Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T19:38:52.233Z Has data issue: false hasContentIssue false

Fracture toughness of nanocrystalline metal matrix composites reinforced by aligned carbon nanotubes

Published online by Cambridge University Press:  19 October 2015

Shuhong Dong
Affiliation:
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; and Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, China
Jianqiu Zhou*
Affiliation:
Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, China; and Department of Mechanical Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province 430070, China
David Hui
Affiliation:
Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA
Lu Wang
Affiliation:
National Technology Research Center on Pressure Vessel and Pipeline Safety Engineering, Hefei General Machinery Research Institute, Hefei, Anhui Province 230031, China
*
a)Address all correspondence to this author. e-mail: zhouj@njtech.edu.cn
Get access

Abstract

Experimental observations have shown that carbon nanotubes (CNTs)/Al nanocomposites with high level ordered nanolaminates exhibit greatly improved plasticity. The increased plasticity is mainly attributed to enhanced dislocation storage capability and two-dimensional alignment of the reinforcement. Here a theoretical model is proposed with interactions between aligned CNTs and grain boundary dislocations emitted from a crack tip taken into consideration to investigate crack blunting and fracture toughness in nanocrytalline metal matrix composites (MMCs). The critical shear stress for emission of first dislocation from intersections between a long, flat crack and aligned CNTs is quantitatively characterized. The final equilibrium positions and maximum numbers of emitted dislocations for different orientation angles and microstructures of aligned reinforcement are evaluated. In addition, the dependence of enhanced fracture toughness on effective gliding distance of emitted dislocations is also determined. The results show that the existence of aligned CNTs can lead to an increase of critical crack intensity factor by 77% than that in dislocation free case under certain conditions. The model may provide a basis understanding of ductility in aligned CNTs-reinforced nanocrystalline MMCs on respective of emission and motion of dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Ovid'ko, I.A.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).Google Scholar
Sharon, J.A., Padilla, H.A., and Boyce, B.L.: Interpreting the ductility of nanocrystalline metals 1. J. Mater. Res. 28(12), 1539 (2013).Google Scholar
Gerberich, W.W., Michler, J., Mook, W.M., Ghisleni, R., Östlund, F., Stauffer, D.D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24(03), 898 (2011).Google Scholar
Kuntz, J.D., Zhan, G-D., and Mukherjee, A.K.: Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull. 29(1), 22 (2004).Google Scholar
Wu, Y., Zhou, J., Liu, H., Pang, X., Zhang, S., Wang, Y., Wang, L., and Dong, S.: The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains. J. Mater. Res. 29(09), 1086 (2014).CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., and Shen, T.D.: A combined dislocation–cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 27(04), 694 (2012).CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., Shen, T.D., and Hui, D.: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26(14), 1734 (2011).Google Scholar
Ovid'ko, I.A., Skiba, N.V., and Mukherjee, A.K.: Nucleation of nanograins near cracks in nanocrystalline materials. Scr. Mater. 62(6), 387 (2010).Google Scholar
Yu, M., Fang, Q., Feng, H., and Liu, Y.: Effect of special rotational deformation on dislocation emission from a semielliptical blunt crack tip in nanocrystalline solids. J. Mater. Res. 28(06), 798 (2013).Google Scholar
Cheng, S., Choo, H., Zhao, Y.H., Wang, X.L., Zhu, Y.T., Wang, Y.D., Almer, J., Liaw, P.K., Jin, J.E., and Lee, Y.K.: High ductility of ultrafine-grained steel via phase transformation. J. Mater. Res. 23(06), 1578 (2011).Google Scholar
Zhao, Y.H., Liao, X.Z., Cheng, S., Ma, E., and Zhu, Y.T.: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18(17), 2280 (2006).Google Scholar
Zhao, Y.H., Topping, T., Bingert, J.F., Thornton, J.J., Dangelewicz, A.M., Li, Y., Liu, W., Zhu, Y., Zhou, Y., and Lavernia, E.J.: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20(16), 3028 (2008).CrossRefGoogle Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58(16), 5286 (2010).Google Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Grain size effect on crack blunting in nanocrystalline materials. Scr. Mater. 60(8), 627 (2009).CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., Wang, L., Zhang, S., and Wang, Y.: Grain size dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528(13–14), 4615 (2011).Google Scholar
Feng, H., Fang, Q.H., Zhang, L.C., and Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39 (2013).CrossRefGoogle Scholar
Bobylev, S.V., Mukherjee, A.K., Ovid'ko, I.A., and Sheinerman, A.G.: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26(11), 1629 (2010).CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., and Shen, T.D.: Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater. Des. 45, 67 (2013).CrossRefGoogle Scholar
Wang, L., Zhou, J.Q., Zhang, S., Liu, H.X., and Dong, S.H.: Effect of dislocation–GB interactions on crack blunting in nanocrystalline materials. Mater. Sci. Eng., A 592, 128 (2014).Google Scholar
