Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T22:49:40.325Z Has data issue: false hasContentIssue false

Non-linear associations between HPA axis activity during infancy and mental health difficulties during early childhood among children in rural Pakistan

Published online by Cambridge University Press:  12 August 2022

Allison Frost*
Affiliation:
Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
Ashley Hagaman
Affiliation:
Social Behavioral Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
Victoria Baranov
Affiliation:
Department of Economics, Faculty of Business and Economics, University of Melbourne, Australia
Esther O. Chung
Affiliation:
Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
Sonia Bhalotra
Affiliation:
Department of Economics, University of Warwick, UK
Siham Sikander
Affiliation:
Human Development Research Foundation, Islamabad, Pakistan Health Services Academy, Islamabad, Pakistan
Joanna Maselko
Affiliation:
Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
*
Corresponding author: Allison Frost, email: allisonfrost@unc.edu

Abstract

Hypothalamic pituitary adrenal (HPA) axis activity may be a mechanism linking early adversity to child mental health difficulties. However, there is a dearth of longitudinal evidence for the association between HPA axis activity and mental health among children in low-resource contexts. The goal of this study is to examine linear and curvilinear associations between HPA axis activity during infancy and mental health difficulties in early childhood among children in rural Pakistan. Participants included 104 children (46% male) from the Bachpan study, a longitudinal cohort embedded within a maternal depression trial in Pakistan. We examined the associations between hair-derived cortisol and dehydroepiandosterone (DHEA) at 12 months old and mental health difficulties, measured with the Strengths and Difficulties Questionnaire (SDQ), at 36 months old. There was a significant quadratic association between hair cortisol and SDQ scores, with results showing a U-shaped relationship (i.e., having relatively high or low cortisol predicted increased mental health difficulties). DHEA showed a quadratic association with SDQ scores with an inverted U-shaped relationship (i.e., high and low DHEA was associated with decreased mental health difficulties). Results provide evidence of longitudinal and curvilinear effects of cortisol and DHEA during infancy on mental health difficulties in early childhood.

