Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T04:27:56.171Z Has data issue: false hasContentIssue false

Evaluation of perennial herbaceous legumes with different phosphorus sources and levels in a Brazilian Ultisol

Published online by Cambridge University Press:  12 February 2007

J.A.A. Espindola*
Affiliation:
Embrapa Agrobiologia, BR 465, km 07, C.E.P. 23851-970, Seropédica, RJ, Brazil.
J.G.M. Guerra
Affiliation:
Embrapa Agrobiologia, BR 465, km 07, C.E.P. 23851-970, Seropédica, RJ, Brazil.
D.L. Almeida
Affiliation:
Embrapa Agrobiologia, BR 465, km 07, C.E.P. 23851-970, Seropédica, RJ, Brazil.
M.G. Teixeira
Affiliation:
Embrapa Agrobiologia, BR 465, km 07, C.E.P. 23851-970, Seropédica, RJ, Brazil.
S. Urquiaga
Affiliation:
Embrapa Agrobiologia, BR 465, km 07, C.E.P. 23851-970, Seropédica, RJ, Brazil.
*
*Corresponding author: jose@cnpab.embrapa.br

Abstract

This study was carried out under field conditions with the aim of evaluating the period of time necessary for soil cover, dry matter production and accumulation of nutrients by perennial herbaceous legumes with different phosphorus sources at different levels. Four legumes were evaluated: calopo (Calopogonium mucunoides Desv.), forage groundnut (Arachis pintoi Krap. & Greg.), siratro (Macroptilium atropurpureum (OC.) Urb.) and tropical kudzu (Pueraria phaseoloides (Roxb.) Benth.). Each of these species received different phosphorus (P) sources and levels: no phosphate fertilization; 44 and 88 kg of P ha−1 applied as rock phosphate; and 44 kg of P ha−1 as triple superphosphate. Calopo, siratro and tropical kudzu completely covered the soil surface 129 days before forage groundnut. Phosphate fertilization did not increase the dry matter production of any species. The legumes forage groundnut, siratro and tropical kudzu showed desirable characteristics that promote their use as cover crops, such as high dry matter production and shoot accumulation of nitrogen (N) and potassium (K). Forage groundnut had the highest proportion of N derived from the atmosphere at the end of the rainy season, while there were no significant differences between the legumes at the end of the dry season. There was an elevation of soil pH and calcium+magnesium (Ca+Mg) contents, associated with a reduction of aluminum (Al) content, in the surface soil layer (0–5 cm) for siratro in relation to groundnut and tropical kudzu. Tropical kudzu promoted higher soil organic C contents when compared to groundnut.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Altieri, M.A. 1995. Agroecology: The Science of Sustainable Agriculture 2nd ed. Westview Press, Boulder, Colorado.Google Scholar
2Gliessman, S.R. 2000. Agroecology: Ecological Processes in Sustainable Agriculture. Lewis Publishers, Boca Raton, Florida.Google Scholar
3Rhoades, H.L. 1980. Relative susceptibility of Tagetes patula and Aeschynomene americana to plant nematodes in Florida. Nematropica 10: 116120.Google Scholar
4Resende, I.C., Ferraz, S., and Conde, A.R. 1987. Efeito de seis variedades de mucuna (Stizolobium spp.) sobre Meloidogine incognita raça 3 e M. javanica. Fitopatologia Brasileira 12: 310313.Google Scholar
5Bryan, H.H., Abdul-Baki, A.A., Reeves, J.B. III, Carrera, L.M., Klassen, W., Zinati, G., and Codallo, M. 2001. Perennial Arachis spp. as a multipurpose living mulch, ground cover and forage. Journal of Vegetable Crop Production 7: 113136.CrossRefGoogle Scholar
6Hartwig, N.L., and Ammon, H.U. 2002. Cover crops and living mulches. Weed Science 50: 688699.CrossRefGoogle Scholar
7Thomas, R.J., Asakawa, N.M., Rondon, M.A., and Alarcon, H.F. 1997. Nitrogen fixation by three tropical forage legumes in an acid-soil of Colombia. Soil Biology and Biochemistry 29: 801808.CrossRefGoogle Scholar
8Busscher, W.J., Reeves, D.W., Kochhann, R.A., Bauer, P.J., Mullins, G.L., Clapham, W.M., Kemper, W.D., and Galerani, P.R. 1996. Conservation farming in southern Brazil: using cover crops to decrease erosion and increase infiltration. Journal of Soil and Water Conservation 51: 188192.Google Scholar
