Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T01:26:09.680Z Has data issue: false hasContentIssue false

Intergenerational transmission of emotion dysregulation: Part II. Developmental origins of newborn neurobehavior

Published online by Cambridge University Press:  06 May 2019

Brendan D. Ostlund
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Robert D. Vlisides-Henry
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Sheila E. Crowell
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
K. Lee Raby
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Sarah Terrell
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Mindy A. Brown
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Ruben Tinajero
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Nila Shakiba
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA
Catherine Monk
Affiliation:
Department of Psychiatry, Columbia University, New York, NY, USA Department of Obstetrics & Gynecology, Columbia University, New York, NY, USA
Julie H. Shakib
Affiliation:
Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
Karen F. Buchi
Affiliation:
Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
Elisabeth Conradt*
Affiliation:
Department of Psychology, University of Utah, Salt Lake City, UT, USA Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
*
Author for Correspondence: Elisabeth Conradt, Department of Psychology, University of Utah, 380 South 1530 East, Behavioral Sciences 502, Salt Lake City, UT 84112; E-mail: elisabeth.conradt@psych.utah.edu.

Abstract

We investigated whether neurobehavioral markers of risk for emotion dysregulation were evident among newborns, as well as whether the identified markers were associated with prenatal exposure to maternal emotion dysregulation. Pregnant women (N = 162) reported on their emotion dysregulation prior to a laboratory assessment. The women were then invited to the laboratory to assess baseline respiratory sinus arrhythmia (RSA) and RSA in response to an infant cry. Newborns were assessed after birth via the NICU Network Neurobehavioral Scale. We identified two newborn neurobehavioral factors—arousal and attention—via exploratory factor analysis. Low arousal was characterized by less irritability, excitability, and motor agitation, while low attention was related to a lower threshold for auditory and visual stimulation, less sustained attention, and poorer visual tracking abilities. Pregnant women who reported higher levels of emotion dysregulation had newborns with low arousal levels and less attention. Larger decreases in maternal RSA in response to cry were also related to lower newborn arousal. We provide the first evidence that a woman's emotion dysregulation while pregnant is associated with risks for dysregulation in her newborn. Implications for intergenerational transmission of emotion dysregulation are discussed.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablow, J. C., Marks, A. K., Feldman, S. S., & Huffman, L. C. (2013). Associations between first-time expectant women's representations of attachment and their physiological reactivity to infant cry. Child Development, 84, 13731391.Google Scholar
Alder, P. J., Fink, N., Bitzer, J., Hösli, I., & Holzgreve, W. (2007). Depression and anxiety during pregnancy: A risk factor for obstetric, fetal and neonatal outcome? A critical review of the literature. Journal of Maternal-Fetal and Neonatal Medicine, 20, 189209.Google Scholar
Amiel-Tison, C., Cabrol, D., Denver, R., Jarreau, P. H., Papiernik, E., & Piazza, P. V. (2004). Fetal adaptation to stress: Part I. Acceleration of fetal maturation and earlier birth triggered by placental insufficiency in humans. Early Human Development, 78, 1527.Google Scholar
Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 5466.Google Scholar
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.Google Scholar
Beauchaine, T. P. (2015a). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P. (2015b). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347.Google Scholar
Beauchaine, T. P., & Crowell, S. E. (Eds.). (in press). Oxford handbook of emotion dysregulation. New York: Oxford University Press.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98, 338350.Google Scholar
Beauchaine, T. P., & Zisner, A. (2017). Motivation, emotion regulation, and the latent structure of psychopathology: An integrative and convergent historical perspective. International Journal of Psychophysiology, 117, 108111.Google Scholar
Bohlin, G., & Hagekull, B. (2009). Socio-emotional development: From infancy to young adulthood. Scandinavian Journal of Psychology, 50, 592601.Google Scholar
