Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T19:25:48.577Z Has data issue: false hasContentIssue false

Pulsed MOCVD of Cu Seed Layer using a (Hfac)Cu(3,3-Dimethyl-1-Butene) Source Plus H2 Reactant

Published online by Cambridge University Press:  17 March 2011

Jaebum Park
Affiliation:
School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea
Heejung Yang
Affiliation:
School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea
Jaegab Lee
Affiliation:
School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea, E-mail:, lgab@kookmin.ac.kr
Get access

Abstract

Pulsed metalorganic chemical vapor deposition (MOCVD) of conformal copper seed layers, for the electrodeposition Cu films, has been achieved by an alternating supply of a Cu(I) source and H2 reactant at the deposition temperatures of 50 - 100°C. The Cu thickness increased proportionally to the number of cycle, and the growth rate was in the range of 3.5 to 8.2 A /cycle, showing the ability to control the nano-scale thickness. As-deposited films show highly smooth surfaces even for more than 100nm. In addition, about a 90% step coverage was obtained inside trenches, with an aspect ratio greater than 30:1. H2, introduced as a reactant gas, can play an active role in achieving highly conformal coatings, with increased grain sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edelstein, D. et al. , 1997 IEEE Int. Electron Devices Meet. Digest, p. 773(1997)Google Scholar
2. Awaya, N. and Arita, Y., J. Elctron. Mater. 21, 959 (1992).CrossRefGoogle Scholar
3. Jain, A., Kodas, T., Jairath, R., and Hampden-Smith, M. J., J. Vac. Sci. Technol. B 11,2107 (1993).CrossRefGoogle Scholar
4. Lin, J. and Chen, M., Jpn. J. Appl. Phys., Part 1 38, 4863 (1999).CrossRefGoogle Scholar
5. Murarka, S. P. and Hymes, S., Solid State Mater. Sci. 20, 87 (1995).Google Scholar
6. Park, Y. J., Andleigh, V. K., and Thompson, C. V., J. Appl. Phys. 85, 3546 (1999).CrossRefGoogle Scholar
7. Whitman, C., Moslehi, M. M., Paranjpe, A., Velo, L., and Omstead, T., J. Vac. Sci. Technol. A 17, 1893 (1999).CrossRefGoogle Scholar
8. Dubin, V. M. et al. , Proc. of the 1998 Advanced Metallization Conference for ULSI Applications, p. 405, 1998.Google Scholar
9. Andricacos, P. C., Uzoh, C., Dukovic, J., Horkans, J., and Deligianni, H., IBM J. Res. Dev. 42, 567 (1998).CrossRefGoogle Scholar
10. Burnett, A. F. and Chech, J. M., J. Vac. Sci. Technol. A 11, 2970 (1993).CrossRefGoogle Scholar
11. Lee, W. H., Ko, Y. K., Byun, I. J., Seo, B. S., Lee, J. G., Reucroft, P. J., Lee, J. U., and Lee, J. Y., J. Vac. Sci. Technol. A. 19(6), 2974 (2001).CrossRefGoogle Scholar
12. Hu, C-K., Gignac, L., Malhotra, S. G., and Rosenberg, R., Appl. Phys. Lett. 78, 904 (2001).CrossRefGoogle Scholar
13. Juppo, M., Ritala, M., Leskela, M., J. Vac. Sci. Technol. A. 15 2330 (1997).CrossRefGoogle Scholar
14. Martensson, P. and Carlsson, J. O., Chem. Vap. Deposition, 3. 45 (1997).CrossRefGoogle Scholar
15. Martensson, P. and Carlsson, J. O., J. Electrochem. Soc., 145, 2926 (1998).CrossRefGoogle Scholar
16. Juppo, M., Vehkamaki, M., Ritala, M., Leskela, M., J. Vac. Sci. Technol. A 16 2845 (1998).CrossRefGoogle Scholar
17. Solanki, R. and Pathangey, B., Elctrochem. Solid-State Lett., 3, 479 (2000).CrossRefGoogle Scholar
18. Lim, B. S., Rahtu, A., and Gordon, R. G., Nature Materials Vol. 2, 749 (2003).CrossRefGoogle Scholar
19. Kim, K. and Yong, K., Electrochem. Solid-State Lett., 6, 106 (2003).CrossRefGoogle Scholar
20. Cohen, S. L., Liehr, M., and Kasi, S., Appl. Phys. Lett., 60. 1585 (1992).CrossRefGoogle Scholar
21. Rhee, S.W., Kang, S.W., and Han, S.H., Electrochem, Solid-State Lett.,3, 135 (2000).CrossRefGoogle Scholar