We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study is dedicated to achieving efficient active noise control in a supersonic underexpanded planar jet, utilizing control parameters informed by resolvent analysis. The baseline supersonic underexpanded jet exhibits complex wave structures and substantial high-amplitude noise radiations. To perform the active control, unsteady blowing and suction are applied along the nozzle inner wall close to the exit. Employing both standard and acoustic resolvent analyses, a suitable frequency and spanwise wavenumber range for the blowing and suction is identified. Within this range, the control forcing can be significantly amplified in the near field, effectively altering the original sound-producing energetic structure while minimizing far-field amplification to prevent excessive noise. A series of large-eddy simulations are further conducted to validate the control efficiency, demonstrating an over 10 dB reduction in upstream-propagated screech noise. It is identified that the present unsteady control proves more effective than steady control at the same momentum coefficient. The controlled jet flow indicates that the shock structures become more stable, and the stronger the streamwise amplification of the forcing, the more likely it is to modify the mean flow characteristics, which is beneficial for reducing far-field noise radiation. Spectral proper orthogonal decomposition analysis of the controlled flow confirms that the control redistributes energy to higher forcing frequencies and suppresses large-scale antisymmetric and symmetric modes related to screech and its harmonics. The findings of this study highlight the potential of resolvent-guided control techniques in reducing noise in supersonic underexpanded jets and provide a detailed understanding of the inherent mechanisms for effective noise reduction through active control strategies.
This study aimed to understand the potassium voltage-gated channel KQT-like subfamily, member 1 gene polymorphism in a rural elderly population in a county in Guangxi and to explore the possible relationship between its gene polymorphism and blood sugar. The 6 SNP loci of blood DNA samples from 4355 individuals were typed using the imLDRTM Multiple SNP Typing Kit from Shanghai Tianhao Biotechnology Co. The data combining epidemiological information (baseline questionnaire and physical examination results) and genotyping results were statistically analyzed using GMDR0.9 software and SPSS22.0 software. A total of 4355 elderly people aged 60 years and above were surveyed in this survey, and the total abnormal rate of glucose metabolism was 16·11 % (699/4355). Among them, male:female ratio was 1:1·48; the age group of 60–69 years old accounted for the highest proportion, with 2337 people, accounting for 53·66 % (2337/4355). The results of multivariate analysis showed that usually not doing farm work (OR 1·26; 95 % CI 1·06, 1·50), TAG ≥ 1·70 mmol/l (OR 1·19; 95 % CI 1·11, 1·27), hyperuricaemia (OR 1·034; 95 % CI 1·01, 1·66) and BMI ≥ 24 kg/m2 (OR 1·06; 95 % CI 1·03, 1·09) may be risk factors for abnormal glucose metabolism. Among all participants, rs151290 locus AA genotype, A allele carriers (AA+AC) were 0.70 times more likely (0.54 to 0.91) and 0.82 times more likely (0.70 to 0.97) to develop abnormal glucose metabolism than CC genotype carriers, respectively. Carriers of the T allele at the rs2237892 locus (CT+TT) were 0.85 times more likely to have abnormal glucose metabolism than carriers of the CC genotype (0.72 to 0.99); rs2237897 locus CT gene. The possibility of abnormal glucose metabolism in the carriers of CC genotype, TT genotype and T allele (CT + TT) is 0·79 times (0·67–0·94), 0·74 times (0·55–0·99) and 0·78 times (0·66, 0·92). The results of multifactor dimensionality reduction showed that the optimal interaction model was a three-factor model consisting of farm work, TAG and rs2237897. The best model dendrogram found that the interaction between TAG and rs2237897 had the strongest effect on fasting blood glucose in the elderly in rural areas, and they were mutually antagonistic. Environment–gene interaction is an important factor affecting abnormal glucose metabolism in the elderly of a county in Hechi City, Guangxi.
Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD.
Aims
Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes.
Method
A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings.
Results
Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms.
Conclusions
Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.