Type
Regular Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541. https://doi.org/10.1016/j.psyneuen.2017.05.018 CrossRefGoogle ScholarPubMed
Armstrong-Carter, E., Finch, J. E., Siyal, S., Yousafzai, A. K., & Obradović, J. (2020). Biological sensitivity to context in pakistani preschoolers: Hair cortisol and family wealth are interactively associated with girls’ cognitive skills. Developmental Psychobiology, 62(8), 10461061. https://doi.org/10.1002/dev.21981.CrossRefGoogle ScholarPubMed
Atif, N., Bibi, A., Nisar, A., Zulfiqar, S., Ahmed, I., LeMasters, K., & Rahman, A. (2019). Delivering maternal mental health through peer volunteers: A 5-year report. International Journal of Mental Health Systems, 13(1), 18. https://doi.org/10.1186/s13033-019-0318-3 CrossRefGoogle ScholarPubMed
Blair, C. (2010). Stress and the development of self-regulation in context. Child Development Perspectives, 4, 181188. https://doi.org/10.1111/j.1750-8606.2010.00145.x CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. https://doi.org/10.1017/S0954579405050145 CrossRefGoogle ScholarPubMed
Bremmer, M. A., Deeg, D. J., Beekman, A. T., Penninx, B. W., Lips, P., & Hoogendijk, W. J. (2007). Major depression in late life is associated with both hypo-and hypercortisolemia. Biological Psychiatry, 62(5), 479486. https://doi.org/10.1016/j.biopsych.2006.11.033 CrossRefGoogle ScholarPubMed
Bush, N. R., Obradović, J., Adler, N., & Boyce, W. T. (2011). Kindergarten stressors and cumulative adrenocortical activation: The, first straws, of allostatic load? Development and Psychopathology, 23(4), 10891106. https://doi.org/10.1017/S0954579411000514 CrossRefGoogle ScholarPubMed
Chen, F. R., Raine, A., & Granger, D. A. (2015). Tactics for modeling multiple salivary analyte data in relation to behavior problems: Additive, ratio, and interaction effects. Psychoneuroendocrinology, 51, 188200. https://doi.org/10.1016/j.psyneuen.2014.09.027 CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2007a). Personality, adrenal steroid hormones, and resilience in maltreated children: A multilevel perspective. Development and Psychopathology, 19(03), 787809. https://doi.org/10.1017/S0954579407000399 CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2007b). Personality, adrenal steroid hormones, and resilience in maltreated children: A multilevel perspective. Development and Psychopathology, 19, 787809. https://doi.org/10.1017/S0954579407000399 CrossRefGoogle ScholarPubMed
Dajani, R., Hadfield, K., van Uum, S., Greff, M., & Panter-Brick, C. (2018). Hair cortisol concentrations in war-affected adolescents: A prospective intervention trial. Psychoneuroendocrinology, 89, 138146. https://doi.org/10.1016/j.psyneuen.2017.12.012 CrossRefGoogle ScholarPubMed
Ellis, B. J., Oldehinkel, A. J., & Nederhof, E. (2017). The adaptive calibration model of stress responsivity: An empirical test in the Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 29(3), 10011021. https://doi.org/10.1017/S0954579416000985 CrossRefGoogle ScholarPubMed
Finch, J. E., Yousafzai, A. K., Rasheed, M., & Obradović, J. (2018). Measuring and understanding social-emotional behaviors in preschoolers from rural Pakistan. PLOS ONE, 13(11), e0207807. https://doi.org/10.1371/journal.pone.0207807 CrossRefGoogle ScholarPubMed
Ford, J. L., Boch, S. J., & Browning, C. R. (2019). Hair cortisol and depressive symptoms in youth: An investigation of curvilinear relationships. Psychoneuroendocrinology, 109, 104376. https://doi.org/10.1016/j.psyneuen.2019.104376 CrossRefGoogle ScholarPubMed
Frost, A., Jelinek, C., Bernard, K., Lind, T., & Dozier, M. (2017). Longitudinal associations between low morning cortisol in infancy and anger dysregulation in early childhood in a CPS-referred sample. Developmental Science, e12573e12573. https://doi.org/10.1111/desc.12573 Google Scholar
