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Background
Major depressive disorder (MDD) has been increasingly under-
stood as a disruption of brain connectome. Investigating grey
matter structural networks with a large sample size can provide
valuable insights into the structural basis of network-level
neuropathological underpinnings of MDD.

Aims
Using a multisite MRI data-set including nearly 2000 individuals,
this study aimed to identify robust topology and connectivity
abnormalities of grey matter structural network linked to MDD
and relevant clinical phenotypes.

Method
A total of 955 MDD patients and 1009 healthy controls were
included from 23 sites. Individualised structural covariance net-
works (SCN) were established based on grey matter volume
maps. Following data harmonisation, network topological
metrics and focal connectivity were examined for group-level
comparisons, individual-level classification performance and
association with clinical ratings. Various validation strategies
were applied to confirm the reliability of findings.

Results
Compared with healthy controls, MDD individuals exhibited
increased global efficiency, abnormal regional centralities (i.e.
thalamus, precentral gyrus, middle cingulate cortex and default

mode network) and altered circuit connectivity (i.e. ventral
attention network and frontoparietal network). First-episode
drug-naive and recurrent patients exhibited different patterns of
deficits in network topology and connectivity. In addition, the
individual-level classification of topological metrics outperforms
that of structural connectivity. The thalamus-insula connectivity
was positively associated with the severity of depressive
symptoms.

Conclusions
Based on this high-powered data-set, we identified reliable pat-
terns of impaired topology and connectivity of individualised SCN
in MDD and relevant subtypes, which adds to the current
understanding of neuropathology of MDD andmight guide future
development of diagnostic and therapeutic markers.
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Major depressive disorder (MDD) is a common and debilitating
mental illness that affects over 320 million people worldwide.1

The main clinical characteristics of MDD include depressed
mood, guilt, worthlessness and anhedonia, accounting for profound
social, interpersonal and occupational impacts. However, the neuro-
pathological mechanisms of MDD remain unclear. Although a
number of neuroimaging studies have demonstrated that MDD is
underpinned by brain structural and functional alterations asso-
ciated with emotional and cognitive impairments,2,3 the limited
sample size has largely impeded the identification of reliable bio-
markers in such a highly heterogeneous population. At least thou-
sands of individuals are necessary for a high-quality and
reproducible neuroimaging study to identify differences between
cohorts of participants.4

Multisite consortiums have provided a unique opportunity to
explore robust and generalisable multimodal neuroimaging biomar-
kers in various psychiatric disorders with sufficient statistical power
and cross-site validations. For example, based on data from 20 sites,
the Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA) consortium identified a reliable pattern of brain struc-
tural alterations in the frontal, temporal, limbic and visual regions
in MDD.5 The Disease Imaging Data Archiving – Major
Depressive Disorder (DIDA-MDD) working group detected

reproducible brain functional abnormalities in the visual, orbito-
frontal and sensorimotor cortices using multisite resting-state func-
tional MRI scans from 1434 individuals.6 Widespread white matter
microstructural impairments underlying structural disconnectivity
inMDDwere thoroughly examined through a coordinatedmultisite
diffusion tensor imaging study,7 also suggesting potential concur-
rent alterations in grey matter across the brain.8 These high-
quality multisite neuroimaging studies provided valuable insights
into the neural mechanisms of MDD, facilitating the identification
of robust illness biomarkers and potential treatment targets.