Boukydis, C. F. Z., Bigsby, R., & Lester, B. M. (2004). Clinical use of the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Pediatrics, 113, 679689.Google Scholar
Braeken, M. A., Jones, A., Otte, R. A., Widjaja, D., Van Huffel, S., Monsieur, G. J., … Van den Bergh, B. R. H. (2015). Anxious women do not show the expected decrease in cardiovascular stress responsiveness as pregnancy advances. Biological Psychology, 111, 8389.Google Scholar
Christian, L. M. (2012). Psychoneuroimmunology in pregnancy: Immune pathways linking stress with maternal health, adverse birth outcomes, and fetal development. Neuroscience and Biobehavioral Reviews, 36, 350361.Google Scholar
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.Google Scholar
Cicchetti, D. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6, 284290.Google Scholar
Cicchetti, D. (2008). A multiple-levels-of-analysis perspective on research in development and psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D. (2016). Socioemotional, personality, and biological development: Illustrations from a multilevel developmental psychopathology perspective on child maltreatment. Annual Review of Psychology, 67, 187211.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.Google Scholar
Cole, P. M., Hall, S. E., & Hajal, N. J. (2013). Emotion dysregulation as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 341373). Hoboken, NJ: Wiley.Google Scholar
Cole, P. M., Martin, S. E., & Dennis, T. A. (2004). Emotion regulation as a scientific construct: Methodological challenges and directions for child development research. Child Development, 75, 317333.Google Scholar
Conradt, E., Adkins, D., Crowell, S., Raby, K. L., Diamond, L., & Ellis, B. (2018). Incorporating epigenetic mechanisms to advance fetal programming theories. Development and Psychopathology, 30, 807824.Google Scholar
Conradt, E., Lester, B. M., Appleton, A. A., Armstrong, D. A., & Marsit, C. J. (2013). The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics, 8, 13211329.Google Scholar
Conradt, E., Sheinkopf, S. J., Lester, B. M., Tronick, E., LaGasse, L. L., Shankaran, S., … Hammond, J. A. (2013). Prenatal substance exposure: Neurobiologic organization at 1 month. Journal of Pediatrics, 163, 989994.Google Scholar
Crowell, S. E., Baucom, B. R., Yaptangco, M., Bride, D., Hsiao, R., McCauley, E., & Beauchaine, T. P. (2014). Emotion dysregulation and dyadic conflict in depressed and typical adolescents: Evaluating concordance across psychophysiological and observational measures. Biological Psychology, 98, 5058.Google Scholar
Crowell, S. E., Puzia, M. E., & Yaptangco, M. (2015). The ontogeny of chronic distress: Emotion dysregulation across the life span and its implications for psychological and physical health. Current Opinion in Psychology, 3, 9199.Google Scholar
Crowell, S. E., Yaptangco, M., & Turner, S. L. (2016). Coercion, invalidation, and risk for self-injury and borderline personality traits. In Dishion, T. J. & Snyder, J. J. (Eds.), The Oxford handbook of coercive relationship dynamics (pp. 182193). New York: Oxford University Press.Google Scholar
DeSantis, A., Harkins, D., Tronick, E., Kaplan, E., & Beeghly, M. (2011). Exploring an integrative model of infant behavior: What is the relationship among temperament, sensory processing, and neurobehavioral measures? Infant Behavior & Development, 34, 280292.Google Scholar
De Weerth, C., & Buitelaar, J. K. (2005). Physiological stress reactivity in human pregnancy—A review. Neuroscience and Biobehavioral Reviews, 29, 295312.Google Scholar
DiPietro, J. A., Costigan, K. A., & Gurewitsch, E. D. (2003). Fetal response to induced maternal stress. Early Human Development, 74, 125138.Google Scholar
DiPietro, J. A., Costigan, K. A., Nelson, P., Gurewitsch, E. D., & Laudenslager, M. L. (2008). Fetal responses to induced maternal relaxation during pregnancy. Biological Psychology, 77, 1119.Google Scholar
DiPietro, J. A., Kivlighan, K. T., Costigan, K. A., Rubin, S. E., Shiffler, D. E., Henderson, J. L., & Pillion, J. P. (2010). Prenatal antecedents of newborn neurological maturation. Child Development, 81, 115130.Google Scholar
Doyle, C., & Cicchetti, D. (2018). Future directions in prenatal stress research: Challenges and opportunities related to advancing our understanding of prenatal developmental origins of risk for psychopathology. Development and Psychopathology, 30, 721724.Google Scholar
Eisenberg, N., Sadovsky, A., Spinrad, T. L., Fabes, R. A., Losoya, S. H., Valiente, C., … Shepard, S. A. (2005). The relations of problem behavior status to children's negative emotionality, effortful control, and impulsivity: Concurrent relations and prediction of change. Developmental Psychology, 41, 193211.Google Scholar