Fuchs, A., Jaite, C., Neukel, C., Dittrich, K., Bertsch, K., Kluczniok, D., & Bödeker, K. (2018). Link between children’s hair cortisol and psychopathology or quality of life moderated by childhood adversity risk. Psychoneuroendocrinology, 90, 5260. https://doi.org/10.1016/j.psyneuen.2018.02.003 CrossRefGoogle ScholarPubMed
Gao, W., Stalder, T., Foley, P., Rauh, M., Deng, H., & Kirschbaum, C. (2013). Quantitative analysis of steroid hormones in human hair using a column-switching LC-APCI-MS/MS assay. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 928, 18. https://doi.org/10.1016/j.jchromb.2013.03.008 CrossRefGoogle ScholarPubMed
Gee, D. G., & Casey, B. J. (2015). The impact of developmental timing for stress and recovery. Neurobiology of Stress, 1, 184194. https://doi.org/10.1016/j.ynstr.2015.02.001 CrossRefGoogle ScholarPubMed
Goodman, R. (2001). Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child & Adolescent Psychiatry, 40(11), 13371345. https://doi.org/10.1097/00004583-200111000-00015 CrossRefGoogle ScholarPubMed
Greaves, R. F., Wudy, S. A., Badoer, E., Zacharin, M., Hirst, J. J., Quinn, T., & Walker, D. W. (2019). A tale of two steroids: The importance of the androgens DHEA and DHEAS for early neurodevelopment. The Journal of Steroid Biochemistry and Molecular Biology, 188, 7785. https://doi.org/10.1016/j.jsbmb.2018.12.007 CrossRefGoogle ScholarPubMed
Kamin, H. S., & Kertes, D. A. (2017). Cortisol and DHEA in development and psychopathology. Hormones and Behavior, 89, 6985. https://doi.org/10.1016/j.yhbeh.2016.11.018 CrossRefGoogle ScholarPubMed
Kimonis, E. R., Fleming, G. E., Wilbur, R. R., Groer, M. W., & Granger, D. A. (2019). Dehydroepiandrosterone (DHEA) and its ratio to cortisol moderate associations between maltreatment and psychopathology in male juvenile offenders. Psychoneuroendocrinology, 101, 263271. https://doi.org/10.1016/j.psyneuen.2018.12.228 CrossRefGoogle ScholarPubMed
Kirschbaum, C., Tietze, A., Skoluda, N., & Dettenborn, L. (2009). Hair as a retrospective calendar of cortisol production—increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology, 34(1), 3237. https://doi.org/10.1016/j.psyneuen.2008.08.024 CrossRefGoogle ScholarPubMed
Kolenikov, S., & Angeles, G. (2004). The use of discrete data in PCA: Theory, simulations, and applications to socioeconomic indices, vol. 20, 159). Chapel Hill: Carolina Population Center, University of North Carolina.Google Scholar
Laurent, H. K., Gilliam, K. S., Wright, D. B., & Fisher, P. A. (2015). Child anxiety symptoms related to longitudinal cortisol trajectories and acute stress responses: Evidence of developmental stress sensitization. Journal of Abnormal Psychology, 124(1), 68. https://doi.org/10.1037/abn0000009 CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3(8), 799806. https://doi.org/10.1038/77702 CrossRefGoogle ScholarPubMed
Maldonado, B. N., Chandna, J., & Gladstone, M. (2019). A systematic review of tools used to screen and assess for externalising behaviour symptoms in low and middle income settings. Global Mental Health, 6, https://doi.org/10.1017/gmh.2019.11 Google Scholar
Malisiova, E. K., Mourikis, I., Darviri, C., Zervas, I. M., Papageorgiou, C., & Chrousos, G. P. (2020). Hair cortisol concentrations in mental disorders: A systematic review. Physiology & Behavior, 113244, https://doi.org/10.1016/j.physbeh.2020.113244 Google Scholar
Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30(1), 6591. https://doi.org/10.1016/j.yfrne.2008.11.002 CrossRefGoogle ScholarPubMed
Maselko, J., Sikander, S., Turner, E. L., Bates, L. M., Ahmad, I., Atif, N., & Bibi, T. (2020). Effectiveness of a peer-delivered, psychosocial intervention on maternal depression and child development at 3 years postnatal: A cluster randomised trial in Pakistan. The Lancet Psychiatry, 7(9), 775787. https://doi.org/10.1016/S2215-0366(20)30258-3 CrossRefGoogle ScholarPubMed