In the past decade, the pathophysiology of MDD has been
increasingly understood as a disruption of brain networks instead
of independent regional abnormalities.9 Complex brain networks
are typically represented by interregional structural or functional
connection matrices, from which network topological organisation
and focal connectivity patterns can be investigated. In addition to
functional or white matter networks that have been widely
studied in MDD, growing evidence supported that depression is
associated with grey matter structural networks (i.e. structural
covariance network [SCN]) that measure covariation in brain
morphology between regions. For example, Chen et al found that
first-episode MDD patients exhibited topological alterations of
SCN in the superior frontal gyrus and paracentral lobule, compared
to controls.10 Xiong et al demonstrated that impaired small-world
architecture of SCN could serve as a trait imaging marker of
MDD.11† Joint first authors. These authors contributed equally.
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However, most previous studies estimated structural covariance
by calculating interregional morphological correlations across a
group of individuals, which can only generate one SCN for a given
group. Group-level SCN neglects the heterogeneity of MDD and
cannot investigate the brain–behaviour relationship or make individ-
ual-level classification. Moreover, examining focal connectivity pat-
terns is largely limited in most group-level SCN studies, because
the connection of group SCN represents inter-individual morpho-
logical similarity which lacks biological meanings. Thus, establishing
individualised SCN (iSCN) can be more informative given its role in
personalised diagnosis and treatment. Although there have been
increasing numbers of works examining iSCN in MDD patients,12,13

the sample size and statistical power were limited.
In the present study, we aimed to identify robust abnormalities

of iSCN inMDD using a multisite structural MRI data-set including
nearly 2000 participants. Network topological metrics, as well as
focal connectivity, were harmonised and compared between
patients and controls. Clinical subgroups including first-episode
drug-naive (FEDN) and recurrent patients were separately investi-
gated. Given the existence of multiple controversial alternatives in
various stages of the iSCN analytic pipeline, particularly in brain
parcellation, brain mask application, image spatial smoothing and
covariate selection, we conducted a reproducibility test to assess
whether our findings were influenced by these methodological
choices. Machine learning analysis implemented through support
vector machine (SVM) was employed to demonstrate the diagnostic
value of network topology and connectivity. The choice of SVM is
rooted in its effectiveness in high-dimensional spaces, robustness
to overfitting, global optimality, balanced handling of bias and vari-
ance and, notably, its widespread popularity in the neuroimaging
field.14 The close association between deficits in cognitive and
affective processing patterns and depressive-like behaviours in
MDDhas been well established.15 Previous studies have consistently
supported the link between brain network abnormalities and cogni-
tive-emotional dysfunction.16 Consequently, our hypothesis posits
that individuals with MDD would exhibit alterations in network
topology and connectivity of regions implicated in emotion process-
ing and cognitive function. Different patterns of iSCN abnormalities
might be observed between FEDN and recurrent patients.

Materials and methods

Participants

The data-set utilised in this study was sourced from the REST-meta-
MDD consortium, encompassing MRI scans from 25 hospitals

nationwide. Following meticulous data cleaning and selection
(Supplementary Methods I available at https://doi.org/10.1192/bjp.
2024.41), our analysis ultimately comprised a subsample of 955
MDD patients and 1009 healthy controls from 23 sites. Data collec-
tion of all study cohorts was approved by their local Institutional
Review Boards (IRBs). The diagnoses of MDD were confirmed by
experienced psychiatrists at each local site using the Structured
Clinical Interview for DSM-IV disorders (SCID-IV). All included
participants aged 18–65 years old and had a 17-item Hamilton
Depression Rating Scale (HAMD-17) total score ≥18 at the time
of screening. Among all the MDD patients included, 263 were
first-episode individuals, 201 were recurrent individuals, 374
people were medication-naive and 261 people were treated.
Demographic and clinical characteristics are shown in Table 1
and Supplementary Figure 1.

Ethics

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and insti-
tutional committees on human experimentation and with the
Helsinki Declaration of 1975 as revised in 2008.

Consent

Written informed consent was obtained from all participants at
each hospital.

Image acquisition and processing

Three-dimensional high-resolution T1-weighted brain structural
images were acquired at each site. Scanner and image acquisition
parameters are presented in Supplementary Table 1. The REST-
meta-MDD consortium performed image preprocessing based on
a unified pipeline using the DPABI toolbox (http://rfmri.org/
DPABI). The raw structural images underwent initial correction
for field inhomogeneities using the Non-parametric Non-uniform
Intensity Normalisation (N3) algorithm.17 This algorithm
employs an iterative approach to estimate and eliminate both the
multiplicative bias field and the distribution of true tissue inten-
sities. Subsequently, the images were automatically segmented
into grey matter, white matter and cerebrospinal fluid via an itera-
tive mixture model cluster analysis embedded in the SPM software,
on the basis of both prior tissue probability and signal intensity
information.18 The segmented grey matter maps in native space
were spatially normalised to Montreal Neurological Institution
(MNI) space using diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL) non-linear registration fol-
lowed by modulation.19 The modulated grey matter maps were
further smoothed using a Gaussian kernel of 8-mm full width at
half maximum (FWHM).

