Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-20T15:43:10.321Z Has data issue: false hasContentIssue false

11 - Cognitive Functioning and Vitality among the Oldest Old: Implications for Well-Being

Published online by Cambridge University Press:  05 August 2012

Jennifer A. Margrett
Affiliation:
Iowa State University
Benjamin T. Mast
Affiliation:
University of Louisville
Maria C. Isales
Affiliation:
University of Georgia
Leonard W. Poon
Affiliation:
University of Georgia
Jiska Cohen-Mansfield
Affiliation:
Tel Aviv University
Leonard W. Poon
Affiliation:
University of Georgia
Jiska Cohen-Mansfield
Affiliation:
Tel-Aviv University
Get access

Summary

ABSTRACT

This chapter clarifies and differentiates changes in cognitive functioning among the oldest old at the group and individual levels. Cross-sectionally, the oldest old demonstrate normative differences of being more physically and cognitively frail compared to younger groups. More variation and successful aging is observed at the individual level. Some oldest-old individuals can perform at the same levels as adults 20 to 40 years younger. Recent literature has recognized that the concept of cognitive vitality transcends the absence of dementia or dementing processes. We seek to clarify the concept of cognitive vitality because it has not been well defined in the literature either theoretically or operationally. This chapter addresses the following questions: 1) What is cognitive vitality and how does it contribute to the well-being of older adults? 2) What factors or resources contribute to cognitive vitality among the oldest old? and 3) What new directions can be identified for future research?

