Article contents
Vanishing of negative $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$-theory in positive characteristic
Published online by Cambridge University Press: 17 July 2014
Abstract
We show how a theorem of Gabber on alterations can be used to apply the work of Cisinski, Suslin, Voevodsky, and Weibel to prove that $K_n(X) \otimes \mathbb{Z}[{1}/{p}]= 0$ for$n < {-}\! \dim X$ where $X$ is a quasi-excellent noetherian scheme, $p$ is a prime that is nilpotent on $X$, and $K_n$ is the $K$-theory of Bass–Thomason–Trobaugh. This gives a partial answer to a question of Weibel.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author 2014
References
- 7
- Cited by