Individualised structural covariance network (iSCN)
construction

Brain complex networks consist of nodes and edges. In our study,
the nodes of the iSCN were defined as 246 cortical and subcortical
regions based on the parcellation of the Brainnetome atlas. The
inter-regional structural covariance (i.e. structural connectivity)
represented edges, calculated as the similarities of grey matter
volume (GMV) probability distribution between each pair of
regions. Specifically, kernel density estimation (KDE) was first
employed to estimate the probability density function (PDF) to
reflect the GMV distribution in each region. In this process, the

Table 1 Demographic and clinical characteristics of the included
sample

Variable MDD Healthy controls P-value

Sample size (N) 955 1009 −
Age (year, mean ± s.d.) 34.6 ± 11.7 34.1 ± 13.7 0.510
Gender (N female, %) 604 (63.2%) 607 (60.2%) 0.160
HAMD (mean ± s.d.) 23.8 ± 4.6 − −
Duration of illness

(month, mean ± s.d.)
32.7 ± 54.4 − −

Episode status (N, %) − − −
First-episode 426 (44.6%) − −
Recurrent 201 (21.1%) − −
Unknown 328 (34.3%) − −

Medication status (N, %) − − −
Medication-naive 374 (39.2%) − −
Treated 261 (27.3%) − −
Unknown 320 (33.5%) − −

MDD, major depressive disorder; HAMD, Hamilton Depression Rating Scale.

Long et al

2
https://doi.org/10.1192/bjp.2024.41 Published online by Cambridge University Press

https://doi.org/10.1192/bjp.2024.41
https://doi.org/10.1192/bjp.2024.41
https://doi.org/10.1192/bjp.2024.41
http://rfmri.org/DPABI
http://rfmri.org/DPABI
http://rfmri.org/DPABI
https://doi.org/10.1192/bjp.2024.41


Gaussian kernel was used by default, and a conservative number of
sampling points was set to 512 as suggested by previous studies.20,21

Next, we measured the differences between pairwise PDFs of
regional GMV via the symmetric Kullback–Leibler divergence
(KLD). The interregional KLD values were subsequently trans-
formed to Kullback–Leibler similarity (KLS) values which ranged
from 0 to 1 (KLS = e−KLD). Finally, a symmetric 246 × 246 similarity
matrix was established to represent the iSCN for each participant.

Analysis of topological profiles

Global and nodal topological metrics of each iSCN were calculated
using the Brain Connectivity Toolbox (https://github.com/brainlife/
BCT). Global topological metrics included global efficiency, cluster-
ing coefficient, small-worldness, modularity and assortativity,
which reflect five domains of the brain network architecture includ-
ing integration, segregation, small-worldness, modularity and resili-
ence. Nodal topological metrics contained degree, betweenness and
eigenvector centrality of each region, reflecting the importance of
individual region in the network. A detailed description of the
above topological metrics is presented in Supplementary Methods II.
To remove weak and possibly spurious edges, iSCN was first thre-
sholded and binarised based on network density. The density-
based thresholding strategy retained the K% strongest edges,
which could ensure that each participant had the same number of
edges and could facilitate subsequent group comparisons. To
avoid the bias of single threshold selection, we applied a range of
dynamic density thresholds (K = 12–39 with an interval of 1)
which ensured both network connectedness and small-worldness.
Specifically, the upper and lower bounds of the threshold range
were set according to the following criteria: (a) all the nodes were
connected to others, and (b) the small-worldness of all the networks
was greater than 1.1 (Supplementary Figure 2). The area under
curve (AUC) value of each topological metric over dynamic
density thresholds was calculated for subsequent statistical analysis.
Given the significant bias derived from the site effects in multisite
neuroimaging data, ComBat harmonisation was applied
(Supplementary Methods III). A general linear model was used to
evaluate case-control differences in harmonised topological
metrics. Age and gender were set as covariates. We used
the Bonferroni correction (corrected P < 0.05) to control for
multiple comparisons.

