Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T01:26:21.190Z Has data issue: false hasContentIssue false

A new isolate of Nosema fumiferanae (Microsporidia: Nosematidae) from the date moth Apomyelois (Ectomyelois) ceratoniae, Zeller, 1839 (Lepidoptera: Pyralidae)

Published online by Cambridge University Press:  10 August 2020

Onur Tosun*
Affiliation:
Department of Veterinary, Maçka Vocational School, Karadeniz Technical University, Trabzon61080, Turkey
*
Author for correspondence: Onur Tosun, E-mail: onrtsn61@hotmail.com

Abstract

In this study, a microsporidian pathogen of the date moth (Apomyelois (Ectomyelois) ceratoniae, Zeller, 1839) also known as the carob moth, is described based on light microscopy, ultrastructural characteristics and comparative molecular analysis. The pathogen infects the gut and hemolymph of A. ceratoniae. All development stages are in direct contact with the host cell cytoplasm. Fresh spores with nuclei arranged in a diplokaryon are oval and measured 3.29 ± 0.23 μm (4.18–3.03 μm, n = 200) in length and 1.91 ± 0.23 μm (2.98–1.66 μm, n = 200) in width. Spores stained with Giemsa's stain measured 3.11 ± 0.31 μm (3.72–2.41 μm, n = 150) in length and 1.76 ± 0.23 μm (2.16–1.25 μm, n = 150) in width. Spores have an isofilar polar filament with 10-12 coils. An 1110 bp long alignment of the current microsporidium showed an SSU rRNA gene difference of only 0.0009, corresponding to >99.91% sequence similarity with Nosema fumiferanae, while RPB1 gene sequences were 98.03% similar within an alignment of 969 bp. All morphological, ultrastructural and molecular features indicate that the microsporidian pathogen of A. ceratoniae is the new isolate of the N. fumiferanae and is named here as Nosema fumiferanae TY61.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alrubeai, HF (1988) Susceptibility of Ectomyelois ceratoniae to Bacillus thuringiensis isolates under laboratory and field conditions. Journal of Agriculture and Water Resources Research Plant Production 7, 125136.Google Scholar
Baki, H and Bekircan, Ç (2018) A new microsporidium, Vairimorpha Subcoccinellae n. sp. (Microsporidia: Burenellidae), isolated from Subcoccinella vigintiquatuorpunctata L. (Coleoptera: Coccinellidae). Journal of Invertebrate Pathology 151, 182190.Google Scholar
Balachowski, AS (1975) Entomologie appliquée à l'agriculture, Tome II. In Masson, C (ed.), Lépidoptères. Paris, France, pp. 1057.Google Scholar
Becnel, JJ, Jeyaprakash, A, Hoy, MA and Shapiro, A (2002) Morphological and molecular characterization of a new microsporidian species from the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae). Journal of Invertebrate Pathology 79, 163172.CrossRefGoogle Scholar
Becnel, JJ, Takvorian, PM and Cali, A (2014) Checklist of available generic names for microsporidia with type species and type hosts. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. USA: Wiley-Blackwell, pp. 671687.Google Scholar
Behdad, E (1991) Pests of Fruit Crops in Iran, 2nd Edn, Tehran, Iran: Markaze-Nashre Bahman.Google Scholar
Bekircan, Ç (2020) Assignment of Vairimorpha leptinotarsae comb. nov. on the basis of molecular characterization of Nosema leptinotarsae Lipa, 1968 (Microsporidia: Nosematidae). Parasitology 147, 10191025. doi: 10.1017/S0031182020000669.Google Scholar
Bekircan, Ç, Bülbül, U, Güler, and Becnel, JJ (2017) Description and phylogeny of a new microsporidium from the elm leaf beetle, Xanthogaleruca luteola Muller, 1766 (Coleoptera: chrysomelidae). Parasitology Research 116, 773780.CrossRefGoogle Scholar
Canning, EU and Vavra, J (2000) Phylum microsporida. In Lee, JJ, Leedale, GF and Bradbury, P (eds), The Illustrated Guide to The Protozoa. Lawrence: Allen Press Inc., pp. 39126.Google Scholar