McKlveen, J. M., Moloney, R. D., Scheimann, J. R., Myers, B., & Herman, J. P. (2019). Braking, the prefrontal cortex: The role of glucocorticoids and interneurons in stress adaptation and pathology. Biological Psychiatry, 86(9), 669681. https://doi.org/10.1016/j.biopsych.2019.04.032 CrossRefGoogle ScholarPubMed
Michael, A., Jenaway, A., Paykel, E. S., & Herbert, J. (2000). Altered salivary dehydroepiandrosterone levels in major depression in adults. Biological Psychiatry, 48(10), 989995. https://doi.org/10.1016/S0006-3223(00)00955-0 CrossRefGoogle ScholarPubMed
Mulligan, E. M., Hajcak, G., Crisler, S., & Meyer, A. (2020). Increased dehydroepiandrosterone (DHEA) is associated with anxiety in adolescent girls. Psychoneuroendocrinology, 119, 104751. https://doi.org/10.1016/j.psyneuen.2020.104751 CrossRefGoogle ScholarPubMed
Nicolson, N. A., & Ponnamperuma, T. (2019). Gender moderates diurnal cortisol in relation to trauma and PTSD symptoms: A study in Sri Lankan adolescents. Psychoneuroendocrinology, 104, 122131. https://doi.org/10.1016/j.psyneuen.2019.02.012 CrossRefGoogle ScholarPubMed
Ouellet-Morin, I., Cantave, C., Paquin, S., Geoffroy, M. C., Brendgen, M., Vitaro, F., & Côté, S. (2021). Associations between developmental trajectories of peer victimization, hair cortisol, and depressive symptoms: A longitudinal study. Journal of Child Psychology and Psychiatry, 62(1), 1927. https://doi.org/10.1111/jcpp.13228 CrossRefGoogle ScholarPubMed
Ouellet-Morin, I., Odgers, C. L., Danese, A., Bowes, L., Shakoor, S., Papadopoulos, A. S., & Arseneault, L. (2011). Blunted cortisol responses to stress signal social and behavioral problems among maltreated/bullied 12-year-old children. Biological Psychiatry, 70, 10161023. https://doi.org/10.1016/j.biopsych.2011.06.017 CrossRefGoogle ScholarPubMed
Panter-Brick, C., Wiley, K., Sancilio, A., Dajani, R., & Hadfield, K. (2020). C-reactive protein, Epstein-Barr virus, and cortisol trajectories in refugee and non-refugee youth: Links with stress, mental health, and cognitive function during a randomized controlled trial. Brain, Behavior, and Immunity, 87, 207217. https://doi.org/10.1016/j.bbi.2019.02.015 CrossRefGoogle ScholarPubMed
Pauli-Pott, U., Schloss, S., Skoluda, N., Nater, U. M., & Becker, K. (2019). Low hair cortisol concentration predicts the development of attention deficit hyperactivity disorder. Psychoneuroendocrinology, 110, 104442. https://doi.org/10.1016/j.psyneuen.2019.104442 CrossRefGoogle ScholarPubMed
Psarraki, E. E., Kokka, I., Bacopoulou, F., Chrousos, G. P., Artemiadis, A., & Darviri, C. (2020). Is there a relation between major depression and hair cortisol? A systematic review and meta-analysis. Psychoneuroendocrinology, 105098, https://doi.org/10.1016/j.psyneuen.2020.105098 Google Scholar
Russell, E., Koren, G., Rieder, M., & Uum, S. V. (2012). Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology, 37(5), 589601. https://doi.org/10.1016/j.psyneuen.2011.09.009 CrossRefGoogle ScholarPubMed
Rustein, S. O., & Johnson, K. ‘, The DHS wealth index, 2004)Google Scholar
Salis, K. L., Bernard, K., Black, S. R., Dougherty, L. R., & Klein, D. (2016). Examining the concurrent and longitudinal relationship between diurnal cortisol rhythms and conduct problems during childhood. Psychoneuroendocrinology, 71, 147154. https://doi.org/10.1016/j.psyneuen.2016.05.021 CrossRefGoogle ScholarPubMed
Samad, L., Hollis, C., Prince, M., & Goodman, R. (2005). Child and adolescent psychopathology in a developing country: Testing the validity of the strengths and difficulties questionnaire (Urdu version). International Journal of Methods in Psychiatric Research, 14(3), 158166, https://doi.org/10.1002/mpr.3,CrossRefGoogle Scholar
Sandstrom, A., Daoust, A. R., Russell, E., Koren, G., & Hayden, E. P. (2020). Hair cortisol concentrations predict change in girls’ depressive symptoms. European Journal of Developmental Psychology, 115. https://doi.org/10.1080/17405629.2020.1774359 Google Scholar
Sapolsky, R. M. (2003). Stress and plasticity in the limbic system. Neurochemical Research, 28(11), 17351742.CrossRefGoogle ScholarPubMed