Analysis of connectivity patterns

Between-group differences in network structural connectivity
were investigated using network-based statistics (NBS) analysis,
which could identify connected focal network components with
significantly altered connectivity in MDD relative to healthy
controls.22 Prior to the NBS analysis, ComBat harmonisation
was performed on each connectivity to minimise the site
effects (Supplementary Methods III). We first compared all
connections within the iSCN to gather connections exhibiting
significant inter-group differences (two-tailed P < 0.001). The
breadth first search was subsequently performed to identify
any connected subnetwork components within these connec-
tions. To further examine the significance level of these con-
nected subnetwork components, non-parametric permutation
testing with 10 000 randomisations was performed, and the
size of the maximal subnetwork component was recorded for
each randomisation. We reported significant components
whose sizes rank as the top 5% of the 10 000 maximal subnetwork
components derived from permutations (corrected-P < 0.05).
Nodes within each significant subnetwork component were
further grouped into seven canonical intrinsic functional networks
based on the Yeo atlas to reveal inter- and intra-network

connectivity patterns. The seven intrinsic functional networks
comprised default mode network (DMN), ventral attention
network (VAN), visual network (VN), dorsal attention network
(DAN), somatomotor network (SMN), frontoparietal network
(FPN) and limbic network (LN).23

Subgroup analysis

For the subgroup analyses, FEDN and recurrent patients were sep-
arately examined. The healthy controls for each subgroup were allo-
cated from the same sites as the patients for a balance of site effect
harmonisation. Specifically, 263 FEDN patients versus 532 healthy
controls from 10 sites and 201 recurrent patients versus 562 healthy
controls from 10 sites were included (Supplementary Tables 2 and 3).
We used the identical statistical model and significance level to
examine between-group differences in both topological profiles
and connectivity patterns of iSCN.

Individual-level classification

In addition to group-level statistical comparisons, we performed
individual-level machine learning analysis to separately examine
the diagnostic value of iSCN topology and connectivity. Three
classification tasks were determined to distinguish between
MDD versus healthy controls, FEDN MDD versus healthy con-
trols and recurrent MDD versus healthy controls, resulting in a
total of six models. The machine learning model was set as a
linear support vector machine (Supplementary Methods IV). We
applied stratified ten-fold cross-validation to split the data-set
into training and test sets. Classification performance was exam-
ined based on accuracy, sensitivity, specificity and AUC across
ten folds. We extracted the mean absolute weight of each feature
across ten folds from each trained model and mapped the top
ten regions contributing most to the classification tasks. For the
models based on topology, the region-level contribution was deter-
mined based on the average weights of three regional centralities.
For the models based on network connectivity, the region-level
contribution was derived from the average weights of all connect-
ivity linked to the region.

Association with symptom severity

We examined the association between depressive symptom severity
(i.e. HAMD-17 scores) and harmonised network measures using
partial correlation controlling for age and gender. Given the
ample statistical power of our data-set, we extended our association
analysis to encompass all metrics, not just limited to those demon-
strating significant between-group differences. This decision was
driven by our aim to thoroughly explore potential associations
between imaging and clinical variables. We separately examined
clinical association with all the topological measures and whole-
brain structural connectivity values. Bonferroni correction was
applied to control for type I error of multiple correlations (cor-
rected-P < 0.05).

