Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T05:39:43.506Z Has data issue: false hasContentIssue false

A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta

Published online by Cambridge University Press:  24 July 2007

R. J. Merry
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, BerkshireRG2 9AT
A. B. McAllan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, BerkshireRG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Steers, equipped with simple rumen cannulas, were given diets of approximately equal parts of rolled barley and straw supplemented with urea. The diets provided sufficientestimated rumen degradable nitrogen (RDN: RDN: metabolizable energy values of 1:3) to maintain maximum microbial synthesis. In some experiments Na235SO4 was introduced into the rumen to label microbial protein.

2. Rumen digesta samples were taken before feeding and mixed rumen bacteria were separated from the solid (solid-associated bacteria; SAB) and liquid (liquid-associated bacteria; LAB) fractions of digesta. The most effective method of removing SAB from the fibre was a combination of homogenizing and pummelling. This process did not affect the physical form or chemical composition of the bacteria.

3. Samples of SAB contained significantly (P ≤ at least 0·05) less ash, total N, RNA and diaminopimelic acid (DAP) and significantly (P ≤ 0·01) more lipid than samples of LAB. Concentrations (g/kg dry matter) of ash, total N, RNA, DAP and lipid in SAB were approximately 87, 70, 35, 2.2 and 245 respectively. Corresponding values for LAB were 157, 80, 50, 3.8 and 124 respectively.

4. RNA-N: total N and DAP-N: total N values in SAB were significantly lower than those in LAB (P ≤ 0·05 and 0·02 respectively). 35S: totalN values were similar in both groups of bacteria. The importance of differences in constituent: total N values in the two groups of bacteria in relation to their use as indices of microbial protein synthesis is discussed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1983

References

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Arambel, M. J., Bartley, E. E., Dufva, G. S., Nagaraja, T. G. & Dayton, A. D. (1982). Journal of Dairy Science 65, 20952101.CrossRefGoogle Scholar
Cheng, K.-J., Akin, D. E. & Costerton, J. W. (1977). Federation Proceedings 36, 193197.Google Scholar
Czerkawski, J. W. (1976). Journal of the Science of Food and Agriculture 27, 621632.CrossRefGoogle Scholar
Czerkawski, J. W. (1979). Annual Report of the Hannah Research Institute, pp. 69-85.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1982). British Journal of Nutrition 47, 331348.CrossRefGoogle Scholar
Dehority, B. A. & Grubb, J. A. (1980). Applied and Environmental Microbiology 39, 376381.CrossRefGoogle Scholar
Demeyer, D. I. (1981). Agriculture and Environment 6, 295337.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). British Journal of Nutrition 42, 515524.CrossRefGoogle Scholar
Dufva, G. S., Bartley, E. E., Arambel, M. J., Nagaraja, T. G., Dennis, S. M., Galitzer, S. J. & Dayton, A. D. (1982). Journal of Diary Science 65, 17541759.CrossRefGoogle Scholar
Faichney, G. J. (1980). Australian Journal of Agricultural Research 31, 11291137.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry 226, 497509.CrossRefGoogle Scholar
Hoogenraad, N. J. & Hird, F. J. R. (1970). British Journal of Nutrition 24, 119127.CrossRefGoogle Scholar
Hume, I. D. (1976). Reviews in Rural Science 2, 7984.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Katz, I. & Keeney, M. (1964). Biochemica et Biophysica Acta. 84, 128132.Google Scholar
Knight, R. (1980). Rumen lipid synthesis. PhD Thesis, University of Reading.Google Scholar
Kurilov, N. V., Sevastianova, N. A., Korshanov, V. N., Mysnik, N. D. & Podshibyakin, A. E. (1976). Livestock Production Science 3, 5763.CrossRefGoogle Scholar
Latham, M. J. (1980). In Microbial Adhesion to Surfaces, pp. 339350 [Berkeley, R. C. W., Lynch, J. M., Melling, J., Rutter, P. R. and Vincent, B., editors]. Chichester: Ellis Horwood.Google Scholar
Latham, M. J., Brooker, B. E., Pettipher, G. L. & Harris, P. J. (1978). Applied and Environmental Microbiology 35, 156165.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165179.CrossRefGoogle Scholar
Luria, S. E. (1960). In The Bacteria, vol. 1, pp. 134 [Gunsalus, I. C. andStanier, R. Y. editors]. London: Academic Press.Google Scholar
McAllan, A. B. & Smith, R. H. (1969). British Journal of Nutrition 23, 671682.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1974). British Journal of Nutrition 31, 7788.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1976 a). Journal of Agricultural Science, Cambridge 86, 639642.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1976 b). British Journal of Nutrition 36, 511522.CrossRefGoogle Scholar
Malick, L. E. & Wilson, R. B. (1975). Stain Technology 50, 265269.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1980). British Journal of Nutrition 43, 503514.CrossRefGoogle Scholar
Merry, R. J. & McAllan, A. B. (1983). Proceedings of the Nutrition Society 42, 49A.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1982). British Journal of Nutrition 48, 287304.CrossRefGoogle Scholar
Minato, H., Endo, A., Higuchi, M., Ootomo, Y. & Uemura, T. (1966).Journal of General and Applied Microbiology, Tokyo 12, 3952.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1977). Energy Allowances and Feeding Systems for Ruminants. Technical Bulletin No. 33, London: HM Stationery Office.Google Scholar
Nagaraja, T. G., Bartley, E. E., Fina, L. R. & Anthony, H. D. (1978). Journal of Animal Science 47, 13291337.CrossRefGoogle Scholar
Reynolds, E. S. (1963). Journal of Cell Biology 17, 208212.CrossRefGoogle Scholar
Siddons, R. C., Beever, D. E. & Nolan, J. V. (1982). British Journal of Nutrition 48, 377389.CrossRefGoogle Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annales de Recherches Vétérinaires, Paris 10, 286287.Google Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, pp. 399415 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Smith, R. H. & McAllan, A. B. (1970). British Journal of Nutrition 24, 545556.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1974). British Journal of Nutrition 31, 2734.CrossRefGoogle Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). Journal of Agricultural Science, Cambridge 90, 557568.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1972). In Statistical Methods, pp. 9197. Ames, Iowa: State University Press.Google Scholar
Stern, M. D. & Hoover, W. H. (1979). Journal of Animal Science 49, 15901603.CrossRefGoogle Scholar
Synge, R. L. M. (1953). Journal of General Microbiology 9, 407409.Google Scholar
Tamminga, S. (1978). In Ruminant Digestion and Feed Evaluation, pp. 5.15.13 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Warner, A. C. I. (1962). Journal of General Microbiology 28, 119128.CrossRefGoogle Scholar
Williams, P. P., Gutierrez, J. & Davis, R. E. (1963). Applied Microbiology 11, 260264.CrossRefGoogle Scholar
Wolstrup, J. & Jensen, K. (1978). Journal of Applied Bacteriology 45, 4956.CrossRefGoogle Scholar
Work, E. & Dewey, D. L. (1953). Journal of General Microbiology 9, 394409.CrossRefGoogle Scholar