Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T00:04:48.412Z Has data issue: false hasContentIssue false

Chapter 8 - Viewing the Mechanisms of Translation through the Computational Microscope

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Introduction

Biological molecular machines span a range of sizes, from the 80-Å-sized helicases (e.g., PcrA) (Dittrich and Schulten, 2006; Dittrich et al., 2006), to the 250-Å-sized ATP synthase (Aksimentiev et al., 2004), to the 10-μm-long Bacterial flagellum (Arkhipov et al., 2006; Kitao et al., 2006). The machines all share certain traits, particularly the ability to utilize energy to perform useful work. Like macroscopic machines, those on the molecular scale are typically comprised of different components that carry out a cycle of well-regulated steps. Unlike macroscopic machines, however, molecular machines must contend with, and even take advantage of, thermal fluctuations that are omnipresent at their scale.

A quintessential example of a large molecular machine, the ribosome, is found in all organisms and in all cells. It is a large (2.5–4.5 MDa) nucleo-protein complex responsible for translating a cell's genetic information into proteins (Korostelev et al., 2008; Steitz, 2008; Schmeing and Ramakrishnan, 2009; Frank and Gonzalez, Jr., 2010). The ribosome is composed of a multitude of interacting components (more than fifty) that assemble into two subunits, denoted large and small. Translation can be broken down into four fundamental stages, initiation, elongation, termination and recycling, each composed of multiple steps and requiring the involvement of additional specialized components. In the first stage (step 1), the two ribosomal subunits join together with a messenger RNA (mRNA) strand to initiate its translation. Initiation is followed by elongation (step 2) of the nascent protein, enabled via the delivery of each amino acid by a transfer RNA (tRNA) in complex with elongation factor Tu (EF-Tu) (Agirrezabala and Frank, 2009). The translocation of tRNAs through the ribosome also occurs in discrete steps, brought about by a large-scale ratchet-like motion of the two ribosomal subunits (Frank and Agrawal, 2000; Dunke and Cate, 2010). The nascent protein leaves the ribosome through an exit tunnel, which is not merely a passive conduit but can play a regulatory role. Some nascent proteins control their own translation through specific protein-tunnel interactions that halt translation or recruit other factors to the ribosome. For example, proteins not destined for immediate extrusion into the cytoplasm can direct the ribosome to a protein-conducting translocon, the SecY/Sec61 complex, which then aids the proper localization of the nascent protein (Rapoport, 2007). After elongation is completed, translation is terminated (step 3) and the ribosomal components are all recycled (step 4), making them available for the next mRNA.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 142 - 157
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agirrezabala, X.Frank, J. 2009 Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-TuQuart. Rev. Biophys 43 159CrossRefGoogle Scholar
Aksimentiev, A.Balabin, I.AFillingame, R.HSchulten, K. 2004 Insights into the molecular mechanism of rotation in the Fo sector of ATP synthaseBiophys. J 86 1332CrossRefGoogle Scholar
Arkhipov, A.Freddolino, P.LImada, K.Namba, K.Schulten, K. 2006 Coarse- grained molecular dynamics simulations of a rotating bacterial flagellumBiophys. J 91 4589CrossRefGoogle ScholarPubMed
