Article contents
Mechanical properties of nickel beryllides
Published online by Cambridge University Press: 31 January 2011
Abstract
The elastic properties of nickel beryllide have been evaluated from room temperature to 1000 °C. The room temperature modulus is measured to be 186 GPa, which is relatively low by comparison with other B2 aluminides such as NiAl and CoAl. Hardness measurements were carried out on specimens that had compositions over the range from 49 to 54 at. % Be, using both a Vickers microhardness tester and a nanoindentor. It was found that the hardness of NiBe exhibits a minimum at the equiatomic composition. This behavior is similar to that of aluminides of the same crystal structure, e.g., NiAl and CoAl. The effect of interstitial oxygen on the hardness of NiBe has also been studied and the results show that the presence of oxygen in NiBe can cause a significant increase in hardness. It is demonstrated that the hardness increase for the off-stoichiometric compositions is primarily caused by interstitial oxygen and can only be attributed partially to anti-site defects generated in off-stoichiometric compositions. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1989
References
REFERENCES
- 12
- Cited by