Reproducibility test

The reproducibility tests were performed by considering several
alternative methodological choices. First, we used the 3rd version
of automated anatomical labelling (AAL3) atlas for brain parcella-
tion which contained 140 cerebral regions to examine whether the
findings were influenced by different node definition. Second, in
order to explore iSCN disruptions in the cerebellum and examine
whether the cerebral findings were influenced by introducing cere-
bellar regions, we used another version of the Brainnetome atlas
which contained cerebellar subfields. Third, it is controversial to
perform spatial smoothing during image preprocessing for analysis
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of iSCN.We tested the reproducibility of results using non-smoothed
images. Fourth, we included the total intracranial volume (TIV) as an
additional covariate for group-level comparisons, as TIV is thought to
correlate with the regional brain volume which is the measure we
used to construct iSCN.

Results

Network topological deficits
MDD patients versus healthy controls

Increased global efficiency (P = 0.008, Cohen’s d = 0.12) was identi-
fied in MDD patients compared with healthy controls. MDD
patients exhibited significantly decreased regional centralities in
the left medial superior frontal gyrus (SFG), left precentral gyrus
(PCG) and bilateral middle cingulate cortex (MCC), while increased
regional centralities were observed in the bilateral lateral temporal
cortex (LTC), left inferior parietal lobule (IPL) and left thalamus
(Fig. 1 and Table 2).

FEDN MDD patients versus healthy controls

For the FEDN patients with MDD, no significant global topological
alterations were identified. We found that FEDN patients showed
altered regional centrality in the bilateral thalamic subfields, com-
pared with healthy controls (Fig. 1 and Table 2).

Recurrent MDD patients versus healthy controls

There were no significant global topological differences between
recurrent patients and healthy controls. Regarding the regional
centralities, recurrent patients with MDD exhibited increased
regional centralities in the right inferior frontal gyrus (IFG), left
middle frontal gyrus (MFG), left PCG and left IPL, while decreased
regional centralities were observed in the left medial SFG (Fig. 1
and Table 2).

Network connectivity abnormalities
MDD patients versus healthy controls

Two abnormal subnetwork components were identified in MDD
patients, compared with healthy controls. One subnetwork com-
ponent consisted of 129 nodes and 295 increased connectivity (P
= 0.0003), which was anatomically involved in subcortical
structures and functionally related to VAN. Another significant
subnetwork component included 105 nodes and 203
decreased connectivity (P = 0.0006), which was anatomically
involved in cingulate gyrus and was functionally related to the
FPN (Fig. 2).

FEDN MDD patients versus healthy controls

FEDN patients with MDD exhibited one abnormal subnetwork
component, compared with healthy controls. This subnetwork
component included 75 nodes and 100 increased connectivity
(P = 0.0020), which was anatomically involved in subcortical
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nuclei and functionally related to the VAN. No significant subnet-
work component with increased connectivity was found in FEDN
patients, compared with healthy controls (Fig. 2).

Recurrent MDD patients versus healthy controls

A subnetwork component including 22 nodes and 24 increased con-
nectivity was identified in recurrent patients, compared with

Table 2 Between-group differences in regional topological centralities

Region Metric Cohen’s d P-value (Bonferroni corrected)

MDD< healthy controls
L SFG, medial area 8 Degree centrality −0.19 0.0062
L SFG, medial area 6 Degree centrality −0.17 0.0385
L SFG, medial area 9 Degree centrality −0.18 0.0216
L PrG, caudal dorsolateral area 6 Degree centrality −0.22 0.0004

Eigenvector centrality −0.20 0.0026
L CG, rostroventral area 24 Degree centrality −0.25 <0.0001

Eigenvector centrality −0.26 <0.0001
R CG, rostroventral area 24 Degree centrality −0.23 <0.0001

Eigenvector centrality −0.23 <0.0001
MDD> healthy controls
R MTG, caudal area 21 Degree centrality 0.22 0.0006

Betweenness centrality 0.19 0.0152
L ITG, extreme lateroventral area 37 Degree centrality 0.20 0.0039

Eigenvector centrality 0.19 0.0071
L IPL, rostroventral area 40 Degree centrality 0.20 0.0026
L medial prefrontal thalamus Degree centrality 0.21 0.0002

