Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-07T15:19:53.424Z Has data issue: false hasContentIssue false

Anisotropic clustering of inertial particles in homogeneous shear flow

Published online by Cambridge University Press:  15 June 2009

P. GUALTIERI*
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma La SapienzaVia Eudossiana 18, 00184 Roma, Italy
F. PICANO
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma La SapienzaVia Eudossiana 18, 00184 Roma, Italy
C. M. CASCIOLA
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma La SapienzaVia Eudossiana 18, 00184 Roma, Italy
*
Email address for correspondence: p.gualtieri@caspur.it

Abstract

Recently, clustering of inertial particles in turbulence has been thoroughly analysed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particle configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles. This in turn results in a multi-scale distribution of local particle concentration and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a statistically steady particle-laden homogeneous shear flow, we provide evidence that the mean shear preferentially orients particle patterns. By imprinting anisotropy on large-scale velocity fluctuations, the shear indirectly affects the geometry of the clusters. Quantitative evaluation is provided by a purposely designed tool, the angular distribution function (ADF) of particle pairs, which allows to address the anisotropy content of particle aggregates on a scale-by-scale basis. The data provide evidence that, depending on the Stokes relaxation time of the particles, anisotropic clustering may occur even in the range of scales in which the carrier phase velocity field is already recovering isotropy. The strength of the singularity in the anisotropic component of the ADF quantifies the level of fine-scale anisotropy, which may even reach values of more than 30% direction-dependent variation in the probability to find two closeby particles at viscous-scale separation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, A. M. & Elghobashi, S. 2000 On the mechanism of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids 12, 2906.CrossRefGoogle Scholar
Ahmed, A. M. & Elghobashi, S. 2001 Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows. Phys. Fluids 13, 3346.CrossRefGoogle Scholar
Antonia, R. A. & Kim, J. 1994 A numerical study of local isotropy of turbulence. Phys. Fluids 6 (2), 834841.CrossRefGoogle Scholar
Balachandar, S. & Maxey, M. R. 1989 Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96125.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 2790.CrossRefGoogle ScholarPubMed
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Heavy particle concentration in turbulence at dissipative and inertial scales 98 (8), 084502.Google ScholarPubMed
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43.CrossRefGoogle Scholar
Bracco, A., Chavanis, P. H., Provenzale, A. & Spiegel, E. A. 1999 Particle aggregation in a turbulent Keplerian flow. Phys. Fluids 11, 2280.CrossRefGoogle Scholar
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at wall. Phys. Fluids A 6 (4), 825834.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy of small scales in high shear turbulence. Phys. Fluids 19, 101704.CrossRefGoogle Scholar
Corrsin, S. 1958 Local isotropy in turbulent shear flow. Res. Memo. RM 58B11, p. 1. NACA.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151.CrossRefGoogle ScholarPubMed
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid. Mech. 233, 123.CrossRefGoogle Scholar
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346.CrossRefGoogle Scholar
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14, 583.CrossRefGoogle Scholar
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large eddy simulation of shear turbulence. J. Fluid. Mech. 592, 471494.CrossRefGoogle Scholar
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20, 045101.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Benerjee, S. 1995 a Particle behavior in the turbulent boundary layer. Part 1. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Benerjee, S. 1995 b Particle behavior in the turbulent boundary layer. Part 2. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.CrossRefGoogle Scholar
Károlyi, G., Péntek, Á., Scheuring, I., Tél, T. & Toroczkai, Z. 2000 Chaotic flow: the physics of species coexistence. Proc. Natl Acad. Sci. 97, 13661.CrossRefGoogle ScholarPubMed
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid. Mech. 468, 283.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 2437.CrossRefGoogle Scholar
Portela, L. M., Cota, P. & Oliemans, R. V. A. 2002 Numerical study of the near-wall behaviour of particles in turbulent pipe flow. Powder Technol. 125, 149157.CrossRefGoogle Scholar
Reade, W. C. & Collins, L. R. 2002 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12, 2530.CrossRefGoogle Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. The transport of discrete particles in inhomogeneous turbulence 14 (6), 729739.Google Scholar
Righetti, M. & Romano, G. P. 2004 Particle–fluid interaction in a plane near-wall turbulent flow. J. Fluid. Mech. 505, 93121.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. Tech Memo. 81315. NASA.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid. Mech. 428, 149.CrossRefGoogle Scholar
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of small scale structures in high Reynolds number (re λ ~ 1000) turbulent shear flow. The anisotropy of small scale structures in high Reynolds number (re λ ~ 1000) turbulent shear flow 12 (11), 29762989.Google Scholar
Shotorban, B. & Balachandar, S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.CrossRefGoogle Scholar
Shotorban, B., Mashayek, F. & Pandya, R. V. R. 2003 Temperature statistics in particle-laden turbulent homogeneous shear flow. Intl J. Multiphase Flow 29, 1333.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169.CrossRefGoogle Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid. Mech. 335, 75.CrossRefGoogle Scholar
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flows. Equipartition of energy and local isotropy in turbulent flows 28 (10), 11651170.Google Scholar
Warhaft, Z. & Shen, X. 2002 On higher order mixed structure functions in laboratory shear flow. Phys. Fluids 14, 2432.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.CrossRefGoogle Scholar
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid. Mech. 577, 275286.CrossRefGoogle Scholar