Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T03:46:35.421Z Has data issue: false hasContentIssue false

Evolutionary modifications of ontogeny of three Dechenella species (Proetidae), from the Middle Devonian of the Ardenne Massif (France)

Published online by Cambridge University Press:  20 May 2016

Arnaud Bignon
Affiliation:
UMR 8217 Géosystèmes CNRS-Université Lille 1, Cité, Scientifique SN5, F-59655 Villeneuve d'Ascq cedex, France,
Catherine Crônier
Affiliation:
UMR 8217 Géosystèmes CNRS-Université Lille 1, Cité, Scientifique SN5, F-59655 Villeneuve d'Ascq cedex, France,

Abstract

Numerous exuviae of three Dechenella species (D. givetensis, D. ziegleri and D. calxensis) from the Middle Devonian (Givetian) of NE France (Ardenne Massif) provide the opportunity to identify the evolutionary modifications of ontogeny of the three Dechenella species and to elaborate a conceptual framework of developmental shape changes. First we used biometric and morphometric approaches to characterize shape modifications. Then we computed ontogenetic trajectories by multivariate regression of geometric shape variables on centroid size in order to compare them. Finally, we compared parallelism between trajectories and rates of development relative to size. These analyses demonstrate a significant difference in the cranidial developmental trajectories of D. givetensis and D. ziegleri indicating an allometric repatterning. However, pygidia of these species share the same allometric pattern with a distinct developmental rate suggesting that heterochrony could be a partial explanation for the body shape evolution. Pygidial ontogeny of D. calxensis corresponds to an allometric repatterning with respect to both other species. This work illustrates the complexity of evolutionary modifications of ontogeny constituting an important process in morphological novelties.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. 1985. Problems with the interpretation of developmental sequences. Systematic Zoology, 34:4658.Google Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Evolutionary patterns in ontogenetic transformation: From laws to regularities. International Journal of Developmental Biology, 40:845858.Google Scholar
Basse, M. 2002. Eifel-Trilobiten I. Proetida. Korb: Goldschneck-Verlag, 152 p.Google Scholar
Bignon, A. and Crônier, C. 2011. Middle Devonian trilobites from the Mont d'Haurs section in Givet, France, with two new species of Dechenella. Transaction of the Royal Society of Edinburgh, 102:4357.Google Scholar
Bookstein, F. L. 1991. Morphometric Tolls for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge, 435 p.Google Scholar
Brandt, S. 1983. Statistical and Computational Methods in Data Analysis. North-Holland, Amsterdam, Springer.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica abteilung A, 137, 108 p.Google Scholar
Chlupáč, I. 1992. Middle Devonian trilobites from Čelechovice in Moravia (Czechoslovakia). Sbornik geologichy´ch Ve˘d, Paleontologie, 32:123161.Google Scholar
Crônier, C., Renaud, S., Feist, R., and Auffray, J. C. 1998. Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida) in relation to paedomorphosis: A morphometric approach. Paleobiology, 24:359370.Google Scholar
Crônier, C., Feist, R., and Auffray, J. C. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: A biometric and morphometric approach. Paleobiology, 30:471481.Google Scholar
Crônier, C., Auffray, J. C., and Courville, P. 2005. A quantitative comparison of the ontogeny of two closely-related Upper Devonian phacopid trilobites. Lethaia, 38:123135.Google Scholar
Delabroye, A. and Crônier, C. 2008. Ontogeny of an Ordovician trinucleid (Trilobita) from Armorica, France: A morphometric approach. Journal of Paleontology, 82:800810.Google Scholar
Edgecombe, G. D. and Chatterton, B. D. E. 1987. Heterochrony in the Silurian radiation of encrinurine trilobites. Lethaia, 20:337351.Google Scholar
Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology, 8:254264.Google Scholar
Feist, R. and Lerosey-Aubril, R. 2005. The type species of Cyrtosymbole and the oldest (Famennian) cyrtosymboline trilobites. Acta Palaeontologica Polonica, 50:465475.Google Scholar
Gerber, S., Neige, P., and Eble, J. 2007. Combining ontogenetic and evolutionary scales of morphological disparity: A study of early Jurassic ammonites. Evolution and Development, 9:472482.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge.Google Scholar
Gould, S. J. 2000. Of coiled oyster and big brains: How to rescue the terminology of heterochrony, now gone astray. Evolution and Development, 2:241248.CrossRefGoogle ScholarPubMed
Hughes, N. C. and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333353.CrossRefGoogle Scholar
Hunda, B. R. and Hughes, N. C. 2007. Evaluating paedomorphic heterochrony in trilobites: the case of the diminutive trilobite Flexicalymene retrorsa minuens from the Cincinnatian Series (Upper Ordovician), Cincinnati region. Evolution and Development, 9:483498.Google Scholar
