Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T23:36:55.244Z Has data issue: false hasContentIssue false

The Neogene Marine Biota of Tropical America (“NMITA”) database: Accounting for biodiversity in paleontology

Published online by Cambridge University Press:  20 May 2016

Ann F. Budd
Affiliation:
1Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, , ,
Charles T. Foster Jr.
Affiliation:
1Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, , ,
John P. Dawson
Affiliation:
1Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, , ,
Kenneth G. Johnson
Affiliation:
2Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla CA 92093-0244,

Abstract

The reliability of any survey of biodiversity through geologic time depends on the rigor and consistency by which taxa are recognized and samples are identified. The main goal of the Neogene Marine Biota of Tropical America (‘NMITA’) project is to create an online biotic database (http://nmita.geology.uiowa.edu) containing images and synoptic taxonomic information that are essential to collecting and disseminating high-quality taxic data. The database consists of an inventory of taxa collected as part of several large multi-taxa fossil sampling programs designed to assess marine biodiversity in tropical America over the past 25 m.y. In the first phase of the project, data for ~1,300 taxa and ~3,800 images are currently being entered into a relational database management system on an IBM RS6000 at the University of Iowa. Eleven taxonomic groups are represented: bivalves, gastropods (muricids, marginellids, strombinids), bryozoans (cheilostome, cyclostome), corals (azooxanthellate, zooxanthellate), benthic foraminifers, ostracodes, fish. The lowest taxonomic rank is species (genera/subgenera in mollusks) and the highest is family. Data that are collected and displayed on taxon pages include: (1) taxonomic authorship, synonyms, type specimens, and diagnostic morphologic characters; (2) images of representative specimens and associated museum catalog and measurement data; (3) distributional information including geologic ages, stratigraphic units, and spatial locations; and (4) higher level classification (genera and families) and bibliographic information. Illustrated glossaries of morphologic terms, character matrices, and identification tools are being developed for corals and mollusks. Interactive geographic maps and stratigraphic columns have been designed to provide information about taxa collected at different locations.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:285311.10.1016/S0031-0182(96)00100-9CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology, 3:152167.10.1017/S0094837300005236CrossRefGoogle Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G. 1997. Late Pliocene Faunal Turnover in the Turkana Basin of Kenya and Ethiopia. Science, 278:15891594.10.1126/science.278.5343.1589CrossRefGoogle ScholarPubMed
Bengston, P. 1988. Open nomenclature. Palaeontology, 31:223228.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M. P. 1995. A revised Cenozoic Geochronology and chronology. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J. (eds.), Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54, 386 p.Google Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during Late Cenozoic turnover of Caribbean reefs. Paleobiology, 25:188200.10.1017/S009483730002649XCrossRefGoogle Scholar
Budd, A. F., and McNeill, D. F. 1998. Zooxanthellate Scleractinian Corals from the Bowden Shell Bed, SE Jamaica. Contributions to Tertiary and Quaternary Geology, 35:4965.Google Scholar
Budd, A. F., Petersen, R. A., and McNeill, D. F. 1998. Stepwise faunal change during evolutionary turnover: a case study from the Neogene of Curaçao, Netherlands Antilles. Palaios, 13:167185.10.2307/3515488CrossRefGoogle Scholar
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68:951977.10.1017/S0022336000026585CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphometric change within and across species boundaries. Paleobiology, 12:190202.10.1017/S0094837300013658CrossRefGoogle Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L., Jung, P., and Obando, J. 1992. Closure of the Isthmus of Panama: the nearshore marine record of Costa Rica and western Panama. Geological Society of America Bulletin, 104:814828.10.1130/0016-7606(1992)104<0814:COTIOP>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Collins, L. S., and Coates, A. G. (eds.). 1999. A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, 357, 351 p.Google Scholar
Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon, 29:4146.10.2307/1219595CrossRefGoogle Scholar
Dallwitz, M. J., Paine, T. A., and Zurcher, E. J. 1993–1999. User's Guide to the DELTA System: a General System for Processing Taxonomic Descriptions. (Fourth edition). http://biodiversity.uno.edu/delta/Google Scholar
Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.). 1996. Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the last few million years. Paleobiology, Supplement 26(4):221235Google Scholar
Johnson, K. G., and McCormick, T. 1999. The quantitative description of biotic change using palaeontological databases, p. 227248. In Harper, D. A. T. (ed.), Numerical Paleobiology. John Wiley and Sons, Chichester, UK.Google Scholar
Jung, P. 1989. Revision of the Strombina-Group (Gastropoda: Columbellidae), Fossil and Living. Schweizerische Paläontologische Abhandlungen, 111, 298 p., 344 figs.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: An interpretation. Paleobiology, 2:289297.10.1017/S0094837300004929CrossRefGoogle Scholar
Rosenberg, G. G. 1993. A database approach to studies of molluscan taxonomy, biogeography, and diversity, with examples from western Atlantic marine gastropods. American Malacological Bulletin, 10:257266.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1995. Thermally anomalous assemblages revisited: patterns in the extraprovincial range shifts of Pleistocene marine mollusks. Geology, 23:10711074.10.1130/0091-7613(1995)023<1071:TAARPI>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Roy, K., Valentine, J. W., Jablonski, D., and Kidwell, S. M. 1996. Scale of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution, 11:458463.10.1016/0169-5347(96)10054-9CrossRefGoogle ScholarPubMed
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene Paleontology in the Northern Dominican Republic, 1: Field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89, 79 p., 9 pls.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic diversity, I: Analysis of marine orders. Paleobiology, 4:223251.10.1017/S0094837300005972CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic diversity, III: Post-Paleozoic families and mass extinctions. Paleobiology, 10:246267.10.1017/S0094837300008186CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology, 14:221234.Google ScholarPubMed
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time, p. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature, 293:435437.10.1038/293435a0CrossRefGoogle Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology. Palaeoecology. 115:117155.CrossRefGoogle Scholar