Acid-activated bentonites are utilized in many applications, including those that depend on their rheological properties and behavior, but little information is available regarding the rheological characteristics of this important industrial material. The purpose of this study was to investigate the effects of solids concentration, salt concentration, and pH value on the shear rate, shear stress, and other flow parameters of acid-activated bentonite suspensions. Activated Na-bentonite was prepared using sulfuric acid. Flow curves of the suspensions were modeled using the Herschel-Bulkley equation, which performed well for this system. The Herschel-Bulkley yield stress increased with the solids concentration and showed a maximum and minimum at the NaCl concentrations of 0.001 M and 0.01 M, respectively, and increased again slightly with further increases in NaCl concentration. The yield stress was at a maximum and a minimum at pH values of ≈5 and ≈7, respectively, followed by a slight increase with pH under alkaline conditions. The variations in dispersion rheological properties can be attributed to the change in the particle-association modes under different conditions.
Extraction of reference signal is an indispensable step in the signal processing of polarization diversity passive radar (PDPR) based on a digital television signal. A conventional reference signal extraction method requires an additional reference antenna, which has a certain demand for space. Single dual-polarization antenna passive radar (SDPPR) systems do not require a reference antenna, and the radar station layout is flexible, which is suitable for a large-scale radar network. It is a main research direction of PDPR in future. However, its reference signal extraction needs to rely on the signal reconstruction method. When the signal to interference and noise ratio of the direct-path signal is relatively low, the signal reconstruction method will fail. In this paper, we propose a reference signal extraction method based on sub-carrier processing method, blind adaptive oblique projection technology, and extensive cancelation algorithm to solve the above problem. Experimental results show that the method proposed in this paper is a reasonable alternative after the failure of reference signal reconstruction, and it is an effective supplement to the reference signal extraction technology.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Sporadic clusters of healthcare-associated coronavirus disease 2019 (COVID-19) occurred despite intense rostered routine surveillance and a highly vaccinated healthcare worker (HCW) population, during a community surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) B.1.617.2 δ (delta) variant. Genomic analysis facilitated timely cluster detection and uncovered additional linkages via HCWs moving between clinical areas and among HCWs sharing a common lunch area, enabling early intervention.
Demodex infestation and density changes remain one of the main challenges in some clinical settings. Tumour necrosis factor-α (TNF-α) inhibitors have been recommended as a first-line treatment for ankylosing spondylitis (AS). However, there have been no studies investigating the impact of TNF-α inhibitor adalimumab on changes in the Demodex density in patients with AS. The aim of this study was to investigate Demodex density changes before and after adalimumab treatment and analyse the relationship between the Demodex density and clinical characteristics in AS. It was found that the Demodex density was positively correlated with age and C-reactive protein levels and the number of Demodex mites could increase after adalimumab treatment in AS.
Soft robots combine the load-bearing capability of rigid material with the resilience, shape-shifting capabilities of soft materials. This paper presents a novel soft actuator with stiffness variation using particulate jamming technology. We design a hybrid composite structure consisting of driving layer and jamming layer. The driving layer with the arc air chamber aim to achieve large bending deformation. A membrane containing particles is integrated with driving layer to module its stiffness. The influence factors of stiffness variation were analyzed from energy of point of view. The dependence of granular attributes on the stiffness of the actuator was studied. Furthermore, we illustrated influence of stiffness changes on the kinematic and dynamic performance of the soft actuator. The experimental results showed these performance indexes are twofold. On the one hand, the structural parameters have significant effect on the bending angle, but on the other hand they have little effect on the end force. We found that flow resistance inside air chamber results in bending morphology variation. The dynamic response subjected to a square-wave air pressure was analyzed to exhibit the actuator’s transient and steady vibration behavior. The actuator with greater stiffness has faster responsiveness, but smaller range of motion. These conclusions are helpful to adjust the stiffness behavior and to improve motion performance.
A 53-year-old male presents with cough, fever, and myalgias for 7 days. Vitals include temperature, 38.0°C; heart rate, 110; blood pressure, 118/70 mm Hg; respiration rate, 28; and oxygen saturation 83% on room air. His only past medical history is hypertension. Your community is in the midst of the coronavirus disease 2019 (COVID-19) pandemic. The patient is hypoxic but responds to oxygen supplementation with nasal cannula and a face mask. His chest x-ray demonstrates multifocal infiltrates. Are there any therapeutic agents currently available for COVID-19?