COGNITIVE FUNCTIONING AND VITALITY AMONG THE OLDEST OLD: IMPLICATIONS FOR WELL-BEING

Lay people and professionals alike fall prey to aging stereotypes and myths (Ory, Hoffman, Hawkins, Sanner, & Mockenhaupt, 2003), namely that cognitive decline is inevitable and there is nothing we can do about it. Empirical research has focused on comparing the cognitive performance of younger and older adults, often noting “deficits” in older adults' abilities without taking into account context and potentially meaningful qualitative differences in older adults' approaches to cognitive problems (e.g., Marsiske & Margrett, 2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, J. C., & Marsiske, M. (2002). Well- and ill-defined measures of everyday cognition: Relationship to older adults' intellectual ability and functional status. Psychology and Aging, 17, 101–115.CrossRefGoogle ScholarPubMed
Allaire, J. C., & Marsiske, M. (2005). Intraindividual variability may not always indicate vulnerability in elders' cognitive performance. Psychology and Aging, 20, 390–401.CrossRefGoogle Scholar
Anstey, K. J., Dear, K., Christensen, H., & Jorm, A. (2005). Biomarkers, health, lifestyle, and demographic variables as correlates of reaction time performance in early, middle, and late adulthood. The Quarterly Journal of Experimental Psychology Section A, 58, 5–21.CrossRefGoogle ScholarPubMed
Bäckman, L., Small, B. J., & Wahlin, A. (2001). Aging and memory: Cognitive and biological perspectives. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (pp. 349–377). San Diego: Academic Press.Google Scholar
Baker, T. J., & Bischel, J. (2006). Personality predictors of intelligence: Differences between young and cognitively healthy older adults. Personality and Individual Differences, 41, 861–871.CrossRefGoogle Scholar
Ballenger, J. F. (2006). Self, senility, and Alzheimer's disease in modern America. Baltimore, MD:Johns Hopkins University Press.Google Scholar
Beeri, M. S., Schmeidler, J., Sano, M., Wang, J., Lally, R., Grossman, H., et al. (2006). Age, gender, and education norms on the CERAD neuropsychological battery in the oldest old. Neurology, 67, 1006–1010.CrossRefGoogle ScholarPubMed
Belleville, S., Bherer, L., Lepage, E., Chertkow, H., & Gauthier, S. (2008). Task switching capacities in persons with Alzheimer's disease and mild cognitive impairment. Neuropsychologia, 46, 2225–2233.CrossRefGoogle ScholarPubMed
Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 1837–1844.CrossRefGoogle ScholarPubMed
Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: A longitudinal cohort study. Lancet Neurology, 5, 406–412.CrossRefGoogle ScholarPubMed
Berg, S. (1996). Aging, behavior and terminal decline. Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (pp. 323–337). San Diego: Academic Press.Google Scholar
Bosma, H., Boxtel, M. P. J., Ponds, R. W. H. M., Jelicic, M., Houx, P., Metsemakers, J., et al. (2002). Engaged lifestyle and cognitive function in middle and old-aged, non-demented persons: A reciprocal association? Zeitschrift für Gerontologie und Geriatrie, 35, 575–581.CrossRefGoogle ScholarPubMed
Burke, W. J., Miller, J. P., Rubin, E. H., Morris, J. C., Coben, L. A., Duchek, J., et al. (1988). Reliability of the Washington University Clinical Dementia Rating. Archives of Neurology, 45, 31–32.CrossRefGoogle ScholarPubMed
Butler, R., Forette, F., & Greengrass, S. (2004). Maintaining cognitive health in an ageing society. Journal of the Royal Society for the Promotion of Health, 124(3), 119–121.CrossRefGoogle Scholar
Campbell, J. J., III, & Coffey, C. E. (2001). Neuropsychiatric significance of subcortical hyperintensity. The Journal of Neuropsychiatry and Clinical Neurosciences, 13, 261–288.CrossRefGoogle ScholarPubMed
Collie, A., & Maruff, P. (2000). The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neuroscience and Biobehavioral Reviews, 24, 365–374.CrossRefGoogle ScholarPubMed
Cutler, S. J., & Hodgson, L. G. (1996). Anticipatory dementia: A link between memory appraisals and concerns about developing Alzheimer's disease. Gerontologist, 36, 657–664.CrossRefGoogle ScholarPubMed
Deci, E. K., & Ryan, R. M. (2008). Hedonia, eudaimonia, and well-being: An introduction. Journal of Happiness Studies, 9, 1–11.CrossRefGoogle Scholar
Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2005). Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.CrossRefGoogle ScholarPubMed
Frias, C. M., Lövdén, M., Lindenberger, U., & Nilsson, L. G., (2007). Revisiting the dedifferentiation hypothesis with longitudinal multi-cohort data. Intelligence, 35, 381–392.CrossRefGoogle Scholar