Becker, T.Bhushan, S.Jarasch, A.Armache, J.PFunes, S.Jossinet, F.Gumbart, J.Mielke, T.Berninghausen, O.Schulten, K. 2009 Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosomeScience 326 1369CrossRefGoogle ScholarPubMed
Beckmann, R.Bubeck, D.Grassucci, R.Penczek, P.Verschoor, A.Blobel, G.Frank, J. 1997 Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complexScience 278 2123CrossRefGoogle ScholarPubMed
Beckmann, R.Spahn, C.M.TEswar, N.Helmers, J.Penczek, P.ASali, A.Frank, J.Blobel, G. 2001 Architecture of the protein-conducting channel associated with the translating 80S ribosomeCell 107 361CrossRefGoogle ScholarPubMed
Berchtold, H.Reshetnikova, L.Reiser, C.OSchirmer, N.KSprinzl, M.Hilgenfeld, R. 1993 Crystal structure of active elongation factor Tu reveals major domain rearrangementsNature 365 126CrossRefGoogle ScholarPubMed
Bernsel, A.Viklund, H.Falk, J.Lindahl, E.Heijne, G.Elofsson, A. 2008 Prediction of membrane-protein topology from first principlesProc. Natl. Acad. Sci. USA 105 7177CrossRefGoogle ScholarPubMed
Beššeová, I.Réblová, K.Leontis, N.BŠponer, J. 2010 Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosomeNucleic Acids Res 38 6247CrossRefGoogle ScholarPubMed
Bondar, A.Ndel Val, C.Freites, J.ATobias, D.JWhite, S.H 2010 Dynamics of SecY translocons with translocation-defective mutationsStructure 18 847CrossRefGoogle ScholarPubMed
Chandler, D.EGumbart, J.Stack, J.DChipot, C.Schulten, K. 2009 Membrane curvature induced by aggregates of LH2s and monomeric LH1sBiophys. J 97 2978CrossRefGoogle ScholarPubMed
Daviter, T.Wieden, H.JRodnina, M.V 2003 Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosomeJ. Mol. Biol 332 689CrossRefGoogle ScholarPubMed
Dittrich, M.Schulten, K. 2006 PcrA helicase, a prototype ATP-driven molecular motorStructure 14 1345CrossRefGoogle ScholarPubMed
Dittrich, M.Yu, J.Schulten, K. 2006 PcrA helicase, a molecular motor studied from the electronic to the functional levelTopics in Current Chemistry 268 319CrossRefGoogle Scholar
Driessen, A.J.MNouwen, N. 2008 Protein translocation across the bacterial cytoplasmic membraneAnnu. Rev. Biochem 77 643CrossRefGoogle ScholarPubMed
du Plessis, D.J.FBerrelkamp, G.Nouwen, N.Driessen, A.J.M 2009 The lateral gate of SecYEG opens during proteins translocationJ. Biol. Chem 284 15805CrossRefGoogle ScholarPubMed
Dunke, J.ACate, J.H.D 2010 Ribosome structure and dynamics during translocation and terminationAnnu. Rev. Biophys 39 227CrossRefGoogle Scholar
Erlandson, K.JMiller, S.B.MNam, Y.Osborne, A.RZimmer, J.Rapoport, T.A 2008 A role for the two-helix finger of the SecA ATPase in protein translocationNature 455 984CrossRefGoogle ScholarPubMed
Fasano, O.Vendittis, E.DParmeggiani, A. 1982 Hydrolysis of GTP by elongation factor Tu can be induced by monovalent cations in the absence of other effectorsJ. Biol. Chem 257 3145Google ScholarPubMed
Fischer, N.Konevega, A.LWintermeyer, W.Rodnina, M.VStark, H. 2010 Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopyNature 466 329CrossRefGoogle ScholarPubMed
Frank, J.Agrawal, R.K. 2000 A ratchet-like inter-subunit reorganization of the ribosome during translocationNature 406 318CrossRefGoogle ScholarPubMed
Frank, J.Gonzalez, Jr., R.L 2010 Structure and dynamics of a processive brownian motor: the translating ribosomeAnnu. Rev. Biochem 79 1CrossRefGoogle ScholarPubMed
Frauenfeld, J.Gumbart, J.van der Sluis, E.O.Funes, S.Gartmann, M.Beatrix, B.Mielke, T.Berninghausen, O.Becker, T.Schulten, K.Beckmann, R. 2011 Cryo-EM structure of the ribosome-SecYE complex in the membrane environmentNat. Struct. Mol. Biol 18 614CrossRefGoogle ScholarPubMed
