Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T05:24:00.220Z Has data issue: false hasContentIssue false

Fiber bridging of a carbon fiber-reinforced carbon matrix lamina composite

Published online by Cambridge University Press:  08 February 2011

Tatsuya Miyajima
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Mototsugu Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

Fracture mechanics and mechanisms of a carbon fiber reinforced carbon matrix lamina composite are studied. The importance of microfracture processes of first matrix cracking, fiber bridging, and fiber pullout processes for toughening C/C-composites is emphasized, and then, the fiber bridging process of the composite is mainly focused through the measurement of the R-curve. The fiber bridging tractions are estimated by the Dugdale approach from which the superb stress shielding and excellent notch tolerance of the composite are demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Buckley, J. D., Ceram. Bull. 67 (2), 364 (1988).Google Scholar
2Guo, J., Mao, Z., Bao, C., Wang, R., and Yau, D., J. Mater. Sci. 17, 3611 (1982).CrossRefGoogle Scholar
3Kelly, A., Proc. R. Soc. London. A-319, 95 (1970).Google Scholar
4Prewo, K. M., Ceram. Bull. 68 (2), 395 (1989).Google Scholar
5Marshall, D. B. and Evans, A. G., J. Am. Ceram. Soc. 68 (5), 225 (1985).CrossRefGoogle Scholar
6Marshall, D. B., Cox, B. N., and Evans, A. G., Acta Metall. 23 (1), 2013 (1985).CrossRefGoogle Scholar
7Thouless, M. D. and Evans, A. G., Acta Metall. 36 (3), 517 (1988).CrossRefGoogle Scholar
8Evans, A. G., Ceramic Microstructures '86; Role of Interface, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987), p. 775.CrossRefGoogle Scholar
9Luh, E. Y. and Evans, A. G., J. Am. Ceram. Soc. 70 (7), 466 (1987).CrossRefGoogle Scholar
10Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., J. Am. Ceram. Soc., 70 (6), 393 (1987).CrossRefGoogle Scholar
11Kim, H. C., Yoon, K. J., Pickering, R., and Sherwood, P. J., J. Mater. Sci. 20, 3967 (1985).CrossRefGoogle Scholar
12Manocha, L. M., Bahl, O. P., and Singh, Y. K., Carbon 27 (3), 381 (1989).CrossRefGoogle Scholar
13Oh, S-M. and Lee, J-Y., Carbon, 27 (3), 423 (1989).Google Scholar
14Broek, D., Elementary Engineering Fracture Mechanics (Nijhoff, The Hague, 1982), Chap. 5.Google Scholar
15Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1983), Chaps. 7–9.Google Scholar
16Harris, B., Metal Science, August-September, 351 (1980).CrossRefGoogle Scholar
17Wells, J. K. and Beaumont, P. W. R., J. Mater. Sci. 20, 1275 (1985).CrossRefGoogle Scholar
18Sutcu, M., Acta Metall. 37 (2), 651 (1989).CrossRefGoogle Scholar
19Miyajima, T. and Sakai, M. (to be published).Google Scholar
20McMeeking, R. M. and Evans, A. G., J. Am. Ceram. Soc. 65, 242 (1982).CrossRefGoogle Scholar
21Budiansky, B., Huchinson, J. W., and Lambropoulos, J. C., Int. J. Solids Structures 19, 337 (1983).CrossRefGoogle Scholar
22Sakai, M. and Bradt, R. C., J. Ceram. Soc. Jpn. 96 (8), 801 (1988).CrossRefGoogle Scholar
23Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y-W., and Hockey, B. J., J. Am. Ceram. Soc. 70 (4), 279 (1987).CrossRefGoogle Scholar
24Mai, Y-W. and Lawn, B. R., J. Am. Ceram. Soc., 70 (4), 289 (1987).CrossRefGoogle Scholar
25Steinbrech, R. W., Khehans, R., and Schaarwächter, W., J. Mater. Sci. 18, 265 (1983); R. W. Steinbrech, A. Rechi, and W. Schaarwachter, J. Am. Ceram. Soc. 73 (7), 2009 (1990).CrossRefGoogle Scholar
26Sakai, M. and Bradt, R. C., Int. Mater. Rev. (to be published).Google Scholar
27Bluhm, J. I., Eng. Fract. Mech. 7 (3), 593 (1975).CrossRefGoogle Scholar
28Sakai, M. and Yamasaki, K., J. Am. Ceram. Soc. 66 (5), 371 (1983).CrossRefGoogle Scholar
29Sih, G. C., Handbook of Stress Intensity Factors (Lehigh University Press, Bethlehem, PA, 1973), Sec. 1.Google Scholar
30Sakai, M., Urashima, K., and Inagaki, M., J. Am. Ceram. Soc. 66 (12), 868 (1983).CrossRefGoogle Scholar
31Burns, S. J. and Swain, M. V., J. Am. Ceram. Soc., 69 (3), 226 (1986).CrossRefGoogle Scholar
32Sakai, M., Miyajima, T., and Inagaki, M., Compo. Sci. and Tech. 40 (3), 231 (1991).CrossRefGoogle Scholar
33Stress Intensity Factors Handbook, edited by Murakami, Y. (Pergamon, Oxford, 1987), Vol. 1, p. 24.Google Scholar
34Saxena, A. and Hudak, S. J., Jr., Int. J. Fract. 14 (5), 453 (1978).CrossRefGoogle Scholar
35Sakai, M. and Bradt, R. C., Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1986), Vol. 7, p. 127.CrossRefGoogle Scholar
36Sakai, M., Yoshimura, J., Goto, Y., and Inagaki, M., J. Am. Ceram. Soc. 71 (8), 609 (1988).CrossRefGoogle Scholar
37Becher, P. F., Hsueh, C-H., Angelini, P., and Tiegs, T. N., J. Am. Ceram. Soc. 71 (12), 1050 (1988).CrossRefGoogle Scholar
38Evans, A. G. and McMeeking, R. M., Acta Metall. 34 (12), 2435 (1986).CrossRefGoogle Scholar
39Aveston, J., Cooper, G., and Kelly, A., The Properties of Fiber Composites, NPL-Conference Proceedings (IPC Science and Technology Press, Guildford, U. K., 1971), p. 15.Google Scholar
40McCartney, L. N., Proc. R. Soc. London A-409, 329 (1987).Google Scholar
41Budiansky, B., Micromechanics II, Proc. 10th U. S. Congr. of Appl.Mech. (1986).Google Scholar
42Sakai, M., Tanso (134), 211 (1988).CrossRefGoogle Scholar
43Cook, J. and Gordon, J. E., Proc. R. Soc. London A-282, 508 (1964).Google Scholar
44Sakai, M., Takeuchi, S., Fischback, D. B., and Bradt, R. C., Ceramic Microstructures '86; Roll of Interface edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987), p. 869.CrossRefGoogle Scholar