Entringer, S., Buss, C., Shirtcliff, E. A., Cammack, A. L., Yim, I. S., Chicz-DeMet, A., … Wadhwa, P. D. (2010). Attenuation of maternal psychophysiological stress responses and the maternal cortisol awakening response over the course of human pregnancy. Stress, 13, 258268.Google Scholar
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272299.Google Scholar
Fernandez, K. C., Jazaieri, H., & Gross, J. J. (2016). Emotion regulation: A transdiagnostic perspective on a new RDoC domain. Cognitive Therapy and Research, 40, 426440.Google Scholar
Field, T., Diego, M., Hernandez-Reif, M., Schanberg, S., Kuhn, C., Yando, R., & Bendell, D. (2003). Pregnancy anxiety and comorbid depression and anger: Effects on the fetus and neonate. Depression and Anxiety, 17, 140151.Google Scholar
Figueiredo, B., Pinto, T. M., Pacheco, A., & Field, T. (2017). Fetal heart rate variability mediates prenatal depression effects on neonatal neurobehavioral maturity. Biological Psychology, 123, 294301.Google Scholar
Gartstein, M. A., Putnam, S. P., & Rothbart, M. K. (2012). Etiology of preschool behavior problems: Contributions of temperament attributes in early childhood. Infant Mental Health Journal, 33, 197211.Google Scholar
Glover, V. (2014). Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Practice and Research Clinical Obstetrics and Gynecology, 28, 2535.Google Scholar
Gluckman, P. D., & Hanson, M. A. (2004). Maternal constraint of fetal growth and its consequences. Seminars in Fetal and Neonatal Medicine, 9, 419425.Google Scholar
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173.Google Scholar
Glynn, L. M., Dunkel Schetter, C., Hobel, C. J., & Sandman, C. A. (2008). Pattern of perceived stress and anxiety in pregnancy predicts preterm birth. Health Psychology, 27, 4351.Google Scholar
Graignic-Philippe, R., Dayan, J., Chokron, S., Jacquet, A. Y., & Tordjman, S. (2014). Effects of prenatal stress on fetal and child development: A critical literature review. Neuroscience and Biobehavioral Reviews, 43, 137162.Google Scholar
Gratz, K. L., & Roemer, L. (2004). Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the difficulties in emotion regulation scale. Journal of Psychopathology and Behavioral Assessment, 26, 4154.Google Scholar
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2, 271299.Google Scholar
Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: An overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8, 2334.Google Scholar
Ham, J., & Tronick, E. Z. (2006). Infant resilience to the stress of the still-face and reunion: Infant and maternal psychophysiology are related. Annals of the New York Academy of Sciences, 1094, 297302.Google Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319.Google Scholar
Hammen, C., Adrian, C., Gordon, D., Burge, D., Jaenicke, C., & Hiroto, D. (1987). Children of depressed mothers: Maternal strain and symptom predictors of dysfunction. Journal of Abnormal Psychology, 96, 190198.Google Scholar
Herbell, K. (in press). Identifying psychophysiological stress targets for the promotion of mental health in pregnant women. Archives of Psychiatric Nursing.Google Scholar
Herts, K. L., McLaughlin, K. A., & Hatzenbuehler, M. L. (2012). Emotion dysregulation as a mechanism linking stress exposure to adolescent aggressive behavior. Journal of Abnormal Child Psychology, 40, 11111122.Google Scholar
Hill-Soderlund, A. L., Mills-Koonce, W. R., Propper, C., Calkins, S. D., Granger, D. A., Moore, G. A., … Cox, M. A. (2008). Parasympathetic and sympathetic responses to the strange situation in infants and mothers from avoidant and securely attached dyads. Developmental Psychobiology, 50, 361376.Google Scholar
Hinshaw, S. P. (2017). Developmental psychopathology as a scientific discipline. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed., pp. 332). Hoboken, NJ: Wiley.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry Online, 167, 748751.Google Scholar
Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335344.Google Scholar
Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52, 425440.Google Scholar
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”–A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.Google Scholar
Klinkenberg, A. V., Nater, U. M., Nierop, A., Bratsikas, A., Zimmermann, R., & Ehlert, U. (2009). Heart rate variability changes in pregnant and non-pregnant women during standardized psychosocial stress. Acta Obstetricia et Gynecologica Scandinavica, 88, 7782.Google Scholar
