Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-07T17:20:04.528Z Has data issue: false hasContentIssue false

Annealing of pressure-induced structural damage in superconducting Bi–Pb–Sr–Ca–Cu–O ceramic

Published online by Cambridge University Press:  03 March 2011

I. Maartense
Affiliation:
Wright Laboratory, Materials Directorate, WL/MLPO, Wright-Patterson Air Force Base, Ohio 45433–6533
Asok K. Sarkar
Affiliation:
University of Dayton Research Institute, Metals & Ceramics Division, Dayton, Ohio 45469–0170
Get access

Abstract

Ac susceptibility measurements have been used to monitor the changes in the superconductive properties of sintered and uniaxially pressed samples of Pb-stabilized 2223-phase bismuth cuprate ceramic as the structural damage was annealed in air in a sequence of steps in temperature between 500 and 850 °C. It is concluded that below 600 °C a relaxation of residual stresses is responsible for a 2% shrinkage in sample volume and a small improvement in bulk superconductive transition temperature, Tc. Above 700 °C, a recovery of the original properties occurs through grain regrowth governed by an activation energy of ∼200 kJ/mol. However, in the region between 600 and 700 °C, a decrease in Tc of ∼40 K appears to be the result of plastic flow and amorphization associated with local decomposition of 2223 which reduces the effective grain size and weakens the intergranular superconductive coupling.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Asano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., Machida, J., and Maeda, H., Jpn. J. Appl. Phys. 27, L1652 (1988).CrossRefGoogle Scholar
2Tanaka, Y., Asano, T., Jikihara, K., Fukutomi, M., Machida, J., and Maeda, H., Jpn. J. Appl. Phys. 27, L1655 (1988).CrossRefGoogle Scholar
3Ito, A., Matsuda, M., Iwai, Y., Ishii, M., Takata, M., Yamashita, T., and Koinuma, H., Jpn. J. Appl. Phys. 28, L380 (1989).CrossRefGoogle Scholar
4Asano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., and Maeda, H., Jpn. J. Appl. Phys. 28, L595 (1989).CrossRefGoogle Scholar
5Sarkar, A. K., Kumar, B., Maartense, I., and Peterson, T. L., J. Appl. Phys. 65, 2392 (1989).CrossRefGoogle Scholar
6Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
7Chen, D-X. and Goldfarb, R. B., J. Appl. Phys. 66, 2489 (1989).CrossRefGoogle Scholar
8Sarkar, A. K., Maartense, I., Peterson, T. L., and Kumar, B., J. Appl. Phys. 66, 3717 (1989).CrossRefGoogle Scholar
9Sarkar, A. K. and Maartense, I., Solid State Commun. 77, 121 (1991).CrossRefGoogle Scholar
10Morgan, P. E. D., Housley, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279 (1991).CrossRefGoogle Scholar
11Murayama, N., Awano, M., Kodama, Y., Sakaguchi, S., and Wakai, F., J. Mater. Sci. 27, 3642 (1992).CrossRefGoogle Scholar