-Meoz, R. FGreen, RSanyal, SEhrenberg, MFrank, J 2008 Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EMEMBO J 27 3322CrossRefGoogle ScholarPubMed
Marshall, R. AAitken, C. EDorywalska, MPuglisi, J. D 2008 Translation at the single-molecule levelAnnu Rev Biochem 77 177CrossRefGoogle ScholarPubMed
Marshall, R. AAitken, C. EPuglisi, J. D 2009 GTP hydrolysis by IF2 guides progression of the ribosome into elongationMol Cell 35 37CrossRefGoogle ScholarPubMed
Marshall, R. ADorywalska, MPuglisi, J. D 2008 Irreversible chemical steps control intersubunit dynamics during translationProc Natl Acad Sci USA 105 15364CrossRefGoogle ScholarPubMed
Marzi, SMyasnikov, A. GSerganov, AEhresmann, CRomby, PYusupov, MKlaholz, B. P 2007 Structured mRNAs regulate translation initiation by binding to the platform of the ribosomeCell 130 1019CrossRefGoogle ScholarPubMed
Mccutcheon, J. PAgrawal, R. KPhilips, S. MGrassucci, R. AGerchman, S. EClemons, W. MRamakrishnan, VFrank, J 1999 Location of translational initiation factor IF3 on the small ribosomal subunitProc Natl Acad Sci USA 96 4301CrossRefGoogle ScholarPubMed
Menetret, J. FHegde, R. SAguiar, MGygi, S. PPark, ERapoport, T. AAkey, C. W 2008 Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosomeStructure 16 1126CrossRefGoogle ScholarPubMed
Menetret, J. FHegde, R. SHeinrich, S. UChandramouli, PLudtke, S. JRapoport, T. AAkey, C. W 2005 Architecture of the ribosome-channel complex derived from native membranesJ Mol Biol 348 445CrossRefGoogle ScholarPubMed
Menetret, J. FNeuhof, AMorgan, D. GPlath, KRadermacher, MRapoport, T. AAkey, C. W 2000 The structure of ribosome-channel complexes engaged in protein translocationMol Cell 6 1219CrossRefGoogle ScholarPubMed
Menetret, J. FSchaletzky, JClemons, W. MOsborne, A. RSkanland, S. SDenison, CGygi, S. PKirkpatrick, D. SPark, ELudtke, S. JRapoport, T. AAkey, C. W 2007 Ribosome binding of a single copy of the SecY complex: implications for protein translocationMol Cell 28 1083CrossRefGoogle ScholarPubMed
Milon, PKonevega, A. LGualerzi, C. ORodnina, M. V 2008 Kinetic checkpoint at a late step in translation initiationMol Cell 30 712CrossRefGoogle Scholar
Mitra, KSchaffitzel, CShaikh, TTama, FJenni, SBrooks, C. LBan, NFrank, J 2005 Structure of the E. coli protein-conducting channel bound to a translating ribosomeNature 438 318CrossRefGoogle Scholar
Moazed, DNoller, H. F 1989 Intermediate states in the movement of transfer RNA in the ribosomeNature 342 142CrossRefGoogle ScholarPubMed
Munro, J. BAltman, R. BO’Connor, NBlanchard, S. C 2007 Identification of two distinct hybrid state intermediates on the ribosomeMol Cell 25 505CrossRefGoogle ScholarPubMed
Munro, J. BAltman, R. BTung, C. SCate, J. HSanbonmatsu, K. YBlanchard, S. C 2010 Spontaneous formation of the unlocked state of the ribosome is a multistep processProc Natl Acad Sci USA 107 709CrossRefGoogle ScholarPubMed
Munro, J. BSanbonmatsu, K. YSpahn, C. MBlanchard, S. C 2009 Navigating the ribosome's metastable energy landscapeTrends Biochem Sci 34 390CrossRefGoogle ScholarPubMed
Myasnikov, A. GMarzi, SSimonetti, AGiuliodori, A. MGualerzi, C. OYusupova, GYusupov, MKlaholz, B. P 2005 Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosomeNat Struct Mol Biol 12 1145CrossRefGoogle ScholarPubMed