Denburg, N. L., Weller, K. L., Yamada, T. H., Shivapour, D. M., Kaup, A. R., & LaLoggia, A., et al. (2009). Poor decision making among older adults is related to elevated levels of neuroticism. Annals of Behavioral Medicine, 37, 164–172.CrossRefGoogle ScholarPubMed
Duff, K., Pattern, D., Schoenberg, M. R., Mold, J., Scott, J. G., & Adams, R. L. (2003). Age- and education-corrected independent normative data for the RBANS in a community dwelling elderly sample. Clinical Neuropsychologist, 17, 351–366.CrossRefGoogle Scholar
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.CrossRefGoogle ScholarPubMed
Evert, J., Lawler, E., Bogan, H., & Perls, T. (2003). Morbidity profiles of centenarians: Survivors, delayers, and escapers. Journal of Gerontology: Medical Sciences, 58A, 232–237.Google Scholar
Fillit, H. M., Butler, R. N., O'Connell, A. W., Albert, M. S., Birren, J. E., Cotman, C. W., et al. (2002). Achieving and maintaining cognitive vitality with aging. Mayo Clinic Proceedings, 77, 681–696.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.CrossRefGoogle ScholarPubMed
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurology, 3, 343–353.CrossRefGoogle ScholarPubMed
Galvin, J. E., Powlishta, K. K., Wilkins, K., McKeel, D. W. J., Xiong, C., Grant, E., et al. (2005). Predictors of preclinical Alzheimer disease and dementia: A clinicopathologic study. Archives of Neurology, 62, 758–765.CrossRefGoogle ScholarPubMed
Gillette-Guyonnet, S., Abellan Van Kan, G., Andrieu, S., Barberger-Gateau, P., Berr, C., Bonnefoy, M., et al. (2007). IANA task force on nutrition and cognitive decline with aging. Journal of Nutrition, Health, and Aging, 11, 132–153.Google ScholarPubMed
Gondo, Y., Hirose, N., Arai, Y., Inagaki, H., Masui, Y., Yamamura, K., et al. (2006). Functional status of centenarians in Tokyo, Japan: Developing better phenotypes of exceptional longevity. Journal of Gerontology: Biological Sciences and Medical Sciences, 61, 305–310.Google ScholarPubMed
Gorelick, P. (2005). William M. Feinberg Lecture: Cognitive vitality and the role of stroke and cardiovascular disease risk factors. Stroke, 36, 875–879.CrossRefGoogle Scholar
Gruber-Baldini, A. L., Schaie, K. W., & Willis, S. L. (1995). Similarity in married couples: A longitudinal study of mental abilities and flexibility-rigidity. Journal of Personality and Social Psychology: Personality Processes and Individual Differences, 69, 191–203.CrossRefGoogle Scholar
Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14, 224–232.CrossRefGoogle ScholarPubMed
Hagberg, B., Alfredson, B., Poon, L.W., & Homma, A. (2001). Cognitive functioning in centenarians: A coordinated analysis of results from three countries. Journal of Gerontology: Psychological Science, 56, 141–151.CrossRefGoogle ScholarPubMed
Hendrie, H., Albert, M., Butters, M., Gao, S., Knopman, D., Launer, L., et al. (2006). The NIH Cognitive and Emotional Health Project: Report of the Critical Evaluation Study Committee. Alzheimer's and Dementia, 2, 12–32.CrossRefGoogle ScholarPubMed
Hilborn, J. V., Strauss, E., Hultsch, D. F., & Hunter, M. A. (2009). Intraindividual variability across cognitive domains: Investigation of dispersion levels and performance profiles in older adults. Journal of Clinical and Experimental Neuropsychology, 31, 412–424.CrossRefGoogle ScholarPubMed
Hodgson, L. G., & Cutler, S. J. (2003). Looking for signs of Alzheimer's disease. International Journal of Aging and Human Development, 56, 323–343.CrossRefGoogle ScholarPubMed
Hodgson, L. G., & Cutler, S. J. (2004). Help seeking for personal concerns about developing Alzheimer's disease. Journal of Applied Gerontology, 23, 385–410.CrossRefGoogle Scholar
Houx, P. J., Vreeling, F. W., & Jolles, J. (1991). Rigorous health screening reduces age effect on memory scanning task. Brain and Cognition, 15, 246–260.CrossRefGoogle ScholarPubMed
Hultsch, D. F., MacDonald, S. W. S., Hunter, M. A., Levy-Bencheton, J., & Strauss, E. (2000). Intraindividual variability in cognitive performance in older adults: Comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology, 14, 588–598.CrossRefGoogle ScholarPubMed
Kahn, R. L. (2002). On “Successful aging and well-being: Self-rated compared with Rowe and Kahn.” Gerontologist, 42, 725–726.CrossRefGoogle ScholarPubMed
Katzman, R., Brown, T., Fuld, P., Peck, A., Schechter, R., & Schimmel, H. (1983). Validation of a short orientation memory concentration test of cognitive impairment. American Journal of Psychiatry, 140, 734–739.Google Scholar