Chen, D, Shen, Z, Zhu, F, Guan, R, Hou, J, Zhang, J, Xu, X, Tang, X and Xu, L (2012) Phylogenetic characterization of a microsporidium (Nosema sp. MPr) isolated from the Pieris rapae. Parasitology Research 111, 263269.CrossRefGoogle ScholarPubMed
Cheung, WWK and Wang, JB (1995) Electron microscopic studies on Nosema Mesnili Paillot (Microsporidia: Nosematidae) infecting the Malpighian tubules of Pieris Canidia larva. Protoplasma 186, 142148.Google Scholar
Dhouibi, MH (1982) Etude bioecologique d'Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae) dans les zones preahariennes de la Tunisie (These de Docteur Ingenieur). University Pierre et Marie Curie, Paris, France.Google Scholar
Elsayed, G and Bazaid, SA (2011) Field investigation of pomegranate fruit worms in Taif and laboratory evaluation of Bacillus thuringiensis against Ectomyelois ceratoniae. Archives of Phytopathology and Plant Protection 44, 2836.CrossRefGoogle Scholar
Gothilf, S (1964) Studies on the biology of the carob moth Ectomyelois ceratoniae (ZELL.). The Volcani Institute of Agricultural Research, Rehovoth, Israel, Spec. Bull. No. 76.Google Scholar
Gothilf, S (1984) Biology of Spectrobates ceratoniae on almonds in Israel. Phytoparasitica 12, 7787.Google Scholar
Hajek, AE and Delalibera, JI (2010) Fungal pathogens as classical biological control agents against arthropods. BioControl 55, 147158.Google Scholar
Hallier, E, Deutschmann, S, Reichel, C, Bolt, HM and Peter, H (1990) A comparative investigation of the metabolism of methyl bromide and methyl iodide in human erythrocytes. International Archives of Occupational and Environmental Health 62, 221225.Google Scholar
Higes, M, Martin, R and Meana, A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology 92, 9395.Google ScholarPubMed
Hopper, JV, Huang, WF, Solter, LF and Mills, NJ (2016) Pathogenicity, morphology, and characterization of a Nosema Fumiferanae isolate (Microsporidia: Nosematidae) from the light brown apple moth, Epiphyas Postvittana (Lepidoptera: Tortricidae) in California. Journal of Invertebrate Pathology 134, 3847.Google Scholar
Hylis, M, Weiser, J, Oborník, M and Vávra, J (2005) DNA Isolation from museum and type collection slides of microsporidia. Journal of Invertebrate Pathology 88, 257260.Google ScholarPubMed
Idder, MA, Idder-Ighili, H, Saggou, H and Pinturea, B (2009) Taux d'infestation et morphologie de la pyrale des dattes Ectomyelois Ceratoniae (Zeller) sur différentes variétés du palmier dattier Phoenix dactylifera (L. Cahiers Agricultures 18, 6371.Google Scholar
Lange, CE (1991) A Nosema-type microsporidian in Ectomyelois Ceratoniae (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology 58, 348352.Google Scholar
Larsson, JIR (1986) Ultrastructure, function, and classification of microsporidia. Progress in Protistology 1, 325390.Google Scholar
Larsson, JIR (1988) Identification of microsporidian genera (Protozoa, Microspora) – a guide with comments on the taxonomy. Archiv für Protistenkunde 136, 137.CrossRefGoogle Scholar
Lloyd, M, Knox, CM, Thackeray, SM, Hill, MP and Moore, SD (2017) Isolation, identification and genetic characterisation of a microsporidium isolated from Carob Moth, Ectomyelois Ceratoniae (Zeller) (Lepidoptera: Pyralidae). African Entomology 25, 529533.Google Scholar
Martín-Hernández, R, Meana, A, Prieto, L, Salvador, AM, Garrido-Bailón, E and Higes, M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Applied and Environmental Microbiology 73, 63316338.Google ScholarPubMed
Mehrnejad, MR (1993) Biology of the carob moth Apomyelois Ceratoniae a new pest of pistachio in Rafsanjan. Applied Entomology and Phytopathology 66, 112.Google Scholar