9Fernandez, Medina, B., and Leite, J.A. 1985. Influência de três sistemas de manejo e duas coberturas vegetais na infiltração de água em um Latossolo Amarelo em Manaus-AM. Pesquisa Agropecuária Brasileira 20: 13231331.Google Scholar
10Bradshaw, L., and Lanini, W.T. 1995. Use of perennial cover crops to suppress weeds in Nicaraguan coffee orchards. International Journal of Pest Management 41: 185194.CrossRefGoogle Scholar
11Hedge, R.S., and Miller, D.A. 1990. Allelopathy and autotoxicity in alfalfa: characterization and effects of preceding crops and residue incorporation. Crop Science 30: 12551259.CrossRefGoogle Scholar
12Johns, G.G. 1994. Effect of Arachis pintoi groundcover on performance of bananas in northern New South Wales. Australian Journal of Experimental Agriculture 34: 11971204.CrossRefGoogle Scholar
13Corley, R.N., Wolderghebriel, A., and Murphy, M.R. 1997. Evaluation of nutritive value of kudzu (Pueraria lobata) as a feed for ruminants. Animal Feed Science Technology 68: 183188.CrossRefGoogle Scholar
14Undi, M., Kawonga, K.C., and Musendo, R.M. 2001. Nutritive value of maize stover/pasture legume mixtures as dry season supplementation for sheep. Small Ruminant Research 40: 261267.CrossRefGoogle ScholarPubMed
15MacKay, A.D., Caradus, J.R., and Wewala, S. 1991. Aluminium tolerance of forage species. Developments in Plant and Soil Science 45: 925930.Google Scholar
16Engels, K.A., Becker, M., Ottow, J.C.G., and Ladha, J.K. 1995. Influence of phosphorus-potassium fertilization on biomass and dinitrogen fixation of stem-nodulating green-manure legume Sesbania rostrata in different marginally productive wetland rice soils. Biology and Fertility of Soils 20: 107112.CrossRefGoogle Scholar
17Embrapa, . 1997. Manual de Métodos de Análise de Solo. Embrapa Solos, Rio de Janeiro, Brazil.Google Scholar
18Jorge, L.A.C., and Crestana, S. 1996. SIARCS 3.0: Novo aplicativo para análise de imagens digitais aplicado à Ciência do Solo. In Congresso Latino Americano de Ciência do Solo, 13. Sociedade Brasileira de Ciência do Solo, Águas de Lindóia, Brazil. (CD-ROM).Google Scholar
19Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen total. In Page, A.L. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Soil Science Society of America, Madison, Wisconsin. p. 595624.Google Scholar
20Bataglia, O.C., Furlani, A.M.C., Teixeira, J.P.F., and Gallo, J.R. 1983. Métodos de análise química de plantas. Instituto Agronômico, Campinas, Brazil.Google Scholar
21Shearer, G.B., and Kohl, D.H. 1986. N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology 13: 699756.Google Scholar
22McAuliffe, C., Chamblee, D.S., Uribe-Arango, H., and Woodhouse, W.W. 1958. Influence of inorganic nitrogen or nitrogen fixation by legumes as revealed by 15 N. Agronomy Journal 50: 334337.CrossRefGoogle Scholar
23Espindola, J.A.A., Guerra, J.G.M., and Almeida, D.L. 1997.) Adubação Verde: Estratégia para uma Agricultura Sustentável Embrapa Agrobiologia Seropédica, Brazil.Google Scholar
24Giller, K.E., and Wilson, K.J. 1991. Nitrogen Fixation in Tropical Cropping Systems. Wallingford, UK CAB International.Google Scholar
25Souza, E.S., Burity, H.A., Oliveira, J.P., Figueiredo, M.V.B., and Lyra, M.C.C.P. 1996. Fixação de N 2 e crescimento do calopogônio (Calopogonium mucunoides Desv.) e da cunhã (Clitoria ternatea L.), após sucessivos cortes. Revista da Sociedade Brasileira de Zootecnia 25: 10361048.Google Scholar
26Rao, I.M., and Kerridge, P.C. 1994. Mineral nutrition of forage Arachis. In Kerridge, P.C. and Hardy, B (eds) Biology and Agronomy of Forage Arachis. Centro Internacional de Agricultura Tropical, Cali, Colombia. 7183.Google Scholar
27Arias, I., Koomen, I., Dodd, J.C., White, R.P., and Hayman, D.S. 1991. Growth responses of mycorrhizal and non-mycorrhizal tropical forage species to different levels of soil phosphate. Plant and Soil 132: 253260.CrossRefGoogle Scholar
28Li, M., Osaki, M., Rao, I.M., and Tadano, T. 1997. Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant and Soil 195: 161169.CrossRefGoogle Scholar
29Koutika, L.S., Hauser, S., and Henrot, J. 2001. Soil organic matter assessment in natural regrowth, Pueraria phaseoloides and Mucuna pruriens fallow. Soil Biology and Biochemistry 33: 10951101CrossRefGoogle Scholar