Myasnikov, A. GSimonetti, AMarzi, SKlaholz, B. P 2009 Structure-function insights into prokaryotic and eukaryotic translation initiationCurr Opin Struct Biol 19 300CrossRefGoogle ScholarPubMed
Nakamura, YIto, K 2003 Making sense of mimic in translation terminationTrends Biochem Sci 28 99CrossRefGoogle ScholarPubMed
Nilsson, JSengupta, JGursky, RNissen, PFrank, J 2007 Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segmentsJ Mol Biol 369 429CrossRefGoogle ScholarPubMed
Ogle, J. MBrodersen, D. EClemons, W. MTarry, M. JCarter, A. PRamakrishnan, V 2001 Recognition of cognate transfer RNA by the 30S ribosomal subunitScience 292 897CrossRefGoogle ScholarPubMed
Ogle, J. MMurphy, F. VTarry, M. JRamakrishnan, V 2002 Selection of tRNA by the ribosome requires a transition from an open to a closed formCell 111 721CrossRefGoogle ScholarPubMed
Ogle, J. MRamakrishnan, V 2005 Structural insights into translational fidelityAnnu Rev Biochem 74 129CrossRefGoogle ScholarPubMed
Palade, G. E 1955 A small particulate component of the cytoplasmJ Biophys Biochem Cytol 1 59CrossRefGoogle ScholarPubMed
Panse, V. GJohnson, A. W 2010 Maturation of eukaryotic ribosomes: acquisition of functionalityTrends Biochem Sci 35 260CrossRefGoogle ScholarPubMed
Passmore, L. ASchmeing, T. MMaag, DApplefield, D. JAcker, M. GAlgire, M. ALorsch, J. RRamakrishnan, V 2007 The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosomeMol Cell 26 41CrossRefGoogle ScholarPubMed
Peske, FMatassova, N. BSavelsbergh, ARodnina, M. VWintermeyer, W 2000 Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosomeMol Cell 6 501CrossRefGoogle ScholarPubMed
Peske, FRodnina, M. VWintermeyer, W 2005 Sequence of steps in ribosome recycling as defined by kinetic analysisMol Cell 18 403CrossRefGoogle ScholarPubMed
Pestova, T. VHellen, C. U 2003 Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNAGenes Dev 17 181CrossRefGoogle ScholarPubMed
Pestova, T. VShatsky, I. NFletcher, S. PJackson, R. JHellen, C. U 1998 A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAsGenes Dev 12 67CrossRefGoogle ScholarPubMed
Petry, SBrodersen, D. EMurphy, F. V. TDunham, C. MSelmer, MTarry, M. JKelley, A. CRamakrishnan, V 2005 Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codonCell 123 1255CrossRefGoogle ScholarPubMed
Petry, SWeixlbaumer, ARamakrishnan, V 2008 The termination of translationCurr Opin Struct Biol 18 70CrossRefGoogle Scholar
Pioletti, MSchlunzen, FHarms, JZarivach, RGluhmann, MAvila, HBashan, ABartels, HAuerbach, TJacobi, CHartsch, TYonath, AFranceschi, F 2001 Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3EMBO J 20 1829CrossRefGoogle ScholarPubMed
Qin, YPolacek, NVesper, OStaub, EEinfeldt, EWilson, D. NNierhaus, K. H 2006 The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosomeCell 127 721CrossRefGoogle ScholarPubMed
Rabl, J., Leibundgut, M., Ataide, S. F., Haag, ABan, N 2010 Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1Science 331 730Google Scholar
Rawat, UGao, HZavialov, AGursky, REhrenberg, MFrank, J 2006 Interactions of the release factor RF1 with the ribosome as revealed by cryo-EMJ Mol Biol 357 1144CrossRefGoogle ScholarPubMed
Rawat, U. BZavialov, A. VSengupta, JValle, MGrassucci, R. ALinde, JVestergaard, BEhrenberg, MFrank, J 2003 A cryo-electron microscopic study of ribosome-bound termination factor RF2Nature 421 87CrossRefGoogle ScholarPubMed