Freddolino, P.LArkhipov, A.SLarson, S.BMcPherson, A.Schulten, K. 2006 Molecular dynamics simulations of the complete satellite tobacco mosaic virusStructure 14 437CrossRefGoogle ScholarPubMed
Gallivan, J.PDougherty, D.A 1999 Cation-π interactions in structural biologyProc. Natl. Acad. Sci. USA 96 9459CrossRefGoogle ScholarPubMed
Gao, Y.GSelmer, M.Dunham, C.MWeixlbaumer, A.Kelley, A.CRamakrishnan, V. 2009 The structure of the ribosome with elongation factor G trapped in the posttranslocational stateScience 326 694CrossRefGoogle ScholarPubMed
Gong, F.Yanofsky, C. 2002 Instruction of translating ribosome by nascent peptideScience 297 1864CrossRefGoogle ScholarPubMed
Gumbart, J.Schulten, K. 2006 Molecular dynamics studies of the archaeal transloconBiophys. J 90 2356CrossRefGoogle ScholarPubMed
Gumbart, J.Schulten, K. 2007 Structural determinants of lateral gate opening in the protein transloconBiochemistry 46 11147CrossRefGoogle ScholarPubMed
Gumbart, J.Schulten, K. 2008 The roles of pore ring and plug in the SecY protein- conducting channelJ. Gen. Physiol 132 709CrossRefGoogle ScholarPubMed
Gumbart, J.Trabuco, L.GSchreiner, E.Villa, E.Schulten, K. 2009 Regulation of the protein-conducting channel by a bound ribosomeStructure 17 1453CrossRefGoogle ScholarPubMed
Haider, S.Hall, B.ASansom, M.S.P 2006 Simulations of a protein translocation pore: SecYBiochemistry 45 13018CrossRefGoogle ScholarPubMed
Halic, M.Beckmann, R. 2005 The signal recognition particle and its interactions during protein targetingCurr. Opin. Struct. Biol 15 116CrossRefGoogle ScholarPubMed
Heritage, D.Wonderlin, W.F 2001 Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar moleculeJ. Biol. Chem 276 22655CrossRefGoogle ScholarPubMed
Hessa, T.Kim, H.Bihlmaier, K.Lundin, C.Boekel, J.Andersson, H.Nilsson, I.White, S.Hvon Heijne, G. 2005 Recognition of transmembrane helices by the endoplasmic reticulum transloconNature 433 377CrossRefGoogle ScholarPubMed
Hessa, T.Meindl-Beinker, N.MBernsel, A.Kim, H.Sato, Y.Lerch-Bader, M.Nilsson, I.White, S.Hvon Heijne, G. 2007 Molecular code for transmembrane-helix recognition by the Sec61 transloconNature 450 1026CrossRefGoogle ScholarPubMed
Humphrey, W.Dalke, A.Schulten, K. 1996 VMD – Visual Molecular DynamicsJ. Mol. Graphics 14 33CrossRefGoogle ScholarPubMed
Ishida, H.Hayward, S. 2008 Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosomeBiophys. J 95 5962CrossRefGoogle ScholarPubMed
Johansson, A.C.VLindahl, E. 2009 Protein contents in biological membranes can explain abnormal solvation of charged and polar residuesProc. Natl. Acad. Sci. USA 106 15684CrossRefGoogle ScholarPubMed
Kitao, A.Yonekura, K.Maki-Yonekura, S.Samatey, F.AImada, K.Namba, K.Go, N. 2006 Switch interactions control energy frustration and multiple flagellar filament structuresProc. Natl. Acad. Sci. USA 103 4894CrossRefGoogle ScholarPubMed
Kjeldgaard, M.Nissen, P.Thirup, S.Nyborg, J. 1993 The crystal structure of elongation factor EF-Tu from in the GTP conformationStructure 1 35CrossRefGoogle ScholarPubMed
Klein, M.LShinoda, W. 2008 Large-scale molecular dynamics simulations of self- assembling systemsScience 321 798CrossRefGoogle ScholarPubMed
Korostelev, A.Ermolenko, D.NNoller, H.F 2008 Structural dynamics of the ribosomeCurr. Opin. Chem. Biol 12 674CrossRefGoogle ScholarPubMed
Kurkcuoglu, O.Doruker, P.Sen, T.ZKloczkowski, A.Jernigan, R.L 2008 The ribosome structure controls and directs mRNA entry, translocation and exit dynamicsPhys. Biol 5 46005CrossRefGoogle ScholarPubMed
