Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T01:14:08.126Z Has data issue: false hasContentIssue false

Modulated structure in Bi2+xSr2−xCu1+yO6+δ

Published online by Cambridge University Press:  08 February 2011

Zenji Hiroi
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
Yasunori Ikeda
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
Mikio Takano
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
Yoshichika Bando
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
Get access

Abstract

The modulated structure in solid solution Bi2+xSr2−xCu1+yO6+δ (0.1 < x < 0.6, yx/4) has been investigated by means of powder x-ray diffraction, electron diffraction, and transmission electron microscopy. The [010] component of the modulation vector decreases almost linearly with increasing x, from 5.2b (x = 0.1) to 4.2b (x = 0.5), where b is the unit length of the average structure along the [010] direction, and is little sensitive to excess oxygen content δ. A structure model of the modulation based on a periodic substitution of Sr for Bi and formation of Bi blocks whose size varies with x is proposed. Relations among various modulations appearing in other related phases such as the Pb-substituted 105 K Tc phase are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L361 (1988).Google Scholar
2Zandbergen, H. W., Groen, P., Tendeloo, G.van, Landuyt, J. van, and Amelinckx, S., Solid State Commun. 66, 397 (1988).Google Scholar
3Tarascon, J. M., Page, Y. Le, Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).Google Scholar
4Carrilo-Cabrera, W. and Gopel, W., Physica C 161, 373 (1989).CrossRefGoogle Scholar
5Michel, C., Hrvieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421 (1987).Google Scholar
6Matsui, Y., Takekawa, S., Horiuchi, S., and Umezono, A., Jpn. J. Appl. Phys. 27, L1873 (1988).Google Scholar
7Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L372 (1988).CrossRefGoogle Scholar
8Shaw, T. M., Shivashankar, S. A., LaPlaca, S. J., Cuomo, J. J., McGuire, T. R., Roy, R. A., Kelleher, K. H., and Yee, D. S., Phys. Rev. B 37, 9856 (1988).CrossRefGoogle Scholar
9Horiuchi, S., Maeda, H., Tanaka, Y., and Matsui, Y., Jpn. J. Appl. Phys. 27, L1172 (1988).Google Scholar
10Hewat, E. A., Dupuy, M., Bordet, P., Capponi, J. J., Chaillout, C., Hodeau, J. L., and Marezio, M., Nature 333, 53 (1988).CrossRefGoogle Scholar
11Gai, P. L. and Day, P., Physica C 152, 335 (1988).CrossRefGoogle Scholar
12Hewat, E. A., Bordet, P., Capponi, J. J., Chaillout, C., Hodeau, J. L., and Marezio, M., Physica C 153155, 619 (1988).Google Scholar
13Matsui, Y., Takekawa, S., Nozaki, H., Umezono, A, Takayama-Muromachi, E., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L1241 (1988).CrossRefGoogle Scholar
14Ikeda, S., Aota, K., Hatano, T., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2040 (1988).CrossRefGoogle Scholar
15Onoda, M. and Sato, M., Solid State Commun. 67, 799 (1988).CrossRefGoogle Scholar
16Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, B., and Amelinckx, S., Physica C 156, 325 (1988).CrossRefGoogle Scholar
17Ikeda, Y., Ito, H., Shimomura, S., Oue, Y., Inaba, K., Hiroi, Z., and Takano, M., Physica C 159, 93 (1989).CrossRefGoogle Scholar
18Chakoumakos, B. C., Ebey, P. S., Sales, B. C., and Sonder, Edward, J. Mater. Res. 4, 767 (1989).CrossRefGoogle Scholar
19Ikeda, Y., Hiroi, Z., Ito, H., Shimomura, S., Takano, M., and Bando, Y., Physica C 165, 189 (1990).Google Scholar
20Tallon, J. L., Buckley, R. G., Gilberd, P. W., and Presland, M. R., Physica C 158, 247 (1989).CrossRefGoogle Scholar
21Werder, D. J., Chen, C. H., Jin, S., and Sherwood, R. C., J. Mater. Res. 4, 748 (1989).Google Scholar
22Ikeda, Y., Takano, M., Hiroi, Z., Oda, K., Kitaguchi, H., Takada, J., Miura, Y., Takeda, Y., Yamamoto, O., and Mazaki, H., Jpn. J. Appl. Phys. 27, L2067 (1988).Google Scholar
23Fuertes, A., Miravitlles, C., Gonzalez-Calbet, J., Vallet-Regi, M., Obradors, X., and Rodriguez-Carvajal, J., Physica C 157, 525 (1989).CrossRefGoogle Scholar
24Matsui, Y. and Horiuchi, S., Jpn. J. Appl. Phys. 27, L2306 (1988).CrossRefGoogle Scholar
25Hewat, E. A., Capponi, J. J., and Marezio, M., Physica C 157, 502 (1989).CrossRefGoogle Scholar
26Page, Le, McKinnon, W. R., Tarascon, J-M., and Barboux, P., Phys. Rev. B 40, 6810 (1989).CrossRefGoogle Scholar
27Chaillout, C., Cheong, S. W., Fisk, Z., Lehmann, M. S., Marezio, M., Morosin, B., and Schirber, J. E., Physica Scripta T29, 97 (1989).CrossRefGoogle Scholar
28Jorgensen, J. D., Dabrowski, B., Pei, Shiyou, Richards, D. R., and Hinks, D. G., Phys. Rev. B 40, 2187 (1989).Google Scholar