Rodnina, M. VFricke, RKuhn, LWintermeyer, W 1995 Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosomeEMBO J 14 2613Google ScholarPubMed
Rodnina, M. VFricke, RWintermeyer, W 1994 Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor TuBiochemistry 33 12267CrossRefGoogle ScholarPubMed
Rodnina, M. VPape, TFricke, RKuhn, LWintermeyer, W 1996 Initial binding of the elongation factor TuGTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. J Biol Chem 271 646Google ScholarPubMed
Rodnina, M. VWintermeyer, W 2001 Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanismsAnnu Rev Biochem 70 415CrossRefGoogle ScholarPubMed
Rodnina, M. VWintermeyer, W 2009 Recent mechanistic insights into eukaryotic ribosomesCurr Opin Cell Biol 21 435CrossRefGoogle ScholarPubMed
Savelsbergh, AKatunin, V. IMohr, DPeske, FRodnina, M. VWintermeyer, W 2003 An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocationMol Cell 11 1517CrossRefGoogle ScholarPubMed
Schaffitzel, COswald, MBerger, IIshikawa, TAbrahams, J. PKoerten, H. KKoning, R. IBan, N 2006 Structure of the E. coli signal recognition particle bound to a translating ribosomeNature 444 503CrossRefGoogle Scholar
Schmeing, T. MVoorhees, R. MKelley, A. CGao, Y. GMurphy, F. V. TWeir, J. RRamakrishnan, V 2009 The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNAScience 326 688CrossRefGoogle ScholarPubMed
Schuette, J. CMurphy, F. V. TKelley, A. CWeir, J. RGiesebrecht, JConnell, S. RLoerke, JMielke, TZhang, WPenczek, P. ARamakrishnan, VSpahn, C. M 2009 GTPase activation of elongation factor EF-Tu by the ribosome during decodingEMBO J 28 755CrossRefGoogle ScholarPubMed
Schuler, MConnell, S. RLescoute, AGiesebrecht, JDabrowski, MSchroeer, BMielke, TPenczek, P. AWesthof, ESpahn, C. M 2006 Structure of the ribosome-bound cricket paralysis virus IRES RNANat Struct Mol Biol 13 1092CrossRefGoogle ScholarPubMed
Schuwirth, B. SBorovinskaya, M. AHau, C. WZhang, WVila-Sanjurjo, AHolton, J. MCate, J. H 2005 Structures of the bacterial ribosome at 3.5 A resolutionScience 310 827CrossRefGoogle ScholarPubMed
Seidelt, BInnis, C. AWilson, D. NGartmann, MArmache, J. PVilla, ETrabuco, L. GBecker, TMielke, TSchulten, KSteitz, T. ABeckmann, R 2009 Structural insight into nascent polypeptide chain-mediated translational stallingScience 326 1412CrossRefGoogle ScholarPubMed
Selmer, MAl-Karadaghi, SHirokawa, GKaji, ALiljas, A 1999 Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimicScience 286 2349CrossRefGoogle ScholarPubMed
Sengupta, JNilsson, JGursky, RKjeldgaard, MNissen, PFrank, J 2008 Visualization of the eEF2–80S ribosome transition-state complex by cryo-electron microscopyJ Mol Biol 382 179CrossRefGoogle ScholarPubMed
Sharma, M. RBooth, T. MSimpson, LMaslov, D. AAgrawal, R. K 2009 Structure of a mitochondrial ribosome with minimal RNAProc Natl Acad Sci USA 106 9637CrossRefGoogle ScholarPubMed
Sharma, M. RKoc, E. CDatta, P. PBooth, T. MSpremulli, L. LAgrawal, R. K 2003 Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteinsCell 115 97CrossRefGoogle ScholarPubMed
Sharma, M. RWilson, D. NDatta, P. PBarat, CSchluenzen, FFucini, PAgrawal, R. K 2007 Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteinsProc Natl Acad Sci USA 104 19315CrossRefGoogle ScholarPubMed