Li, W.Schulman, S.Boyd, D.Erlandson, K.Beckwith, J.Rapoport, T.A 2007 The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane sealMol. Cell 26 511CrossRefGoogle ScholarPubMed
Mandon, E.CTrueman, S.FGilmore, R. 2009 Translocation of proteins through the Sec61 and SecYEG channelsCurr. Opin. Cell Biol 21 501CrossRefGoogle ScholarPubMed
Ménétret, J.FHegde, R.SAgular, M.Gygi, S.PPark, E.Rapoport, T.AAkey, C.W 2008 Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosomeStructure 16 1126CrossRefGoogle ScholarPubMed
Ménétret, J.FHegde, R.SHeinrich, S.UChandramouli, P.Ludtke, S.JRapoport, T.AAkey, C.W 2005 Architecture of the ribosome-channel complex derived from native membranesJ. Mol. Biol 348 445CrossRefGoogle ScholarPubMed
Ménétret, J.FNeuhof, A.Morgan, D.GPlath, K.Radermacher, M.Rapoport, T.AAkey, C.W 2000 The structure of ribosome-channel complexes engaged in protein translocationMol. Cell 6 1219CrossRefGoogle ScholarPubMed
Ménétret, J.FSchaletzky, J.Clemons, W.MOsborne, A.RSkånland, S.SDenison, C.Gygi, S.PKirkpatrick, D.SPark, E.Ludtke, S.J 2007 Ribosome binding of a single copy of the SecY complex: implications for protein translocationMol. Cell 28 1083CrossRefGoogle ScholarPubMed
Mitra, K.Schaffitzel, C.Shaikh, T.Tama, F.Jenni, S.Brooks, C.LBan, N.Frank, J. 2005 Structure of the protein-conducting channel bound to a translating ribosomeNature 438 318CrossRefGoogle ScholarPubMed
Morgan, D.GMénétret, J.FNeuhof, A.Rapoport, T.AAkey, C.W 2002 Struc- ture of the mammalian ribosome-channel complex at 17 Å resolutionJ. Mol. Biol 324 871CrossRefGoogle Scholar
Mori, T.Ishitani, R.Tsukazaki, T.Nureki, O.Sugita, Y. 2010 Molecular mechanisms underlying the early stage of protein translocation through the Sec transloconBiochemistry 49 945CrossRefGoogle ScholarPubMed
Nakatogawa, H.Ito, K. 2002 The ribosomal exit tunnel functions as a discriminating gateCell 108 629CrossRefGoogle ScholarPubMed
Osborne, A.RRapoport, T.A 2007 Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channelCell 129 97CrossRefGoogle ScholarPubMed
Osborne, A.RRapoport, T.AVan Den Berg, B. 2005 Protein translocation by the Sec61/SecY channelAnnu. Rev. Cell. Dev. Biol 21 529CrossRefGoogle ScholarPubMed
Papanikou, E.Karamanou, S.Economou, A. 2007 Bacterial protein secretion through the translocase nanomachineNat. Rev. Microbiol 5 839CrossRefGoogle ScholarPubMed
Petrone, P.MSnow, C.DLucent, D.Pande, V.S 2008 Side-chain recognition and gating in the ribosome exit tunnelProc. Natl. Acad. Sci. USA 105 16549CrossRefGoogle ScholarPubMed
Phillips, J.CBraun, R.Wang, W.Gumbart, J.Tajkhorshid, E.Villa, E.Chipot, C.Skeel, R.DKale, L.Schulten, K. 2005 Scalable molecular dynamics with NAMDJ. Comp. Chem 26 1781CrossRefGoogle ScholarPubMed
Plath, K.Mothes, W.Wilkinson, B.MStirling, C.JRapoport, T.A 1998 Signal sequence recognition in posttranslational protein transport across the yeast ER membraneCell 94 795CrossRefGoogle ScholarPubMed
Ramu, H.Mankin, A.Vazquez-Laslop, N. 2009 Programmed drug-dependent ribosome stallingMol. Microbiol 71 811CrossRefGoogle ScholarPubMed
Rapoport, T.A 2007 Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranesNature 450 663CrossRefGoogle ScholarPubMed
Rázga, F.Zacharias, M.Réblová, K.Koča, J.Šponer, J. 2006 RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamicsStructure 14 825CrossRefGoogle ScholarPubMed
Réblová, K.Rázga, F.Li, W.Gao, H.Frank, J.Šponer, J. 2009 Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EMNucleic Acids Res 38 1325CrossRefGoogle ScholarPubMed