Eigenvector centrality 0.17 0.0143
FEDN < healthy controls
R lateral prefrontal thalamus Degree centrality −0.33 0.0058
R pre-motor thalamus Eigenvector centrality −0.35 0.0008
FEDN > healthy controls
L medial prefrontal thalamus Betweenness centrality 0.27 0.0284
Recurrent < healthy controls
L SFG, medial area 8 Eigenvector centrality −0.32 0.0199
Recurrent > healthy controls
L MFG, dorsal area 9/46 Degree centrality 0.33 0.0124
R IFG, rostral area 45 Degree centrality 0.37 0.0011

Eigenvector centrality 0.33 0.0091
L IPL, rostroventral area 40 Degree centrality 0.34 0.0059
L PrG, upper limb area 4 Eigenvector centrality 0.32 0.0263

MDD, major depressive disorder; FEDN, first-episode drug-naive; L, left; R, right; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; PrG, precentral gyrus; MTG,
middle temporal gyrus; ITG, inferior temporal gyrus; IPL, inferior parietal lobule; CG, cingulate gyrus.
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healthy controls (P = 0.0075). This subnetwork component was
anatomically involved in subcortical areas and functionally related
to the VAN. Another significant subnetwork component consisted
of 17 nodes and 16 decreased connectivity (P = 0.0126) that was
anatomically involved in frontal lobe and functionally related to
the FPN. (Fig. 2).

Individual-level classification performance
MDD patients versus healthy controls

Based on network topological metrics, the SVM model achieved an
accuracy of 73.3% (95%CI: 71.4–75.3%, AUC: 0.816) betweenMDD
patients and healthy controls. When using network connectivity as
features, the classification accuracy between MDD patients and
healthy controls was 63.4% (95%CI: 61.3–65.6%, AUC: 0.690).
The most salient regions for both models were consistently
located in the frontal gyrus, cingulate gyrus, PCG and thalamus
(Fig. 3 and Supplementary Table 4).

FEDN MDD patients versus healthy controls

Based on network topology, FEDN patients were distinguished from
healthy controls with an accuracy of 77.7% (95% CI: 74.8–80.6%,
AUC: 0.849). With regard to network connectivity features, we
observed a classification accuracy of 67.5% (95%CI: 64.2–70.7%,
AUC: 0.677) between FEDN patients and healthy controls. The
most salient regions were found in the subcortical nuclei including
thalamus and basal ganglia (Fig. 3 and Supplementary Table 5).

Recurrent MDD patients versus healthy controls

By setting network topological metrics as features, recurrent
patients were differentiated from healthy controls with an accuracy

of 76.1% (95% CI: 73.1–79.1%, AUC: 0.791). For the network con-
nectivity features, the classification accuracy between recurrent
patients and healthy controls was 77.53% (95%CI: 74.6–80.5%,
AUC: 0.838). The regions contributing most to classification
between recurrent patients and healthy controls were distributed
in the frontal, temporal and limbic regions (Fig. 3 and
Supplementary Table 6).

Associations with symptom severity

Structural connectivity between the posterior parietal thalamus and
the ventral granular insula was positively associated with HAMD-17
total score (N = 822, r = 0.169, corrected P = 0.035). We did not
detect significant correlations between topological metrics and
depressive symptom severity (Fig. 4).

Reproducibility results

Applying different analytic strategies to control potentially con-
founding factors did not change our main findings. The results of
the reproducibility tests are shown in Supplementary Figure 3 and
Tables 7–10.

Discussion

Based on a large sample across 23 nationwide sites, this study, for
the first time, investigated topological and connectional profiles of
brain grey matter connectome and examined their diagnostic
values inMDD and relevant clinical subtypes. For the network topo-
logical characteristics, MDD patients showed increased global effi-
ciency and regional centralities of the temporal, parietal and
thalamic areas, as well as decreased centralities of the medial
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prefrontal, anterior cingulate and precentral cortices compared to
healthy controls. When looking at focal connections, we found
increased connectivity within the cortical-subcortical circuit and
decreased connectivity between the frontal and cingulate areas.
Regarding the FEDN-MDD subgroup, both topological and con-
nectional abnormalities were restricted to the subcortical structures,
especially the thalamus, while disruption of iSCN in the recurrent
MDD patients was primarily distributed in the frontal and parietal
regions. Topological features showed potential for individual-level
characterisation of MDD, including FEDN and recurrent patients,
with classification accuracies around 75%. Connectional features
of iSCN could achieve comparable accuracy for the recurrent
MDD patients, but poorer performance was observed for the
entire MDD and FEDN-MDD groups.