A 37-year-old female presents with cough, fever, dyspnea, and myalgias for five days after recent contact with a family member with confirmed 2019 coronavirus disease (COVID-19). Her vital signs include T 38.3° C, HR 108, BP 118/70 mm Hg, RR 26 breaths per minute, and oxygen saturation 67% on room air. She is not in respiratory distress currently and is protecting her airway. Her chest X-ray reveals bilateral airspace opacities. You plan to immediately intervene and address her hypoxia.
GH3536 alloy is one of the high-temperature nickel-based alloys and widely applied in aviation and aerospace industries. In this study, a combination of experiment and simulation is proposed to study the effect of processing parameters on the selective laser melting (SLM) of GH3536 powder. It is concluded that the relationship between density and laser input energy during SLM complies with a quadratic function and presents an inverted U-shaped distribution. By fitting density and input power to a quadratic polynomial, the optimal laser input energy during SLM of GH3536 alloy can be obtained. The result shows that using 275 W laser power and 960 mm/s scanning speed, the SLM GH3536 specimens can reach the maximum density. This experimental result is consistent with the simulation result obtained by analyzing molten pool dimension. Furthermore, a full process energy prediction diagram for SLM GH3536 alloy based on the simulated molten pool depth and width is proposed. The result shows that it provides an innovative and efficient method for the selection of processing parameters during SLM of GH3536 powder.
Using time-resolved laser-scanning confocal microscopy and ultrafast optical pump/THz probe spectroscopy, we measure photoluminescence (PL) and THz-conductivity in perovskite micro-crystals and films. PL quenching and lifetime variations occur from local heterogeneity. Ultrafast THz-spectra measure sharp quantum transitions from excitonic Rydberg states, providing weakly bound excitons with a binding energy of ~13.5 meV at low temperatures. Ab-initio electronic structure calculations give a direct band gap of 1.64 eV, a dielectric constant of ~18, heavy electrons, and light holes, resulting in weakly bound excitons, consistent with the binding energies from the experiment. The complementary spectroscopy and simulations reveal fundamental insights into perovskite light-matter interactions.
Structural distortions at the nanoscale are delicately linked with many exotic properties for ferroic thin films. Based on advanced aberration corrected scanning transmission electron microscopy, we observe BiFeO3 thin films with variant tensile strain states and demonstrate at an atomic scale the interplay of intrinsic spontaneous structural distortions with external constraints. Structural parameters (the rhombohedral distortion and domain wall shear distortion) under zero (BiFeO3/GdScO3) and 1.5% (BiFeO3/PrScO3) lateral strain states are quantitatively analyzed which are suppressed within a few unit cells near the film/substrate interfaces. In particular, an interfacial layer with asymmetrical lattice distortions (enhanced and reduced out-of-plane lattice spacing) on the two sides of 109° domain wall is resolved. These structural distortions near the film/substrate interface in ferroic thin films reveal intense tanglement of intrinsic distortions of BiFeO3 with external boundary conditions, which could provide new insights for the development of nanoscale ferroelectric devices.
The high-cycle fatigue (HCF) behavior is significantly affected by surface roughness, especially for high strength metal FV520B-I. However, with surface roughness effect, neither the fatigue property, nor the high-cycle fatigue life model about FV520B-I with surface roughness has been reported. In this paper, designed fatigue experiment using the specimen with different surface roughness is presented to study the effectiveness of the roughness to the fatigue. The observations of the fatigue crack initiation sites and the crack propagation. Then the high cycle fatigue behavior of FV520B-I affected by surface roughness is analyzed. The existing very-high-cycle fatigue life model is not well-fit for high-cycle fatigue model of FV520B-I. A NEW high-cycle fatigue life prediction model of FV520B-I, taking surface roughness as a main effective variable is proposed. The model is built up by a comprehensive use of experimental data and the traditional fatigue modeling theory. The new finding between the fatigue strength coefficient and stress amplitude, with surface roughness, is adopted, leading to a NEW modified life prediction model. Study on fatigue model of FV520B-I with surface roughness is a very beneficial effort in fatigue theory and fatigue engineering development.