Shin, D. HBrandsen, JJancarik, JYokota, HKim, RKim, S. H 2004 Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosomeJ Mol Biol 341 227CrossRefGoogle ScholarPubMed
Simonetti, AMarzi, SJenner, LMyasnikov, ARomby, PYusupova, GKlaholz, B. PYusupov, M 2009 A structural view of translation initiation in bacteriaCell Mol Life Sci 66 423CrossRefGoogle ScholarPubMed
Simonetti, AMarzi, SMyasnikov, A. GFabbretti, AYusupov, MGualerzi, C. OKlaholz, B. P 2008 Structure of the 30S translation initiation complexNature 455 416CrossRefGoogle ScholarPubMed
Simonovic, MSteitz, T. A 2009 A structural view on the mechanism of the ribosome-catalyzed peptide bond formationBiochim Biophys Acta 1789 612CrossRefGoogle ScholarPubMed
Siridechadilok, BFraser, C. SHall, R. JDoudna, J. ANogales, E 2005 Structural roles for human translation factor eIF3 in initiation of protein synthesisScience 310 1513CrossRefGoogle ScholarPubMed
Sonenberg, NHinnebusch, A. G 2009 Regulation of translation initiation in eukaryotes: mechanisms and biological targetsCell 136 731CrossRefGoogle ScholarPubMed
Spahn, C. MBeckmann, REswar, NPenczek, P. ASali, ABlobel, GFrank, J 2001 Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-ribosome and subunit-subunit interactionsCell 107 373CrossRefGoogle ScholarPubMed
Spahn, C. MGomez-Lorenzo, M. GGrassucci, R. AJorgensen, RAndersen, G. RBeckmann, RPenczek, P. ABallesta, J. PFrank, J 2004 Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocationEMBO J 23 1008CrossRefGoogle ScholarPubMed
Spahn, C. MJan, EMulder, AGrassucci, R. ASarnow, PFrank, J 2004 Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factorCell 118 465CrossRefGoogle ScholarPubMed
Spahn, C. MKieft, J. SGrassucci, R. APenczek, P. AZhou, KDoudna, J. AFrank, J 2001 Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunitScience 291 1959CrossRefGoogle ScholarPubMed
Spahn, C. MPenczek, P. A 2009 Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EMCurr Opin Struct Biol 19 623CrossRefGoogle ScholarPubMed
Spirin, A. S 1968 How does the ribosome work? A hypothesis based on the two subunit construction of the ribosomeCurr Mod Biol 2 115Google Scholar
Stark, HRodnina, M. VWieden, H. JVan Heel, MWintermeyer, W 2000 Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocationCell 100 301CrossRefGoogle ScholarPubMed
Stark, HRodnina, M. VWieden, H. JZemlin, FWintermeyer, WVan Heel, M 2002 Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complexNat Struct Biol 9 849Google ScholarPubMed
Sternberg, S. HFei, JPrywes, NMcgrath, K. AGonzalez, R. L 2009 Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recyclingNat Struct Mol Biol 16 861CrossRefGoogle ScholarPubMed
Studer, S. MJoseph, S 2006 Unfolding of mRNA secondary structure by the bacterial translation initiation complexMol Cell 22 105CrossRefGoogle ScholarPubMed
Taylor, D. JDevkota, BHuang, A. DTopf, MNarayanan, ESali, AHarvey, S. CFrank, J 2009 Comprehensive molecular structure of the eukaryotic ribosomeStructure 17 1591CrossRefGoogle ScholarPubMed
Taylor, D. JNilsson, JMerrill, A. RAndersen, G. RNissen, PFrank, J 2007 Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocationEMBO J 26 2421CrossRefGoogle ScholarPubMed
Toyoda, TTin, O. FIto, KFujiwara, TKumasaka, TYamamoto, MGarber, M. BNakamura, Y 2000 Crystal structure combined with genetic analysis of the Thermus thermophilus ribosome recycling factor shows that a flexible hinge may act as a functional switchRNA 6 1432CrossRefGoogle ScholarPubMed