One key challenge in interpreting brain grey matter connectome
is the lack of clarity of the neurobiological underpinnings of struc-
tural covariance based on imaging. The basic point is that brain
structural covariance patterns are shaped during early childhood
and inherently reflect neurodevelopmental coordination and mat-
urational synchronisation between regions.24 A bundle of factors
can alter the iSCNs across the lifespan, such as genetics, cognition,
behaviour and plasticity,24 of which all have been involved in the
pathogenesis of MDD. In addition, numerous studies have demon-
strated that functional connectivity measuring interregional syn-
chronisation of neuronal activities as well as anatomical
connectivity representing white matter tracts is associated with
the pathophysiology of MDD.25 Indeed, iSCNs can also be influ-
enced by this brain connectivity and partially recapitulate functional
and white matter networks, as such wiring can induce synaptogen-
esis, and synapses have mutually trophic and protective effects on
connected neurons.26,27 Thus, examining the organisation and
architecture of structural covariance patterns in MDD could
provide a more comprehensive insight into the neural mechanisms,
adding to our connectome-level understanding of the disease.

Brain grey matter connectome typically conforms to the small-
world architecture that underlies an optimal organisation of global
integration and local segregation. Compared with healthy controls,
MDD patients exhibited increased global efficiency, which indicated
higher network integration and consequently disrupted the balance
between integration and segregation.28 One review of brain connec-
tome studies summarised four canonical network configuration
modes comprising regularisation, randomisation, and weaker and
stronger small-worldisation.29 Enhanced integration and preserved

segregation represent a shift towards the randomisation pattern of
grey matter connectome in MDD,29 which has been consistently
observed for functional networks in MDD.30 The randomisation
may suggest that more resources are allocated for global informa-
tion processing, and local specialised communication is limited,
leading to impaired capability of fault tolerance.31

Altered regional centralities of the PCG and MCC were identi-
fied in MDD patients compared with healthy controls. Both multi-
site investigations and large-scale meta-analyses have supported the
relationship between depression and structural abnormalities in
these areas.5,32 The PCG, as part of the primary motor cortex, has
been suggested to be involved in psychomotor retardation in
MDD. It is notable that structural alterations in the PCG were iden-
tified in both currently depressed and remitted patients, represent-
ing a state-independent imaging biomarker of MDD.33 The MCC
(especially the anterior part) plays an important role in psycho-
logical processes related to MDD, such as negative emotion, cogni-
tive control, social information processing and reward-related
decision-making. One previous study found significant correlation
between reduction in depression severity and changes in the
degree centrality of the MCC following 6 weeks of psychotherapy.34

Another study reported that neural activation and eigenvector cen-
trality of the MCC showed predictive capability for remission to
antidepressants in late-life depression.35 These findings suggest
the MCC may be a promising region for monitoring and predicting
treatment response.

In addition, abnormal topological metrics of the thalamus and
DMN regions (i.e. mPFC, IPL and LTC) were also associated with
MDD and distributed in different clinical subgroups. Specifically,
FEDN patients showed aberrant centralities in the thalamus,
while DMN abnormalities were found in recurrent patients. The
thalamus is a key region regulating memory, emotion and arousal.
One study found that SCN properties of the thalamus can serve
as a trait-like signature of FEDN MDD, irrespective of the current
state (depressed or remitted).11 Notably, altered iSCN centralities
were identified only in several thalamic subfields. Another multisite
study consistently found increased GMV in a few thalamic subfields
but not in the entire thalamus.36 Heterogenous changes across the
thalamic nuclei might extend our understanding of the neural
basis of depression. In line with our findings, two multisite MRI
studies suggested that DMN dysfunction in the entire MDD popu-
lation was primarily driven by recurrent patients.37,38 The DMN has
received the most attention in the context of MDD neurobiology
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because of its linkage to rumination which is the core phenomen-
ology of depressive behaviours. Previous studies have demonstrated
that antidepressants can modulate and change the DMN connectiv-
ity,39 suggesting that specific MDD findings in recurrent patients
might result from longer-term treatment exposure.

