Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T09:45:43.026Z Has data issue: false hasContentIssue false

Characterization of the composite right/left-handed transmission line metamaterial circuits using iterative method WCIP

Published online by Cambridge University Press:  09 May 2017

Taieb Elbellili*
Affiliation:
Unit of research Circuits and Electronics Systems High Frequency, Faculté des sciences, Université El Manar, Tunis, Tunisia
Mohamed Karim Azizi
Affiliation:
Unit of research Circuits and Electronics Systems High Frequency, Faculté des sciences, Université El Manar, Tunis, Tunisia
Lassaad Latrach
Affiliation:
Unit of research Circuits and Electronics Systems High Frequency, Faculté des sciences, Université El Manar, Tunis, Tunisia
Hichem Trabelsi
Affiliation:
Unit of research Circuits and Electronics Systems High Frequency, Faculté des sciences, Université El Manar, Tunis, Tunisia
Ali Gharsallah
Affiliation:
Unit of research Circuits and Electronics Systems High Frequency, Faculté des sciences, Université El Manar, Tunis, Tunisia
Henri Baudrand
Affiliation:
Laplace Lab, Department of Electronics, Faculty ENSEEIHT, University of Toulouse, France
*
Corresponding author: T. Elbellili Email: elbtaieb@gmail.com

Abstract

A new study of right-handed and composite right/left-handed metamaterial transmission lines (TL) using their equivalent circuits and a new approach of the wave concept iterative process method is presented. This approach has the advantage of simulating all the periodic structures by only simulating one basic cell thanks to the surrounding periodic walls. A suitable choice of the cell length is necessary to work with the current as well as voltage and to approach the real behavior of the TL. The simulation results of these circuits, such as the calculation of current, voltage and the parameters S, helped to validate all the theoretical study.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Caloz, C.; Itoh, T.: Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip ‘LH line’, in IEEE Antennas and Propagation Society Int. Symp., 2002, 2, 412415.Google Scholar
[2] Caloz, C.; Itoh, T.; Rennings, A.: CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag., 50 (2008), 2539.CrossRefGoogle Scholar
[3] Lai, A.; Caloz, C.; Itoh, T.: Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag., 5 (2004), 3450.CrossRefGoogle Scholar
[4] Sanada, A.; Caloz, C.; Itoh, T.: Zeroth order resonance in composite right/left-handed transmission line resonators, in Asia-Pacific Microwave Conf., Seoul, 2003.Google Scholar
[5] Sanada, A.; Kimura, M.; Awai, I.; Caloz, C.; Itoh, T.: A planar zeroth-order resonator antenna using a left-handed transmission line, in Proc. 34th Eur. Microwave Conf., Amsterdam, Netherlands, 2004.Google Scholar
[6] Levy, A.; Shavit, R.; Habib, L.: Optimization of a microstrip left-handed transmission line using circuit modelling. IET Microw. Antennas Propag., 4 (2010), 21332143.CrossRefGoogle Scholar
[7] Eleftheriades, G.V.: Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag. Mag., 49 (2007), 3451.CrossRefGoogle Scholar
[8] Caloz, C.; Itoh, T.: Novel microwave devices and structures based on the transmission line approach of meta-materials, in IEEE MTT Symp., 2003, 1, 195198.Google Scholar
[9] Niu, J. X.: Dual-band dual-mode patch antenna based on resonant-type metamaterial transmission line. Electron. Lett., 46 (2010), 266268.Google Scholar
[10] Baudrand, H.; N'gongo, R. S.: Applications of wave concept iterative procedure. Recent Res. Dev. Microw. Theory Tech., 1 (1999), 187197.Google Scholar
[11] Hajlaoui, E. A.; Trabelsi, H.; Baudrand, H.: Periodic planar multilayered substrates analysis using wave concept iterative process. J. Electromagn. Anal. Appl., 4 (2012), 118128.Google Scholar
[12] Titaouine, M.; Neto, A. G.; Baudrand, H.; Djahli, F.: Analysis of frequency selective surface on isotropic/anisotropic layers using WCIP method. ETRI J., 29 (2007), 3644.Google Scholar
[13] Latrach, L.; Sboui, N.; Gharsallah, A.; Gharbi, A.; Baudrand, H.: A design and modelling of microwave active screen using a combination of the rectangular and periodic waveguides modes. J. Electromagn. Waves Appl., 23 (2009), 16391648.Google Scholar
[14] Hajri, J. B. R.; Hrizi, H.; Sboui, N.: Accurate and efficient study of substrate-integrated waveguide devices using iterative wave method. Int. J. Microw. Wireless Technol., 9 (2015), 8591.Google Scholar
[15] Azizi, M. K.; Latrach, L.; Raveu, N.; Gharsallah, A.; Baudrand, H.: A new approach of almost periodic lumped elements circuits by an iterative method using auxiliary sources. Am. J. Appl. Sci., 10 (2013), 1457.CrossRefGoogle Scholar
[16] Latrach, L.; Azizi, M. K.; Gharsallah, A.; Baudrand, H.: Study of one dimensional almost periodic structure using Novel WCIP Method. Int. J. Commun. Antenna Propag. IRECAP, 4 (2014), 265269.Google Scholar
[17] Baudrand, H.; Azizi, M. K.; Titaouine, M.: General principles of the wave concept iterative process, in The Wave Concept in Electromagnetism and Circuits: Theory and Applications. Wiley-ISTE, London, 2016.CrossRefGoogle Scholar
[18] Pozar, D. M.: Microwave Engineering, 4th ed., John Wiley & Sons, USA, 2012.Google Scholar