Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.184 Render date: 2021-07-31T23:32:28.381Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Micromechanical modeling of fatigue crack initiation in polycrystals

Published online by Cambridge University Press:  17 October 2017

Martin Boeff
Affiliation:
Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Bochum 44801, Germany
Hamad ul Hassan
Affiliation:
Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Bochum 44801, Germany
Alexander Hartmaier
Affiliation:
Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Bochum 44801, Germany
Corresponding
E-mail address:
Get access

Abstract

Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S–N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mathias Göken

References

Mughrabi, H.: Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. Int. J. Fatigue 57, 28 (2013).CrossRefGoogle Scholar
Miller, K.J.: The short crack problem. Fatigue Fract. Eng. Mater. Struct. 5(3), 223232 (1982).CrossRefGoogle Scholar
Tokaji, K., Ogawa, T., Harada, Y., and Ando, Z.: Limitations of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure. Fatigue Fract. Eng. Mater. Struct. 9(1), 114 (1986).CrossRefGoogle Scholar
Christ, H-J. and Mughrabi, H.: Cyclic stress-strain response and microstructure under variable amplitube loading. Fatigue Fract. Eng. Mater. Struct. 19(2–3), 335348 (1996).CrossRefGoogle Scholar
Miller, K.J.: The three thresholds for fatigue crack propagation. In Fatigue and Fracture Mechanics, Vol. 27, Piascik, Robert S., Newman, James C. Jr., and Dowling, Norman E., eds. (ASTM International, Conshohocken, Pennsylvania, 1997), pp. 267286.Google Scholar
Bathias, C. and Paris, P.C.: Gigacycle Fatigue in Mechanical Practice, Vol. 185 (CRC Press, Boca Raton, Florida, 2004).Google Scholar
Mughrabi, H.: On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. Fatigue Fract. Eng. Mater. Struct. 22(7), 633641 (1999).CrossRefGoogle Scholar
Mughrabi, H.: On multi-stage fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 25(8–9), 755764 (2002).CrossRefGoogle Scholar
McDowell, D.L., Gall, K., Horstemeyer, M.F., and Fan, J.: Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fract. Mech. 70(1), 4980 (2003).CrossRefGoogle Scholar
McDowell, D.L.: Multiaxial small fatigue crack growth in metals. Int. J. Fatigue 19(93), 127135 (1997).CrossRefGoogle Scholar
Lankford, J. and Kusenberger, F.N.: Initiation of fatigue cracks in 4340 steel. Metall. Trans. 4(2), 553559 (1973).CrossRefGoogle Scholar
Mughrabi, H.: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40(4), 431453 (2009).CrossRefGoogle Scholar
Tokaji, K. and Ogawa, T.: The growth behaviour of microstructurally small fatigue cracks in metals. Short Fatigue Cracks, ESIS 13, 8599 (1992).Google Scholar
Suresh, S.: Fatigue of Materials (Cambridge University Press, Cambridge, United Kingdom, 1998).CrossRefGoogle Scholar
Bennett, V. and McDowell, D.L.: Polycrystal orientation effects on microslip and mixed-mode behavior of microstructurally small cracks. In Mixed-mode Crack Behavior, Miller, K.J. and McDowell, D.L., eds. (ASTM International, Conshohocken, Pennsylvania 1999), pp. 203228.CrossRefGoogle Scholar
Simonovski, I., Nilsson, K-F., and Cizelj, L.: The influence of crystallographic orientation on crack tip displacements of microstructurally small, kinked crack crossing the grain boundary. Comput. Mater. Sci. 39(4), 817828 (2007).CrossRefGoogle Scholar
Groh, S. and Zbib, H.M.: Advances in discrete dislocations dynamics and multiscale modeling. J. Eng. Mater. Technol. 131(4), 41209 (2009).CrossRefGoogle Scholar
Künkler, B., Düber, O., Köster, P., Krupp, U., Fritzen, C-P., and Christ, H-J.: Modelling of short crack propagation—Transition from stage I to stage II. Eng. Fract. Mech. 75(3), 715725 (2008).CrossRefGoogle Scholar
Mughbrabi, H., Ackermann, F.u., and Herz, K.: Persistent slipbands in fatigued face-centered and body-centered cubic metals. In Fatigue Mechanisms, Fong, Jeffrey T., ed. (ASTM, Philadelphia, Pennsylvania 1979), pp. 6995.CrossRefGoogle Scholar
Wang, R. and Mughrabi, H.: Secondary cyclic hardening in fatigued copper monocrystals and polycrystals. Mater. Sci. Eng. 63(2), 147163 (1984).CrossRefGoogle Scholar