Sanbonmatsu, K.Y 2006 Energy landscape of the ribosomal decoding centerBiochimie 88 1053CrossRefGoogle ScholarPubMed
Sanbonmatsu, K.YJoseph, S. 2003 Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairsJ. Mol. Biol 328 33CrossRefGoogle ScholarPubMed
Sanbonmatsu, K.YJoseph, S.Tung, C.S 2005 Simulating movement of tRNA into the ribosome during decodingProc. Natl. Acad. Sci. USA 102 15854CrossRefGoogle ScholarPubMed
Sanbonmatsu, K.YTung, C.S 2007 High performance computing in biology: Multimillion atom simulations of nanoscale systemsJ. Struct. Biol 157 470CrossRefGoogle ScholarPubMed
Saparov, S.MErlandson, K.Cannon, K.Schaletzky, J.Schulman, S.Rapoport, T.APohl, P. 2007 Determining the conductance of the SecY protein translocation channel for small moleculesMol. Cell 26 501CrossRefGoogle ScholarPubMed
Sardis, M.FEconomou, A. 2010 SecA: a tale of two protomersMol. Microbiol 76 1070CrossRefGoogle ScholarPubMed
Schaletzky, J.Rapoport, T.A 2006 Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membraneMol. Biol. Cell 17 3860CrossRefGoogle ScholarPubMed
Schmeing, T.MHuang, K.SStrobel, S.ASteitz, T.A 2005 An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNANature 438 520CrossRefGoogle ScholarPubMed
Schmeing, T.MRamakrishnan, V. 2009 What recent ribosome structures have revealed about the mechanism of translationNature 461 1234CrossRefGoogle Scholar
Schmeing, T.MVoorhees, R.MKelley, A.CGao, Y.GMurphy, F.VWeir, J.RRamakrishnan, V. 2009 The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNAScience 326 688CrossRefGoogle ScholarPubMed
Schulten, K.Phillips, J.CKalé, L.VBhatele, A. 2008 Biomolecular modeling in the era of petascale computingBader, DPetascale Computing: Algorithms and ApplicationsChapman and Hall/CRC PressTaylor and Francis Group, New York165Google Scholar
Seidelt, B.Innis, C.AWilson, D.NGartmann, M.Armache, J.PVilla, E.Trabuco, L.GBecker, T.Mielke, T.Schulten, K. 2009 Structural insight into nascent polypeptide chain-mediated translational stallingScience 326 1412CrossRefGoogle ScholarPubMed
Shaw, D.EDror, R.OSalmon, J.KGrossman, J.Mackenzie, K.MBank, J.AYoung, CDeneroff, M.MBatson, B.Bowers, K.J 2009 Millisecond-scale molecular dynamics simulations on AntonSC’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis1New York, NYUSA, ACMGoogle Scholar
Simon, S.Blobel, G. 1991 A protein-conducting channel in the endoplasmic- reticulumCell 65 371CrossRefGoogle ScholarPubMed
Steitz, T.A 2008 A structural understanding of the dynamic ribosome machineNat. Rev. Mol. Cell Biol 9 242CrossRefGoogle ScholarPubMed
Stone, J.EHardy, D.JUfimtsev, I.SSchulten, K. 2010 GPU-accelerated molecular modeling coming of ageJ. Mol. Graph. Model 29 116CrossRefGoogle ScholarPubMed
Sund, J.Ander, M.Aqvist, J. 2010 Principles of stop-codon reading on the ribosomeNature 465 947CrossRefGoogle ScholarPubMed
Tama, F.Valle, M.Brooks III, C.L 2003 Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopyProc. Natl. Acad. Sci. USA 100 9319CrossRefGoogle ScholarPubMed
Tenson, T.Ehrenberg, M. 2002 Regulatory nascent peptides in the ribosomal tunnelCell 108 591CrossRefGoogle ScholarPubMed
Tian, P.Andricioaei, I. 2006 Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probesBiophys. J 90 2718CrossRefGoogle ScholarPubMed
Trabuco, L.GHarrison, C.BSchreiner, E.Schulten, K. 2010 Recognition of the regulatory nascent chain TnaC by the ribosomeStructure 18 627CrossRefGoogle ScholarPubMed
Trabuco, L.GSchreiner, E.Gumbart, J.Hsin, J.Villa, E.Schulten, K. 2010 Applications of the molecular dynamics flexible fitting methodJ. Struct. Biol 173 420CrossRefGoogle ScholarPubMed