Kayser, E. 1880. Dechenella, eine devonische Gruppe der Gattung Phillipsia. Zeitschrift der Deutschen Geologischen Gesellschaft, 32:703707.Google Scholar
Kim, K., Sheets, H. D., Haney, R. A., and Mitchell, C. E. 2002. Morphometric analysis of ontogeny and allometry of the Middle Ordovician trilobite Triarthrus becki. Paleobiology, 28:364377.Google Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 73:79123.Google Scholar
Lau, W. W. Y. and Martinez, M. M. 2003. Getting a grip on the intertidal: Flow microhabitat and substratum type determine the dislodgement of the crab Pachygrapsus crassipes (Randall) on rocky shores and in estuaries. Journal of Experimental Marine Biology and Ecology, 295:121.Google Scholar
Lerosey-Aubril, R. 2006. Ontogeny of Drevermannia and the origin of blindness in Late Devonian proetoid trilobites. Geological Magazine, 143:89104.Google Scholar
Lerosey-Aubril, R. and Feist, R. 2005. Ontogeny of a new cyrtosymboline trilobite from the Famennian of Morocco. Acta Palaeontologica Polonica, 50:449465.Google Scholar
Lerosey-Aubril, R. and Feist, R. 2006. Late ontogeny and hypostomal condition of a new cyrtosymboline trilobite from the Famennian of Morocco. Palaeontology, 49:10531068.Google Scholar
Lieberman, B. S. 1994. Evolution of the trilobite subfamily Proetinae Salter, 1864, and the origin, diversification, evolutionary affinity, and extinction of the Middle Devonian proetid fauna of eastern North America. Bulletin of the American Museum of Natural History, 223:1176.Google Scholar
Lomax, R. G. 2007. Statistical Concepts: A Second Course for Education and the Behavioral Sciences (3rd edition). Lawrence Erlbaum Associates, Mahwah, New Jersey.Google Scholar
Martinez, M. M. 2001. Running in the surf: Hydrodynamics of the shore crab Grapsus tenuicrustatus. The Journal of Experimental Biology, 204:30973112.Google Scholar
Mc Kinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a by-product of size selection. Paleobiology, 10:407419.Google Scholar
Mc Kinney, M. L. 1999. Heterochrony: Beyond words. Paleobiology, 25:149153.Google Scholar
Mc Namara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology, 60:413.Google Scholar
Mc Namara, K. J. 2002. Changing times: Changing places: Heterochrony and heterotopy. Paleobiology, supplement to 31, p. 1726.Google Scholar
Motani, R. 1997. New technique for retrodeformation tectonically deformed fossils, with an example for ichtyosaurian specimens. Lethaia, 30:221228.CrossRefGoogle Scholar
Ormiston, A. 1967. Lower and Middle Devonian trilobites of the Canadian Artic Islands. Geological Survey of Canada, 148p.CrossRefGoogle Scholar
Richter, R. 1913. Beiträge zur Kenntnis devonischer Trilobiten. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 31:341393.Google Scholar
Rohlf, F. J. 1993. Ntsys-Pc; numerical taxonomy and multivariate analysis system, version 1.80. Exeter Software, Setauket, New York.Google Scholar
Rohlf, F. J. 2004a. tpsSuper, superimposition and image averaging, version 1.14. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. 2004b. tpsSpline, Thin-plate spline, version 1.20. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. 2006. tpsDig, digitize landmarks and outlines, version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. 2007. tpsRelw, relative warps analysis, version 1.45. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. and Slice, D. E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39:4059.Google Scholar
Selwood, E. B. 1965. Dechenellid trilobites from the British Middle Devonian. Bulletin of the British Museum (Natural History) Geology, 10:317333.Google Scholar
Struve, W. 1992. Neues zur Stratigraphie und Fauna des rhenotypen Mittel-devon. Senckenbergiana lethaea, 71:503624.Google Scholar
Webster, M. 2007. Ontogeny and evolution of the Early Cambrian trilobite genus Nephrolenellus (Olenelloidea). Journal of Paleontology, 81:11681193.Google Scholar
Webster, M., Sheets, H. D., and Hughes, N. C. 2001. Allometric patterning in trilobite ontogeny: Testing for heterochrony in Nephrolenellus, p. 105144. InZelditch, M. L. (ed.), Beyond Heterochrony: The Evolution of Development. Wiley and Sons, New York.Google Scholar
Webster, M. and Zelditch, M. L. 2005. Evolutionary modifications of ontogeny: Heterochrony and beyond. Paleobiology, 31:354372.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2000. Spatiotemporal reorganisation of growth rates in the evolution of ontogeny. Evolution, 54:13631371.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2003a. The ontogenetic dynamics of shape disparity. Paleobiology, 29:139156.Google Scholar
Zelditch, M. L., Lundigran, B. L., Sheets, H. D., and Garland, T. Jr. 2003b. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. Journal of evolutionary Biology, 16:708720.Google Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, Amsterdam, 443 p.Google Scholar