Castelluccio, G.M.: A Study on the Influence of Microstructure on Small Fatigue Cracks. PhD thesis, George W. Woodruff School of Mechanical Engineering, Georigia Institute of Technology, Atlanta, Georgia, 2012.
Sharaf, M.A.M.: The Microstructure Influence on Fatigue Life Variability in Structural Steels. PhD thesis. RWTH Aachen University, Aachen, Germany, 2015.
McDowell, D.L. and Dunne, F.P.E.: Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32(9), 15211542 (2010).CrossRefGoogle Scholar
Dunne, F.P.E., Wilkinson, A.J., and Allen, R.: Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int. J. Plast. 23(2), 273295 (2007).CrossRefGoogle Scholar
Przybyla, C.P. and McDowell, D.L.: Microstructure-sensitive extreme value probabilities for high cycle fatigue of {Ni}-base superalloy {IN100}. Int. J. Plast. 26(3), 372394 (2010).CrossRefGoogle Scholar
Krupp, U., Düber, O., Christ, H-J., Künkler, B., Schick, A., and Fritzen, C-P.: Application of the EBSD technique to describe the initiation and growth behaviour of microstructurally short fatigue cracks in a duplex steel. J. Microsc. 213(3), 313320 (2004).CrossRefGoogle Scholar
Tanaka, K. and Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48(1), 97103 (1981).CrossRefGoogle Scholar
Boeff, M.: Micromechanical modelling of fatigue crack initiation and growth. PhD thesis, Department of Mechanical Engineering, Ruhr Universität Bochum, Bochum, Germany, 2016.
Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273334 (1959).CrossRefGoogle Scholar
Lee, E.H. and Liu, D.T.: Finite-strain elastic–plastic theory with application to plane-wave analysis. J. Appl. Phys. 38(1), 1927 (1967).CrossRefGoogle Scholar
Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36(1), 16 (1969).CrossRefGoogle Scholar
Bonet, J. and Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge University Press, 2008).CrossRefGoogle Scholar
Koester, A., Ma, A., and Hartmaier, A.: Atomistically informed crystal plasticity model for body-centered cubic iron. Acta Mater. 60(9), 38943901 (2012).CrossRefGoogle Scholar
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58(4), 11521211 (2010).CrossRefGoogle Scholar
Rice, J.R.: Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19(6), 433455 (1971).CrossRefGoogle Scholar
Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London, Ser. A 348(1652), 101127 (1976).CrossRefGoogle Scholar
Mughrabi, H.: The long-range internal stress field in the dislocation wall structure of persistent slip bands. Phys. Status Solidi 104(1), 107120 (1987).CrossRefGoogle Scholar
Mayama, T. and Sasaki, K.: Investigation of subsequent viscoplastic deformation of austenitic stainless steel subjected to cyclic preloading. Int. J. Plast. 22(2), 374390 (2006).CrossRefGoogle Scholar
Evrard, P., Alvarez-Armas, I., Aubin, V., and Degallaix, S.: Polycrystalline modeling of the cyclic hardening/softening behavior of an austenitic-ferritic stainless steel. Mech. Mater. 42(4), 395404 (2010).CrossRefGoogle Scholar
Evrard, P., Aubin, V., Degallaix, S., and Kondo, D.: Formulation of a new single crystal law for modeling the cyclic softening. Mech. Res. Commun. 35(8), 589594 (2008).CrossRefGoogle Scholar
Manonukul, A. and Dunne, F.P.E.: High-and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. London, Ser. A 460(2047), 18811903 (2004).CrossRefGoogle Scholar
Boeff, M., Gutknecht, F., Engels, P.S., Ma, A., and Hartmaier, A.: Formulation of nonlocal damage models based on spectral methods for application to complex microstructures. Eng. Fract. Mech. 147, 373387 (2015).CrossRefGoogle Scholar
Sandia National Laboratories, CUBIT 13.2., 2013.
Inal, K., Lebrun, J.L., and Belassel, M.: Second-order stresses and strains in heterogeneous steels: Self-consistent modeling and X-ray diffraction analysis. Metall. Mater. Trans. A 35(8), 23612369 (2004).CrossRefGoogle Scholar
Mahmoody, S.: Micromechanical Modeling of Dual-Phase Steel Using a Rate-Dependet Crystal Plasticity Model (McGill University, Montreal, Canada, 2007).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Micromechanical modeling of fatigue crack initiation in polycrystals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Micromechanical modeling of fatigue crack initiation in polycrystals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Micromechanical modeling of fatigue crack initiation in polycrystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *