Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T21:52:20.680Z Has data issue: false hasContentIssue false

Electric field-induced crack growth and domain-structure evolution for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3) O3–28%PbTiO3 ferroelectric single crystals

Published online by Cambridge University Press:  31 January 2011

F. Fang*
Affiliation:
Failure Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084, China
W. Yang
Affiliation:
The University Office, Zhejiang University, Hangzhou 310058, China; and School of Aerospace, Tsinghua University, Beijing 100084, China
F.C. Zhang
Affiliation:
Failure Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084, China
H. Qing
Affiliation:
Failure Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084, China
*
a)Address all correspondence to this author. e-mail: fangf@mail.tsinghua.edu.cn
Get access

Abstract

In situ observation of the electrically induced crack growth and domain-structure evolution is carried out for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3)O3–28% PbTiO3 (PMN–PT 72/28) ferroelectric single crystals under static (poling) and alternating electric fields. On the same poling electric field, domains are in the stable engineered domain state where four equivalent polarization variants coexist for [100]-oriented single crystal, while parallel lines representing the 71° domain boundaries appear for [101]-oriented one. Under the same cyclic electric field, the [100]-oriented single crystal shows much higher crack propagation resistance than that of a [101]-oriented crystal. Apart from the material aspects, such as crystallographic fracture anisotropy and non-180° domain boundary structure, crack boundary condition plays an important role in determining the crack propagation behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kuwata, J., Uchino, K., Nomura, S.: Phase transitions on the Pb(Zn1/3Nb2/3)O3–PbTiO3 system. Ferroelectrics 37, 579 1981CrossRefGoogle Scholar
2Kuwata, J., Uchino, K., Nomura, S.: Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3 single crystals. Jpn. J. Appl. Phys. 21, 1298 1982CrossRefGoogle Scholar
3Park, S.E., Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 1997CrossRefGoogle Scholar
4Liu, S., Park, S.E., Shrout, T.R., Cross, L.E.: Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals. J. Appl. Phys. 85, 2810 1999CrossRefGoogle Scholar
5Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.E., Cross, L.E., Shrout, T.R.: Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn. J. Appl. Phys. 38, 5505 1999CrossRefGoogle Scholar
6Fu, H., Cohen, R.E.: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 2000CrossRefGoogle ScholarPubMed
7Noheda, B., Cox, D.E., Shirane, G., Guo, R., Jones, B., Cross, L.E.: Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−xTixO3. Phys. Rev. B: Condens. Matter 63, 1 2001Google Scholar
8Viehland, D., Powers, J., Cross, L.E., Li, J.F.: Importance of random fields on the properties and ferroelectric phase stability of 〈001〉 oriented 0.7 Pb(Mg1/3Nb2/3)O3–0.3 PbTiO3 crystals. Appl. Phys. Lett. 78, 3508 2001CrossRefGoogle Scholar
9Viehland, D.: Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals. J. Appl. Phys. 88, 4794 2000CrossRefGoogle Scholar
10Saitoh, S., Izumi, M., Shimanuki, S., Hashimoto, S., Yamashia, Y.: Ultrasonic probe. U.S. Patent No. 5 295 487, March 22, 1994,Google Scholar
11Chen, J., Panda, R.: Commercialization of piezoelectric single crystals for medical imaging applications in 2005 IEEE International Ultrasonics Symposium Proceedings Rotterdam The Netherlands 2005 235CrossRefGoogle Scholar
12Yang, W.: Mechatronic Reliability 1st ed.Springer Berlin 2002 3Google Scholar
13Furuta, A., Uchino, K.: Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615 1993CrossRefGoogle Scholar
14Lynch, C.S., Yang, W., Collier, L., Suo, Z., McMeeking, R.M.: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11 1995CrossRefGoogle Scholar
15Nuffer, J., Lupascu, D.C., Glazounov, A., Kleebe, H., Rodel, J.: Microstructural modification of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue. J. Eur. Ceram. Soc. 22, 2133 2002CrossRefGoogle Scholar
16Fang, F., Yang, W., Zhang, F.C., Luo, H.S.: Fatigue crack growth for BaTiO3 ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88, 2491 2005CrossRefGoogle Scholar
17Cao, H.C., Evans, A.G.: Electric-field-induced fatigue crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783 1994CrossRefGoogle Scholar