Saridjan, N. S., Velders, F. P., Jaddoe, V. W. V., Hofman, A., Verhulst, F. C., & Tiemeier, H. (2014). The longitudinal association of the diurnal cortisol rhythm with internalizing and externalizing problems in pre-schoolers. The Generation R Study. Psychoneuroendocrinology, 50, 118129. https://doi.org/10.1016/j.psyneuen.2014.08.008 CrossRefGoogle ScholarPubMed
Schindler, L., Shaheen, M., Saar-Ashkenazy, R., Bani Odeh, K., Sass, S.-H., Friedman, A., & Kirschbaum, C. (2019). Victims of war: Dehydroepiandrosterone concentrations in hair and their associations with trauma sequelae in palestinian adolescents living in the West Bank. Brain Sciences, 9(2), 20. https://doi.org/10.3390/brainsci9020020 CrossRefGoogle ScholarPubMed
Shaheen, M., Schindler, L., Saar-Ashkenazy, R., Bani Odeh, K., Soreq, H., Friedman, A., & Kirschbaum, C. (2020). Victims of war—Psychoendocrine evidence for the impact of traumatic stress on psychological well-being of adolescents growing up during the Israeli-Palestinian conflict. Psychophysiology, 57(1), e13271. https://doi.org/10.1111/psyp.13271 CrossRefGoogle ScholarPubMed
Shakiba, N., Ellis, B. J., Bush, N. R., & Boyce, W. T. (2020). Biological sensitivity to context: A test of the hypothesized U-shaped relation between early adversity and stress responsivity. Development and Psychopathology, 32(2), 641660. https://doi.org/10.1017/S0954579419000518 CrossRefGoogle ScholarPubMed
Sikander, S., Ahmad, I., Bates, L. M., Gallis, J., Hagaman, A., O’Donnell, K., , , & Maselko, J. (2019). Cohort profile: Perinatal depression and child socioemotional development; the Bachpan cohort study from rural Pakistan. BMJ Open, 9(5), e025644, https://doi.org/10.1136/bmjopen-2018-025644,CrossRefGoogle ScholarPubMed
Smider, N. A., Essex, M. J., Kalin, N. H., Buss, K. A., Klein, M. H., Davidson, R. J., & Goldsmith, H. H. (2002). Salivary cortisol as a predictor of socioemotional adjustment during kindergarten: A prospective study. Child Development, 73, 7592. https://doi.org/10.2307/3696432 CrossRefGoogle ScholarPubMed
Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology, 38(8), 12201235. https://doi.org/10.1016/j.psyneuen.2012.11.015 CrossRefGoogle ScholarPubMed
Steudte-Schmiedgen, S., Kirschbaum, C., Alexander, N., & Stalder, T. (2016). An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neuroscience & Biobehavioral Reviews, 69, 124135. https://doi.org/10.1016/j.neubiorev.2016.07.015 CrossRefGoogle ScholarPubMed
Turner, E. L., Sikander, S., Bangash, O., Zaidi, A., Bates, L., Gallis, J., & Maselko, J. (2016). The effectiveness of the peer delivered Thinking Healthy Plus (THPP+) Programme for maternal depression and child socio-emotional development in Pakistan: Study protocol for a three-year cluster randomized controlled trial. Trials, 17(1), 111. https://doi.org/10.1186/s13063-016-1530-y CrossRefGoogle ScholarPubMed
Wang, M. (2014). Generalized estimating equations in longitudinal data analysis: A review and recent developments. Advances in Statistics, 2014(1), 111. https://doi.org/10.1155/2014/303728.Google Scholar
Wesarg, C., Van Den Akker, A. L., Oei, N. Y., Hoeve, M., & Wiers, R. W. (2020). Identifying pathways from early adversity to psychopathology: A review on dysregulated HPA axis functioning and impaired self-regulation in early childhood. European Journal of Developmental Psychology, 1-20, https://doi.org/10.1080/17405629.2020.1748594 Google Scholar
Zimmerman, A., Halligan, S., Skeen, S., Morgan, B., Fraser, A., Fearon, P., & Tomlinson, M. (2020). PTSD symptoms and cortisol stress reactivity in adolescence: Findings from a high adversity cohort in South Africa. Psychoneuroendocrinology, 121, 104846. https://doi.org/10.1016/j.psyneuen.2020.104846 CrossRefGoogle ScholarPubMed
Supplementary material: File

Frost et al. supplementary material

Frost et al. supplementary material

Download Frost et al. supplementary material(File)
File 22.4 KB