For the network connectional profiles, we found increased con-
nectivity within VAN regions and decreased connectivity related to
FPN regions. Convergent patterns of increased connectivity related
to VAN regions were identified in both FEDN and recurrent
patients, while decreased connectivity related to FPN regions was
only observed in recurrent MDD. The VAN is also known as the
salience network involved in attention towards salient events.
Overactivated VAN can lead to difficulties in the adaptive regula-
tion of negative emotional events. Since mood symptoms are the
leading feature of MDD which could be present at any illness
stage, both FEDN and recurrent patients showed hyperconnectivity
of the VAN. The FPN is a network related to top-down cognitive
control. A large-scale meta-analysis found that deficits in cognitive
performance persist and worsen with repeated depressive epi-
sodes.40 This may partially explain why significant FPN abnormal-
ities were exclusively observed only in recurrent MDD.

The individualised classification implemented by machine learn-
ing revealed that the topological metrics successfully distinguished
between patients and controls with excellent accuracy of over 70%
in all groups and subgroups, which could serve as more reliable fea-
tures in MDD diagnosis. Notably, although no significant global
topological abnormalities were observed for the FEDN and recurrent
subgroups, our topology-based model demonstrates the ability to
characterise both FEDN and recurrent patients with remarkable
accuracies exceeding 75%. It is noteworthy that all pivotal features
contributing to this classification are regional topological centralities,
suggesting that the classification procedure is predominantly influ-
enced by nodal metrics. Global topology may exert minimal impact
on the model performance in our analyses. For the clinical associa-
tions, no topological metrics were significantly associated with
depressive symptom ratings. The connectivity between the thalamus
and insula can serve as a promising indicator of symptom severity.
Topological features represent higher-level architecture of iSCN
which enables the tolerance of individual differences, while connec-
tional features are a lower-level component of iSCN which may be
sensitive to individual differences.

Limitations

The current study has a few limitations. First, this is a cross-
sectional and retrospective study that is limited to the investigation
of illness progression models and neuropharmacological mechan-
isms in MDD. Future prospective and longitudinal neuroimaging
studies with a large sample size are warranted. Second, our
current findings are based on a data-set from Chinese participants.
Relevant interpretations and conclusions applied to other ethnic/
racial groups should be cautious. Future studies onWestern depres-
sion patients could reveal commonalities and differences. Third,
grey matter connectome was constructed based on GMV in our
study. Structural covariance patterns estimated using other brain
morphometric metrics, such as cortical thickness and surface may
provide different biological underpinnings of MDD. Fourth, the
episode status and medication history of most MDD patients
were unclear, potentially influencing our main findings. Although
we conducted subgroup analysis on FEDN MDD patients, the sub-
stantially reduced sample size compared to the overall data-set
limits the robustness of our findings. Future neuroimaging studies
focusing on a large and well-defined cohort of FEDN patients are
essential to yield more robust and less biased insights into the
neural mechanisms of MDD.

Implications

Based on a sufficiently powered multisite data-set, we comprehen-
sively investigated abnormalities of the grey matter connectome in
MDD. Network topological deficits and focal connectional abnor-
malities exhibited unique patterns in FEDN and recurrent patients
withMDD. Topological features enabled more reliable performance
in illness diagnosis. Specific structural connection could serve as an
indicator of illness severity. Our findings advance the current
understanding of the connectome-level neurobiological mechan-
isms of MDD, providing a solid basis for future development of
diagnosis and therapeutic targets.
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