No CrossRef data available.
Article contents
Périodicité des théories élémentaires des corps de séries formelles itérées
Published online by Cambridge University Press: 12 March 2014
Abstract
C. U. Jensen suggested the following construction, starting from a field K:
and asked when two fields Kα and Kβ are equivalent. We give a complete answer in the case of a field K of characteristic 0.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1986
References
RÉFÉRENCES
[A]
Ax, J., On the undecidability of power series fields, Proceedings of the American Mathematical Society, vol. 16 (1965), p. 846.Google Scholar
[D]
Delon, F., Corps équivalents à leur corps de séries, Logique (Conférence, Paris, 1983; F. Delon et al, éditeurs), Mémoire de la Société Mathématique de France, Nouvelle Série, Tome 16, Bordas, Paris, 1984, pp. 95–103.Google Scholar
[DMT]
Doner, J., Mostowski, A. and Tarski, A., The elementary theory of well-ordering—a metamathematical study, Logic Colloquium '77, North-Holland, Amsterdam, 1978, pp. 1–54.Google Scholar
[DT]
Doner, J. and Tarski, A., Extended arithmetic of ordinal numbers, Fundamenta Mathematicae, vol. 65 (1969), pp. 95–127.CrossRefGoogle Scholar
[EE]
Endler, O. and Engler, A. J., Fields with Henselian valuation rings, Mathematische Zeitschrift, vol. 152 (1977), pp. 191–193.CrossRefGoogle Scholar
[FV]
Feferman, S. and Vaught, R., The first order properties of products of algebraic systems, Fundamenta Mathematicae, vol. 47 (1959), pp. 57–103.CrossRefGoogle Scholar
[G1]
Gurevich, Y., Elementary properties of ordered Abelian groups, American Mathematical Society Translations, ser. 2, vol. 46 (1965), pp. 165–192.Google Scholar
[G2]
Gurevich, Y., Expanded theory of Abelian groups, Annals of Mathematical Logic, vol. 12 (1977), pp. 193–228.CrossRefGoogle Scholar
[KK ]
Kreisel, G. et Krivine, J. L., Eléments de logique mathématique, Dunod, Paris, 1967.Google Scholar
[MT]
Mostowski, A. and Tarski, A., Arithmetical classes and types of well ordered systems, Bulletin of the American Mathematical Society, vol. 55 (1949), p. 65.Google Scholar
[O]
Oger, F., Produits lexicographiques de groupes ordonnés: Isomorphisme et équivalence élémentaire, Journal of Algebra (à paraitre).Google Scholar
[R]
Ribenboïm, P., Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 1964.Google Scholar
[S2]
Schmitt, P., Model theory of ordered Abelian groups, Habilitationsschrift, Heidelberg, 1982.Google Scholar