Valle, MSengupta, JSwami, N. KGrassucci, R. ABurkhardt, NNierhaus, K. HAgrawal, R. KFrank, J 2002 Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation processEMBO J 21 3557CrossRefGoogle ScholarPubMed
Valle, MZavialov, ALi, WStagg, S. MSengupta, JNielsen, R. CNissen, PHarvey, S. CEhrenberg, MFrank, J 2003 Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopyNat Struct Biol 10 899CrossRefGoogle ScholarPubMed
Valle, MZavialov, ASengupta, JRawat, UEhrenberg, MFrank, J 2003 Locking and unlocking of ribosomal motionsCell 114 123CrossRefGoogle ScholarPubMed
Vanloock, M. SAgrawal, R. KGabashvili, I. SQi, LFrank, JHarvey, S. C 2000 Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocationJ Mol Biol 304 507CrossRefGoogle ScholarPubMed
Varshney, ULee, C. PRajbhandary, U. L 1993 From elongator tRNA to initiator tRNAProc Natl Acad Sci USA 90 2305CrossRefGoogle ScholarPubMed
Vestergaard, BSanyal, SRoessle, MMora, LBuckingham, R. HKastrup, J. SGajhede, MSvergun, D. IEhrenberg, M 2005 The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structureMol Cell 20 929CrossRefGoogle ScholarPubMed
Vestergaard, BVan, L. BAndersen, G. RNyborg, JBuckingham, R. HKjeldgaard, M 2001 Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1Mol Cell 8 1375CrossRefGoogle ScholarPubMed
Villa, ESengupta, JTrabuco, L. GLebarron, JBaxter, W. TShaikh, T. RGrassucci, R. ANissen, PEhrenberg, MSchulten, KFrank, J 2009 Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysisProc Natl Acad Sci USA 106 1063CrossRefGoogle ScholarPubMed
Weixlbaumer, AJin, HNeubauer, CVoorhees, R. MPetry, SKelley, A. CRamakrishnan, V 2008 Insights into translational termination from the structure of RF2 bound to the ribosomeScience 322 953CrossRefGoogle ScholarPubMed
Weixlbaumer, APetry, SDunham, C. MSelmer, MKelley, A. CRamakrishnan, V 2007 Crystal structure of the ribosome recycling factor bound to the ribosomeNat Struct Mol Biol 14 733CrossRefGoogle ScholarPubMed
Wilden, BSavelsbergh, ARodnina, M. VWintermeyer, W 2006 Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosomeProc Natl Acad Sci USA 103 13670CrossRefGoogle ScholarPubMed
Wilson, D. NSchluenzen, FHarms, J. MYoshida, TOhkubo, TAlbrecht, RBuerger, JKobayashi, YFucini, P 2005 X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunitEMBO J 24 251CrossRefGoogle ScholarPubMed
Yarus, MValle, MFrank, J 2003 A twisted tRNA intermediate sets the threshold for decodingRNA 9 384CrossRefGoogle ScholarPubMed
Youngman, E. MHe, S. LNikstad, L. JGreen, R 2007 Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide releaseMol Cell 28 533CrossRefGoogle ScholarPubMed
Yusupova, GJenner, LRees, BMoras, DYusupov, M 2006 Structural basis for messenger RNA movement on the ribosomeNature 444 391CrossRefGoogle ScholarPubMed
Yusupova, G. ZYusupov, M. MCate, J. HNoller, H. F 2001 The path of messenger RNA through the ribosomeCell 106 233CrossRefGoogle ScholarPubMed
Zavialov, A. VEhrenberg, M 2003 Peptidyl-tRNA regulates the GTPase activity of translation factorsCell 114 113CrossRefGoogle ScholarPubMed
Zhang, WDunkle, J. ACate, J. H 2009 Structures of the ribosome in intermediate states of ratchetingScience 325 1014CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×