Trabuco, L.GVilla, E.Mitra, K.Frank, J.Schulten, K. 2008 Flexible fitting of atomic structures into electron microscopy maps using molecular dynamicsStructure 16 673CrossRefGoogle ScholarPubMed
Trabuco, L.GVilla, E.Schreiner, E.Harrison, C.BSchulten, K. 2009 Molecular Dynamics Flexible Fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallographyMethods 49 174CrossRefGoogle ScholarPubMed
Trobro, S.Åqvist, J. 2005 Mechanism of peptide bond synthesis on the ribosomeProc. Natl. Acad. Sci. USA 102 12395CrossRefGoogle ScholarPubMed
Trobro, S.Åqvist, J. 2009 Mechanism of the translation termination reaction on the ribosomeBiochemistry 48 11296CrossRefGoogle ScholarPubMed
Trylska, J.Tozzini, V.McCammon, J.A 2005 Exploring global motions and correlations in the ribosomeBiophys. J 89 1455CrossRefGoogle ScholarPubMed
Tsukazaki, T.Mori, H.Fukai, S.Ishitani, R.Mori, T.Dohmae, N.Perederina, A.Sugita, Y.Vassylyev, D.GIto, K. 2008 Conformational transition of Sec machinery inferred from bacterial SecYE structuresNature 455 988CrossRefGoogle ScholarPubMed
van den Berg, B.Clemons, W.MCollinson, I.Modis, Y.Hartmann, E.Harrison, S.CRapoport, T.A 2004 X-ray structure of a protein-conducting channelNature 427 36CrossRefGoogle ScholarPubMed
Villa, E.Sengupta, J.Trabuco, L.GLeBarron, J.Baxter, W.TShaikh, T.RGrassucci, R.ANissen, P.Ehrenberg, M.Schulten, K. 2009 Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysisProc. Natl. Acad. Sci. USA 106 1063CrossRefGoogle ScholarPubMed
Voorhees, R.M.Schmeing, T.M.Kelley, A.C.Ramakrishnan, V. 2010 The mechanism for activation of GTP hydrolysis on the ribosomeScience 330 835CrossRefGoogle ScholarPubMed
Wallin, G.Åqvist, J. 2010 The transition state for peptide bond formation reveals the ribosome as a water trapProc. Natl. Acad. Sci. USA 107 1888CrossRefGoogle ScholarPubMed
Wang, Y.Rader, A.JBahar, I.Jernigan, R.L 2004 Global ribosome motions revealed with elastic network modelJ. Struct. Biol 147 302CrossRefGoogle ScholarPubMed
Weixlbaumer, A.Jin, H.Neubauer, C.Voorhees, R.MPetry, S.Kelley, A.CRamakrishnan, V. 2008 Insights into translational termination from the structure of RF2 bound to the ribosomeScience 322 953CrossRefGoogle ScholarPubMed
White, S.H 2007 Membrane protein integration: The biology-physics nexusJ. Gen. Physiol 129 363CrossRefGoogle Scholar
Whitford, P.CGeggier, P.Altman, R.BBlanchard, S.COnuchic, J.NSanbonmatsu, K.Y 2010 Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathwaysRNA 16 1196CrossRefGoogle ScholarPubMed
Wonderlin, W.F 2009 Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulumPflug. Arch. Eur. J. Physiol 457 917CrossRefGoogle ScholarPubMed
Yanofsky, C. 2007 RNA-based regulation of genes of tryptophan synthesis and degradation in bacteriaRNA 13 1141CrossRefGoogle ScholarPubMed
Yin, Y.Arkhipov, A.Schulten, K. 2009 Simulations of membrane tubulation by lattices of amphiphysin N-BAR domainsStructure 17 882CrossRefGoogle ScholarPubMed
Zhang, B.Miller, T.F 2010 Hydrophobically stabilized open state for the lateral gate of the Sec transloconProc. Natl. Acad. Sci. USA 107 5399CrossRefGoogle ScholarPubMed
Zimmer, J.Nam, Y.Rapoport, T.A 2008 Structure of a complex of the ATPase SecA and the protein-translocation channelNature 455 936CrossRefGoogle ScholarPubMed
Zink, M.Grubmüller, H. 2009 Mechanical properties of the icosahedral shell of southern bean mosaic virus: A molecular dynamics studyBiophys. J 96 1350CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×