Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T16:58:14.568Z Has data issue: false hasContentIssue false

Ptiloncodus Harris, 1962; a Laurentian enigma

Published online by Cambridge University Press:  14 July 2015

R. L. Ethington
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211,
L. M. Ross Jr.
Affiliation:
Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211

Abstract

Ptiloncodus Harris, 1962, a hook-shaped microfossil, is present in late Floian through Hirnantian [=late Ibexian through Gamachian] rocks in regions marginal to Laurentia. Specimens from the Great Basin provide additional information about this enigmatic microfossil. Two fused clusters of Ptiloncodus elements from western Utah do not duplicate clusters reported previously from coeval strata in central Nevada. EDS spectra confirm the long-standing assumption that these fossils are composed of calcium phosphate. SEM images show that short crystallites are aligned to provide fibrous surficial ultrastructure in the hooked part of these fossils, but more open arrangement is displayed at the top of the shank where paired lobate structures are attached. The join between the lobes and the shank is weak; these two parts of the fossil separate easily so that most specimens did not retain lobes. The shanks end in rounded terminations or in paired knobs that range from low protuberances to near hornlike features. The new data do not support any of several suggestions that compare Ptiloncodus to extant organisms, and uncertainty continues about its affinity and the function of its skeletal elements.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boncheva, I., Göncüoglu, M. C., Leslie, S. A., Lakova, I., Sachanski, V., Saydam, G., Gedik, I., and Königshof, P. 2009. New conodont and palynological data from the lower Palaeozoic in northern Çamdag, NW Anatolia, Turkey. Acta Geologica Polonica, 59:157171.Google Scholar
Bordeau, K. V. 1972. Ptiloncodus harrisi; a new species of conodont from the Viola Limestone (Ordovician) of Oklahoma. Journal of the Tennessee Academy of Science, 47:118120.Google Scholar
Branson, E. B. and Mehl, M. G. 1933. Conodonts from the Harding Sandstone of Colorado. University of Missouri Studies, 8:1938.Google Scholar
Dumoulin, J. A., Bradley, D. C., Harris, A. G., and Repetski, J. E. 2000. Lower Paleozoic deep-water facies of the Medfra Area, central Alaska. In Kelly, K. D. (ed.), Geologic Studies in Alaska by the U. S. Geological Survey, 1997. U. S. Geological Survey Professional Paper, 1614:73103.Google Scholar
Ethington, R. L. and Clark, D. L. 1965. Lower Ordovician conodonts from the Columbia Ice Fields Section, Alberta, Canada. Brigham Young University Geology Studies, 12:185205.Google Scholar
Ethington, R. L. and Clark, D. L., 1982. Lower and Middle Ordovician conodonts from the Ibex Area, western Millard County, Utah. Brigham Young University Geology Studies, 28(2):1155.Google Scholar
Harris, R. W. 1962. New conodonts from Joins (Ordovician) Formation of Oklahoma. Oklahoma Geology Notes, 22:199211.Google Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex Area, Millard County, Utah. Brigham Young University Geology Studies, 20(4):336.Google Scholar
Hyman, L. H. 1951. The Invertebrates; Platyhelminthes and Rhyncocoelia, The Coelomate Bilateria. McGraw-Hill Book Company, Inc., New York, 550 p.Google Scholar
Hyman, L. H. 1955, The Invertebrates; Echinodermata, The Acoelomate Bilateria. McGraw-Hill Book Company, Inc., New York, 763 p.Google Scholar
Leatham, W. B. 1985. Ordovician Ptiloncodus and the monogenean paradigm. Geological Society of America Abstracts with Programs, 17(7):64.Google Scholar
Lee, C. C., Lehnert, O., and Nowlan, G. S. 2008. Sedimentology, stratigraphy, and clast biostratigraphy of Cretaceous and Tertiary strata, northeastern Ellesmere Island, Nunavut. Geological Survey of Canada Bulletin, 592:115167.Google Scholar
Lindström, M. 1964. Conodonts. Elsevier Publishing Company, Amsterdam, 196 p.Google Scholar
McCracken, A. D. 2000. Middle and Late Ordovician conodonts from the Foxe Lowland of southern Baffin Island, Nunavut. Geological Survey of Canada Bulletin, 557:159216.Google Scholar
McCracken, A. D. and Barnes, C. R. 1981, Conodont biostratigraphy and paleoecology of the Ellis Bay Formation, Anticosti Island, Quebec, with special reference to Late Ordovician-Early Silurian chronostratigraphy and the systemic boundary. Geological Survey of Canada Bulletin, 329:51134.Google Scholar
McHargue, T. R. 1974. Conodonts of the Joins Formation (Ordovician), Arbuckle Mountains, Oklahoma. Unpublished , , Columbia, 151 p.Google Scholar
Melville, R. V. and Durham, J. W. 1966. Skeletal Morphology, p. U220U257. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, 695 p.Google Scholar
Mound, M. C. 1965, A conodont fauna from the Joins Formation (Ordovician), Oklahoma. Tulane Studies in Geology, 4:146.Google Scholar
Mueller, J. F. 1936. Studies of North American Gyrodactyloidea. Transactions of the American Microscopical Society, 55:5572.Google Scholar
Müller, K. J. and Nogami, Y. 1971. Über den Feibau der Conodonten. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 38:187.Google Scholar
Pojeta, J. 1980. Molluscan phylogeny. Tulane Studies in Geology and Paleontology, 6:5580.Google Scholar
Pokorny, V. 1965. Principles of Zoological Micropalaeontology, v. 2. Pergamon Press, Oxford, England, 465 p.Google Scholar
Price, E. W. 1937a. North American monogenetic trematodes. I. The Superfamily Gyrodactyloidea. Journal of the Washington Academy of Sciences, 27:114130, 146–164.Google Scholar
Price, E. W. 1937b. North American monogenetic trematodes. II. The families Monocotylidae, Microbothridiidae, Acanthocotylidae, and Udonellidae (Capsaloidea). Journal of the Washington Academy of Sciences, 28:109126, 183–198.Google Scholar
Price, E. W. 1939. North American monogenetic trematodes. III. The Superfamily Capsalidae (Capsaloidea). Journal of the Washington Academy of Sciences, 29:6392.Google Scholar
Purnell, M. A. 1999. Conodonts: functional analysis of disarticulated skeletal structures, p. 129146. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Ltd., New York.Google Scholar
Ross, R. J. Jr. 1967. Some Middle Ordovician brachiopods and trilobites from the Basin Ranges, western United States. U.S. Geological Survey Professional Paper, 523D:D1D39.Google Scholar
Storer, T. I. 1951. General Zoology. McGraw-Hill Book Company, Inc., New York, 832 p.Google Scholar
Sweet, W. C. 1963. Review of new conodonts from Joins Formation (Ordovician) of Oklahoma by R. W. Harris. Journal of Paleontology, 37:505506.Google Scholar
Tipnis, R. S. 1979. Fused clusters of Ptiloncodus simplex Harris; an Ordovician phosphatic microfossil. Geological Survey of Canada Paper, 79-1(C):C51C54.Google Scholar
Tipnis, R. S., Chatterton, D. B. E., and Ludvigsen, R. 1980. Ordovician conodont biostratigraphy of the southern District of Mackenzie, Canada. Geological Association of Canada Special Paper, 18:3991.Google Scholar