Law, K. L., Stroud, L. R., LaGasse, L. L., Niaura, R., Liu, J., & Lester, B. M. (2003). Smoking during pregnancy and newborn neurobehavior. Pediatrics, 111, 13181323.Google Scholar
Lester, B. M., Bagner, D. M., Liu, J., LaGasse, L. L., Seifer, R., Bauer, C. R., … Das, A. (2009). Infant neurobehavioral dysregulation: Behavior problems in children with prenatal substance exposure. Pediatrics, 124, 13551362.Google Scholar
Lester, B. M., Miller, R. J., Hawes, K., Salisbury, A., Bigsby, R., Sullivan, M. C., & Padbury, J. F. (2011). Infant neurobehavioral development. Seminars in Perinatology, 35, 819.Google Scholar
Lester, B. M., & Tronick, E. Z. (2004). History and description of the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Pediatrics, 113, 634640.Google Scholar
Lester, B. M., Tronick, E. Z., & Brazelton, T. B. (2004). The Neonatal Intensive Care Unit Network Neurobehavioral Scale procedures. Pediatrics, 113, 641667.Google Scholar
Lester, B. M., Tronick, E. Z., LaGasse, L., Seifer, R., Bauer, C. R., Shankaran, S., … Finnegan, L. P. (2002). The maternal lifestyle study: Effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-month-old infants. Pediatrics, 110, 11821192.Google Scholar
Liu, J., Bann, C., Lester, B., Tronick, E., Das, A., Lagasse, L., … Bada, H. (2010). Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics, 125, e90e98.Google Scholar
Lucas, A., Fewtrell, M. S., & Cole, T. J. (1999). Fetal origins of adult disease—The hypothesis revisited. British Medical Journal, 319, 245249.Google Scholar
Matthews, K. A., & Rodin, J. (1992). Pregnancy alters blood pressure responses to psychological and physical challenge. Psychophysiology, 29, 232240.Google Scholar
McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1, 3046.Google Scholar
McLaughlin, K. A., Hatzenbuehler, M. L., Mennin, D. S., & Nolen-Hoeksema, S. (2011). Emotion dysregulation and adolescent psychopathology: A prospective study. Behaviour Research and Therapy, 49, 544554.Google Scholar
Monk, C., Fifer, W. P., Myers, M. M., Sloan, R. P., Trien, L., & Hurtado, A. (2000). Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate. Developmental Psychobiology, 36, 6777.Google Scholar
Monk, C., & Hane, A. A. (2016). Fetal and infant neurobehavioral development: Basic processes and environmental influences. In Wenzel, A. (Ed.), The Oxford handbook of perinatal psychology. New York: Oxford University Press.Google Scholar
Monk, C., Lugo-Candelas, C., & Trumpff, C. (in press). Prenatal developmental origins of future psychopathology: Mechanisms and pathways. Annual Review of Clinical Psychology.Google Scholar
Monk, C., Myers, M. M., Sloan, R. P., Ellman, L. M., & Fifer, W. P. (2003). Effects of women's stress-elicited physiological activity and chronic anxiety on fetal heart rate. Journal of Developmental and Behavioral Pediatrics, 24, 3238.Google Scholar
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24, 13611376.Google Scholar
Monroe, S. M. (2008). Modern approaches to conceptualizing and measuring human life stress. Annual Review of Clinical Psychology, 4, 3352.Google Scholar
Moore, G. A., Hill-Soderlund, A. L., Propper, C. B., Calkins, S. D., Mills-Koonce, W. R., & Cox, M. A. (2009). Mother-infant vagal regulation in the face-to-face still-face paradigm is moderated by maternal sensitivity. Child Development, 80, 209223.Google Scholar
Muthén, L. K., & Muthén, B. O. (2017). Mplus statistical software, Version 8.0. Los Angeles: Author.Google Scholar
Napiorkowski, B., Lester, B. M., Freier, M. C., Brunner, S., Dietz, L., Nadra, A., & Oh, W. (1996). Effects of in utero substance exposure on infant neurobehavior. Pediatrics, 98, 7175.Google Scholar
National Institute of Mental Health (NIMH). (2018). Research Domain Criteria (RDoC): Developmental and environmental aspects. Retrieved from https://www.nimh.nih.gov/research-priorities/rdoc/developmental-and-environmental-aspects.shtmlGoogle Scholar
O'Connor, T. G., Monk, C., & Fitelson, E. M. (2014). Practitioner review: Maternal mood in pregnancy and child development—Implications for child psychology and psychiatry. Journal of Child Psychology and Psychiatry, 55, 99111.Google Scholar
O'Donnell, K. J., Glover, V., Barker, E. D., & O'Connor, T. G. (2014). The persisting effect of maternal mood in pregnancy on childhood psychopathology. Development and Psychopathology, 26, 393403.Google Scholar
O'Donnell, K. J., Glover, V., Jenkins, J., Browne, D., Ben-Shlomo, Y., Golding, J., & O'Connor, T. G. (2013). Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology, 38, 16301638.Google Scholar
O'Donnell, K., O'Connor, T. G., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285292.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.Google Scholar