Mnif, I, Elleuch, M, Chaabouni, S.E and Ghribi, D (2013) Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Protection 50, 6672.CrossRefGoogle Scholar
Nägeli, C (1857) Überdie neue Krankheit der Seidenraupe und verwandte Organismen. Botanische Zeitung 15, 60761.Google Scholar
Norouzi, A, Talebi, AA and Fathipour, Y (2008) Development and demographic parameters of the carob moth Apomyelois Ceratoniae on four diet regimes. Bulletin of Insectology 61, 291297.Google Scholar
Ovcharenko, M, Swiatek, P, Ironside, J and Skalski, T (2013) Orthosomella lipae sp. n. (Microsporidia) a parasite of the weevil, Liophloeus lentus Germar, 1824 (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 112, 3340.Google Scholar
Öztop, A, Keçeci, M and Kıvradım, M (2010) Antalya ilinde nar zararlıları üzerine araştırmalar: Gövde ve dallarda zarar yapanlar. Derim 27, 1217.Google Scholar
Öztürk, N and Ulusoy, MR (2009) Pests and natural enemies determined in pomegranate orchards in Turkey. I. Int. Symposium on pomegranate and minor Mediterranean fruits, 16–19 October 2006, Adana-Turkey. Acta Horticulturae 818, 277284.Google Scholar
Pilley, BM (1976) A new genus, Vairimorpha (Protozoa: Microsporida), for Nosema necatrix Kramer 1965: pathogenicity and life cycle in Spodoptera exempta (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology 28, 177183.Google Scholar
Reynolds, ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208212.Google ScholarPubMed
Shakeri, M (1993) First report of attack of Spectrobates Ceratoniae Zell. to figs in Iran. Applied Entomology and Phytopathology 60, 29.Google Scholar
Solter, LF, Becnel, JJ and David, HO (2012) Microsporidian entomopathogens. In Vega, FE and Kaya, HK (eds), Insect Pathology. London: Elsevier Inc., pp. 221263.Google Scholar
Sprague, V, Becnel, JJ and Hazard, EI (2008) Taxonomy of phylum microspore. Critical Reviews in Microbiology 18, 285395.Google Scholar
Spurr, AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 3143.Google ScholarPubMed
Thomson, HM (1955) Perezia fumiferanae n. sp., a new species of Microsporidia from the spruce budworm Choristoneura fumiferana (Clem.). Journal of Parasitology 41, 416423.Google Scholar
Tokarev, YS, Huang, WF, Solter, LF, Malysh, JM, Becnel, JJ. and Vossbrinck, CR (2020) A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of Invertebrate Pathology 169, 107179.Google ScholarPubMed
Undeen, AH and Vávra, J (1997) Research methods for entomopathogenic protozoa. In Lacey, L (ed), Manual of Techniques in Insect Pathology, Biological Techniques Series. London: Academic Press, pp. 117151.Google Scholar
Warner, RL (1988) Contribution to the biology and the management of the carob moth, Ectomyelois ceratoniae (Zeller) in ‘Deglet Noor’ date gardens in the Coachella Valley of California (Ph.D. Dissertation). University of California, Riverside, USA.Google Scholar
Yaman, M, Bekircan, Ç, Radek, R and Linde, A (2014) Nosema pieriae sp. n. (Microsporida, Nosematidae): a new microsporidian pathogen of the Cabbage butterfly Pieris brassicae L. (Lepidoptera: Pieridae). Acta Protozoologica 53, 223232.Google Scholar
Yıldırım, H and Bekircan, Ç (2020) Ultrastructural and molecular characterization of Nosema Alticae sp. nov. (Microsporidia: Nosematidae), pathogen of the flea beetle, Altica hampei Allard, 1867 (Coleoptera: Chrysomelidae). Journal of Invertebrate Pathology 170, 107302.Google Scholar
Zouba, A, Khoualdia, O, Diaferia, A, Rosito, V, Bouabidi, H and Chermiti, B (2009) Microwave treatment for postharvest control of the date moth Ectomyelois ceratoniae. Tunisian Journal of Plant Protection 4, 173184.Google Scholar