18Fang, D.N., Liu, B., Sun, C.T.: Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J. Am. Ceram. Soc. 87, 840 2004CrossRefGoogle Scholar
19Shieh, J., Huber, J.E., Fleck, N.A.: Fatigue crack growth in ferroelectrics under electric loading. J. Eur. Ceram. Soc. 26, 95 2006CrossRefGoogle Scholar
20Westram, I., Ricoeur, A., Emrich, A., Rodel, J., Kuna, M.: Fatigue crack growth law for ferroelectrics under cyclic electric and combined electromechanical loading. J. Eur. Ceram. Soc. 27, 2485 2007CrossRefGoogle Scholar
21Tan, X., Xu, Z., Shang, J.K.: Direct observation of electric field-induced domain boundary cracking in 〈001〉 oriented piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal. Appl. Phys. Lett. 77, 1529 2000CrossRefGoogle Scholar
22Xu, Z.: In-situ TEM study of electric field-induced microcracking in piezoelectric single crystals. Mater. Sci. Eng., B 99, 106 2003CrossRefGoogle Scholar
23Fang, F., Yang, W., Zhang, F.C., Qing, H.: Domain-structure evolution and fatigue cracking of 〈001〉-oriented Pb((Mg1/3 Nb2/3)O3)0.67(PbTiO3)0.33 ferroelectric single crystals under cyclic electric loading. Appl. Phys. Lett. 91, 081903 2007CrossRefGoogle Scholar
24Xu, G.S., Luo, H.S., Guo, Y.P., Gao, Y.Q., Xu, H.Q., Qi, Z.Y., Zhong, W.Z., Yin, Z.W.: Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals by the modified Bridgman technique. Solid State Commun. 120, 321 2001CrossRefGoogle Scholar
25Lucato, S.L., Lupascu, D.C., Rodel, J.: Crack initiation and crack propagation in partially electroded PZT. J. Eur. Ceram. Soc. 21, 1425 2001CrossRefGoogle Scholar
26Kidner, N.J., Homrighaus, Z.J., Mason, T.O., Garboczi, E.J.: Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin Solid Films 496, 539 2006CrossRefGoogle Scholar
27Qing, H.: Studies on crack evolution under thermal, mechanical and electrical loadings. Ph.D. Dissertation, Tsinghua University, Beijing, China, 2007,Google Scholar
28Oates, W.S., Lynch, C.S., Njiwa, A.B. Kounga, Lupascu, D.C.: Anisotropic fracture behavior in ferroelectric relaxor PZN–4.5%PT single crystals. J. Am. Ceram. Soc. 88, 1838 2005CrossRefGoogle Scholar
29Busche, M.J., Hsia, K.J.: Fracture and domain switching by indentation in barium titanate single crystals. Scr. Mater. 44, 207 2001CrossRefGoogle Scholar
30Viehland, D., Li, J.: Domain structure changes in (1−x)Pb((Mg1/3 Nb2/3)O3x(PbTiO3)) with composition, dc bias, and ac field. J. Appl. Phys. 96, 3379 2004CrossRefGoogle Scholar
31Ye, Z.G., Dong, M.: Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb((Mg1/3 Nb2/3)O3)–x(PbTiO3) single crystals. J. Appl. Phys. 87, 2312 2000CrossRefGoogle Scholar
32Jiang, Y.J., Fang, D.N., Hui, S.X., Luo, H.S., Yin, Q.R.: Enhanced piezoelectricity due to phase transitions and coexistence in 0.7 Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Acta Mater. 55, 5614 2007CrossRefGoogle Scholar
33Liu, M., Hsia, K.J.: In situ x-ray diffraction study of electric-field-induced domain switching and phase transition in PZT–5H. J. Am. Ceram. Soc. 88, 210 2005CrossRefGoogle Scholar
34Liu, M., Hsia, K.J.: Locking of electric-field-induced non-180° domain switching and phase transition in ferroelectric materials upon cyclic electric fatigue. Appl. Phys. Lett. 83, 3798 2003CrossRefGoogle Scholar
35Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under nonuniform electric field. Acta Mater. 41, 4695 1997CrossRefGoogle Scholar
36Zhang, T.Y.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41, 339 2004CrossRefGoogle Scholar
37Pak, Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57, 647 1990CrossRefGoogle Scholar
38Suo, Z.: Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids 41, 1155 1993CrossRefGoogle Scholar
39McMeeking, R.M.: Electrostrictive stresses near crack-like flaw. J. Appl. Math. Phys. 40, 615 1989Google Scholar
40Sosa, H., Khutoryansky, N.: New developments concerning piezoelectric materials with defects. Int. J. Solids Struct. 33, 3399 1996CrossRefGoogle Scholar
41Shindo, Y., Narita, F., Tanaka, K.: Electroelastic intensification near antiplane shear crack in orthotropic piezoelectric ceramic strip. Theor. Appl. Fract. Mech. 25, 65 1996CrossRefGoogle Scholar
42Zhang, T.Y., Qian, C.F., Tong, P.: Linear electro-elastic analysis of a cavity of a crack in a piezoelectric material. Int. J. Solids Struct. 35, 2121 1998CrossRefGoogle Scholar
43Yang, W., Suo, Z.: Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids 42, 649 1994CrossRefGoogle Scholar