Posner, J., Cha, J., Roy, A. K., Peterson, B. S., Bansal, R., Gustafsson, H. C., … Monk, C. (2016). Alterations in amygdala-prefrontal circuits in infants exposed to prenatal maternal depression. Translational Psychiatry, 6, e935.Google Scholar
Posner, M. (2012). Attentional networks and consciousness. Frontiers in Psychology, 3, 6467.Google Scholar
Posner, M. I., & Rothbart, M. K. (2009). Toward a physical basis of attention and self-regulation. Physics of Life Reviews, 6, 103120.Google Scholar
Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O. W., & Schwab, M. (in press). Transfer of maternal psychosocial stress to the fetus. Neuroscience and Biobehavioral Review.Google Scholar
Rothbart, M. K., Ahadi, S. A., & Hershey, K. L. (1994). Temperament and social behavior in childhood. Merrill-Palmer Quarterly, 40, 2139.Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament in children's development. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Handbook of child psychology: Social, emotional, and personality development (Vol. 3, 6th ed., pp. 99166). New York: Wiley.Google Scholar
Rothbart, M. K., Derryberry, D., & Posner, M. I. (1994). A psychobiological approach to the development of temperament. In Bates, J. E. & Wachs, T. D. (Eds.), Temperament: Individual differences at the interface of biology and behavior. Washington, DC: American Psychological Association.Google Scholar
Rothbart, M. K., Sheese, B. E., Rueda, M. R., & Posner, M. I. (2011). Developing mechanisms of self-regulation in early life. Emotion Review, 3, 207213.Google Scholar
Rudolph, K. D., Hammen, C., Burge, D., Lindberg, N., Herzberg, D., & Daley, S. E. (2000). Toward an interpersonal life-stress model of depression: The developmental context of stress generation. Development and Psychopathology, 12, 215234.Google Scholar
Salisbury, A. L., Fallone, M. D., & Lester, B. (2005). Neurobehavioral assessment from fetus to infant: The NICU Network Neurobehavioral Scale and the Fetal Neurobehavior Coding Scale. Mental Retardation and Developmental Disabilities Research Reviews, 11, 1420.Google Scholar
Salisbury, A. L., Lester, B. M., Seifer, R., LaGasse, L., Bauer, C. R., Shankaran, S., … Poole, K. (2007). Prenatal cocaine use and maternal depression: Effects on infant neurobehavior. Neurotoxicology and Teratology, 29, 331340.Google Scholar
Sandman, C. A., Davis, E. P., Buss, C., & Glynn, L. M. (2012). Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinology, 95, 821.Google Scholar
Sheinkopf, S. J., Lester, B. M., LaGasse, L. L., Seifer, R., Bauer, C. R., Shankaran, S., … Wright, L. L. (2006). Interactions between maternal characteristics and neonatal behavior in the prediction of parenting stress and perception of infant temperament. Journal of Pediatric Psychology, 31, 2740.Google Scholar
Shiner, R. L., Buss, K. A., McClowry, S. G., Putnam, S. P., Saudino, K. J., & Zentner, M. (2012). What is temperament now? Assessing progress in temperament research on the twenty-fifth anniversary of Goldsmith et al. (1987). Child Development Perspectives, 6, 436444.Google Scholar
Stein, A., Pearson, R. M., Goodman, S. H., Rapa, E., Rahman, A., McCallum, M., … Pariante, C. M. (2014). Effects of perinatal mental disorders on the fetus and child. Lancet, 384, 18001819.Google Scholar
Stephens, B. E., Liu, J., Lester, B., Lagasse, L., Shankaran, S., Bada, H., … Higgins, R. (2010). Neurobehavioral assessment predicts motor outcome in preterm infants. Journal of Pediatrics, 156, 366371.Google Scholar
Stroud, L. R., Paster, R. L., Papandonatos, G. D., Niaura, R., Salisbury, A. L., Battle, C., … Lester, B. (2009). Maternal smoking during pregnancy and newborn neurobehavior: Effects at 10 to 27 days. Journal of Pediatrics, 154, 1016.Google Scholar
Sucharew, H., Khoury, J. C., Xu, Y., Succop, P., & Yolton, K. (2012). NICU Network Neurobehavioral profiles predict developmental outcomes in a low-risk sample. Paediatric and Perinatal Epidemiology, 26, 344352.Google Scholar
Thompson, R. A. (1993). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 2552.Google Scholar
Van den Bergh, B. R. H., Mulder, E. J. H., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237258.Google Scholar
Van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., Braeken, M. A. K. A., de Rooij, S., Entringer, S., … Schwab, M. (2017). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience and Biobehavioral Reviews.Google Scholar
Wadhwa, P. D., Buss, C., Entringer, S., & Swanson, J. M. (2009). Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27, 358368.Google Scholar