The metamorphic responses of mussel (Mytilus coruscus) larvae to pharmacological agents affecting G proteins and the adenylate cyclase/cyclic AMP (AC/cAMP) pathway were examined in the laboratory. The G protein activators guanosine 5′-[β,γ-imido]triphosphate trisodium salt hydrate and guanosine 5′-[γ-thio]triphosphate tetralithium salt only induced larval metamorphosis in continuous exposure assays, and the G protein inhibitor guanosine 5′-[β-thio]diphosphate trilithium salt did not exhibit inducing activity. The non-specific phosphodiesterase inhibitor theophylline and the cAMP-specific phosphodiesterase IV inhibitor 4-(3-Butoxy-4-methoxybenzyl)imidazolidin-2-one exhibited inducing activity, while the non-specific phosphodiesterase inhibitor 3-Isobutyl-1-methylxanthine only showed inducing activity at 10−4 M in continuous exposure assays. The cyclic nucleotide analogue N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt did not exhibit significant inducing activity. Both the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor nitroimidazole exhibited inducing activity at 10−4 to 10−3 M concentrations in continuous exposure assays. Among these tested agents, the adenylate cyclase inhibitor (±)-miconazole nitrate salt showed the most promising inducing effect. The present results indicate that G protein-coupled receptors and signal transduction by AC/cAMP pathway could mediate metamorphosis of larvae in this species.
The morphology of Tuzoia is reinterpreted in the light of abundant new specimens from the Middle Cambrian Burgess Shale (British Columbia, Canada) and Kaili (Guizhou, China) Lagerstätten. Tuzoia was a very large (up to 180 mm long) bivalved arthropod with a nonmineralized domelike carapace strengthened by prominent pointed features and often flanked by a lateral ridge bearing a spiny frill. The reticulate pattern of Tuzoia is comparable with that of present-day crustaceans (e.g., myodocope ostracods) and is interpreted as a structural compromise between exoskeletal lightness and high resistance to mechanical stress. Tuzoia had a pair of large, stalked, spherical, possibly compound eyes facing forward. Flagella-like antennae protruded through the anterior notch. No other appendages are known except possible filamentous setae underlying the carapace. Tuzoia typically occurs as laterally (lc) or dorsoventrally (dvc) compacted carapaces or single valves. Each type (lc or dvc) emphasizes particular aspects of the morphology (e.g., spiny lateral ridge, ventral margin) that were often interpreted as specific differences by previous authors. A revision of Tuzoia validates only 7 of the 23 named species. Tuzoia is placed tentatively within a group of large bivalved arthropods along with Isoxys and the possible ancestors of Thylacocephala (Lower Cambrian–Upper Cretaceous). In the Middle Cambrian, Tuzoia occurs across Laurentia, South and North China, and the Perigondwanan area (Bohemia) within a relatively narrow subtropical belt, indicating a high dispersal capability and possible latitudinal control on its distribution. Functional morphology, taphonomy, and the distributional pattern indicate that Tuzoia was a free-swimming arthropod.
Considerable controversy exists regarding the associations of dietary patterns with the risk of all-cause, CVD and stroke mortality. Therefore, a meta-analysis was conducted to elucidate the potential associations between dietary patterns and the risk of all-cause, CVD and stroke mortality. The PubMed database was searched for prospective cohort studies on the associations between dietary patterns and the risk of all-cause, CVD and stroke mortality published until February 2014. Random-effects models were used to calculate the summary relative risk estimates (SRRE) based on the highest v. the lowest category of dietary pattern scores. Stratified analyses were conducted based on sex, geographical region, follow-up duration, and adjustment/non-adjustment for energy intake. A total of thirteen prospective cohort studies involving 338 787 participants were included in the meta-analysis. There was evidence of inverse associations between the prudent/healthy dietary pattern and the risk of all-cause (SRRE = 0·76, 95 % CI 0·68, 0·86) and CVD (SRRE = 0·81, 95 % CI 0·75, 0·87) mortality and an absence of association between this dietary pattern and stroke mortality (SRRE = 0·89, 95 % CI 0·77, 1·02). However, no significant associations were observed between the Western/unhealthy dietary pattern and the risk of all-cause (SRRE = 1·07, 95 % CI 0·96, 1·20), CVD (SRRE = 0·99, 95 % CI 0·91, 1·08) and stroke (SRRE = 0·94, 95 % CI 0·81, 1·10) mortality. In conclusion, the findings provide evidence that greater adherence to a prudent/healthy dietary pattern is associated with a lower risk of all-cause and CVD mortality and not significantly associated with stroke mortality and that the Western/unhealthy dietary pattern is not associated with all-cause, CVD and stroke mortality. Further studies are required to confirm these findings.