Ye, J., Han, B.Q., Lee, Z., Ahn, B., Nutt, S.R., and Schoenung, J.M.: A tri-modal aluminum based composite with super-high strength. Scr. Mater. 53(5), 481 (2005).CrossRefGoogle Scholar
Li, Y., Zhao, Y.H., Ortalan, V., Liu, W., Zhang, Z.H., Vogt, R.G., Browning, N.D., Lavernia, E.J., and Schoenung, J.M.: Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng., A 527(1–2), 305 (2009).Google Scholar
Zhao, J., Jiang, J-W., Wang, L., Guo, W., and Rabczuk, T.: Coarse-grained potentials of single-walled carbon nanotubes. J. Mech. Phys. Solids 71, 197 (2014).CrossRefGoogle Scholar
Zhao, J., Lu, L., and Rabczuk, T.: Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines. J. Chem. Phys. 140(20), 204704 (2014).CrossRefGoogle ScholarPubMed
Li, Q. and Tian, B.: Compression behavior of magnesium/carbon nanotube composites. J. Mater. Res. 28(14), 1877 (2013).CrossRefGoogle Scholar
Kuzumaki, T., Miyazawa, K., Ichinose, H., and Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445 (1998).Google Scholar
Goyal, A., Wiegand, D.A., Owens, F.J., and Iqbal, Z.: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes. J. Mater. Res. 21(02), 522 (2011).Google Scholar
Choi, H.J., Shin, J.H., Min, B.H., Park, J., and Bae, D.H.: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24(08), 2610 (2011).Google Scholar
Woo, D.J., Hooper, J.P., Osswald, S., Bottolfson, B.A., and Brewer, L.N.: Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J. Mater. Res. 29(22), 2644 (2014).Google Scholar
Kang, K., Bae, G., and Lee, C.: Strengthening mechanisms of multiwalled carbon nanotube-reinforced Cu nanocomposite coatings during kinetic spray consolidation. J. Mater. Res. 27(18), 2375 (2012).Google Scholar
Dong, S., Zhou, J., Liu, H., and Qi, D.: Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites. Comput. Mater. Sci. 101, 8 (2015).Google Scholar
Xue, Z.W., Wang, L.D., Zhao, P.T., Xu, S.C., Qi, J.L., and Fei, W.D.: Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion. Mater. Des. 34, 298 (2012).Google Scholar
Borkar, T., Hwang, J., Hwang, J.Y., Scharf, T.W., Tiley, J., Hong, S.H., and Banerjee, R.: Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites. J. Mater. Res. 29(06), 761 (2014).Google Scholar
Choi, H.J. and Bae, D.H.: Strengthening and toughening of aluminum by single-walled carbon nanotubes. Mater. Sci. Eng., A 528(6), 2412 (2011).Google Scholar
Jiang, L., Li, Z., Fan, G., Cao, L., and Zhang, D.: Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr. Mater. 66(6), 331 (2012).Google Scholar
Curtin, W.A. and Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7(11), 44 (2004).CrossRefGoogle Scholar
Dong, S.H., Zhou, J.Q., Hui, D., Wang, Y., and Zhang, S.: Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites. Composites, Part A 68, 356 (2015).Google Scholar
Gutkin, M.Y. and Ovid'ko, I.A.: Dislocation mechanism of hollow fiber sliding during ceramic nanocomposite fracture. Phys. Solid State 50(11), 2053 (2008).Google Scholar
Viet, N.V. and Kuo, W.S.: Load transfer in fractured carbon nanotubes under tension. Composites, Part B 43(2), 332 (2012).Google Scholar
Chen, Y.L., Liu, B., Huang, Y., and Hwang, K.C.: Fracture toughness of carbon nanotube-reinforced metal- and ceramic-matrix composites. J. Nanomater. 2011, 746029 (2011).Google Scholar
Chen, Y.L., Liu, B., He, X.Q., Huang, Y., and Hwang, K.C.: Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70(9), 1360 (2010).Google Scholar
Goh, C.S., Wei, J., Lee, L.C., and Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68(6), 1432 (2008).Google Scholar
Gutkin, M.Y. and Ovid'ko, I.A.: Glide of hollow fibers at the bridging stage of fracture in ceramic nanocomposites. Scr. Mater. 59(4), 414 (2008).CrossRefGoogle Scholar
Dong, S.H., Zhou, J.Q., Hui, D., Pang, X.M., Wang, Q., Zhang, S., and Wang, L.: Interaction between edge dislocations and amorphous interphase in carbon nanotubes reinforced metal matrix nanocomposites incorporating interface effect. Int. J. Solids Struct. 51(5), 1149 (2014).Google Scholar
Koch, C.C.: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42(5), 1403 (2007).Google Scholar
Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3), 570 (2009).Google Scholar
Vasiliev, A.L., Poyato, R., and Padture, N.P.: Single-wall carbon nanotubes at ceramic grain boundaries. Scr. Mater. 56(6), 461 (2007).Google Scholar
Mao, S.X. and Li, M.Z.: Effects of dislocation shielding on interface crack initiation and growth in metal/ceramic layered materials. J. Mech. Phys. Solids 47(11), 2351 (1999).Google Scholar
Lin, I.H. and Thomson, R.: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34(2), 187 (1986).Google Scholar
Gutkin, M.Y. and Romanov, A.E.: Straight edge dislocation in a thin two-phase plate I. elastic stress fields. Phys. Status Solidi A 125, 107 (1991).CrossRefGoogle Scholar
Chowdhury, P.B., Sehitoglu, H., Rateick, R.G., and Maier, H.J.: Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater. 61(7), 2531 (2013).Google Scholar
Rice, J.R. and Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29(1), 73 (1974).Google Scholar
Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361 (1957).Google Scholar
Zhang, T-Y. and Li, J.C.M.: Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 39(11), 2739 (1991).Google Scholar
Hasson, G.C. and Goux, C.: Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination. Scr. Metall. 5(10), 889 (1971).CrossRefGoogle Scholar
Shen, L.X. and Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B 71(3), 035412 (2005).Google Scholar
Liu, Y.G., Zhou, J.Q., Shen, T.D., and Hui, D.: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528(25–26), 7684 (2011).CrossRefGoogle Scholar