Kovacich, J., Garrett, R., & Forti, E. (2006). New learning programs in cognitive vitality, Alzheimer's disease, and related dementias. Gerontology and Geriatrics Education, 26(4), 47–61.CrossRefGoogle ScholarPubMed
Kramer, A. N., Mailand, C., Lukas, R. G., Syljuasen, C. J., Wilkinson, E. A., Nigg, J., et al. (2004). Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nature Cell Biology, 6, 884–891.CrossRefGoogle ScholarPubMed
Kramer, A., & Willis, S. (2002). Enhancing the cognitive vitality of older adults. Current Directions in Psychological Science, 11, 172–177.CrossRefGoogle Scholar
Lindenberger, U., & Baltes, P. B. (1997). Intellectual functioning in old and very old age: Cross-sectional results from the Berlin Aging Study. Psychology of Aging, 12, 410–432.CrossRefGoogle ScholarPubMed
Malaguarnera, M., Cammalleri, L., Gargante, M. P., Vacante, M., Colonna, V., Motta, M. (2007). L-carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. American Journal of Clinical Nutrition, 86, 1738–1744.CrossRefGoogle ScholarPubMed
Margrett, J. A., Allaire, J. A., Johnson, T. L., Daugherty, K., & Weatherbee, S. (2010). Everyday problem solving. In Cavanaugh, J. & Cavanaugh, C. (Eds.), Aging in America: Psychological aspects of aging (pp. 79–101). Westport, CT: Praeger.Google Scholar
Markesbery, W. R., Schmitt, F. A., Kryscio, R. J., Davis, D. G., Smith, C. D., & Wekstein, D. R. (2006). Neuropathologic substrate of mild cognitive impairment. Archives of Neurology, 63, 38–46.CrossRefGoogle ScholarPubMed
Marsiske, M., & Margrett, J. A. (2006). Everyday problem solving and decision making. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (6th ed., pp. 315–342). Burlington, MA: Elsevier Academic Press.CrossRefGoogle Scholar
Martin, P., da Rosa, G., Siegler, I. C., Davey, A., Macdonald, M., & Poon, L. W. (2006). Personality and longevity: Findings from the Georgia Centenarian Study. Age, 28, 343–352.CrossRefGoogle ScholarPubMed
Martin, P., Kliegel, M., Rott, C., Poon, L. W., & Johnson, M. A. (2008). Age differences and changes of coping behavior in three age groups: Findings from the Georgia Centenarian Study. International Aging and Human Development, 66, 97–114.CrossRefGoogle ScholarPubMed
Martin, P., MacDonald, M., Margrett, J. A., & Poon, L. W. (2010). Resilience among the oldest-old. In Fry, P. S. & Keyes, C. L. M. (Eds.), Frontiers of resilient aging. Cambridge: Cambridge University Press, 213–238.Google Scholar
Martin, P., Poon, L. W., Clayton, G. M., Lee, H. S., Fulks, J. S., & Johnson, M. A. (1992). Personality, life events, and coping in the oldest old. International Journal of Aging and Human Development, 34(1), 19–30.CrossRefGoogle ScholarPubMed
Martin, P., Rott, C., Poon, L. W., Courtenay, B., & Lehr, U. (2001). A molecular view of coping behavior in older adults. Journal of Aging and Health, 13, 72–91.CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56, 227–238.CrossRefGoogle ScholarPubMed
Mitchell, M. B., Miller, L. S., Woodard, J. L., Davey, A., & Poon, L. W. (in press). Predicting observed functional status in centenarians. The Gerontologist.
Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H. et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58, 397–405.CrossRefGoogle ScholarPubMed
Morse, C. K. (1993). Does variability increase with age?: An archival study of cognitive measures. Psychology and Aging, 8, 156–164.CrossRefGoogle ScholarPubMed
Nelson, E. A., & Dannefer, D. (1992). Aged heterogeneity – Fact or fiction?: The Fate of diversity in gerontological research. Gerontologist, 32, 17–23.CrossRefGoogle ScholarPubMed
O'Brien, J. T. (2006). Vascular cognitive impairment. American Journal of Geriatric Psychiatry, 14, 724–733.CrossRefGoogle ScholarPubMed
O'Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L. et al. (2003). Vascular cognitive impairment. Lancet Neurology, 2, 89–98.CrossRefGoogle ScholarPubMed
Ory, M., Hoffman, M., Hawkins, M., Sanner, B., & Mockenhaupt, R. (2003). Challenging aging stereotypes: Strategies for creating a more active society. American Journal of Preventive Medicine, 25, 164–171.CrossRefGoogle ScholarPubMed
Park, D. C., Gutchess, A. H., Meade, M. L., & Stine-Morrow, E. A. L. (2007). Improving cognitive functioning in older adults: Nontraditional approaches. Journal of Gerontology, 62B, 48–52.Google Scholar
Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.CrossRefGoogle ScholarPubMed
Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 1160–1163.CrossRefGoogle ScholarPubMed
Petersen, R. C., Parisi, J. E., Dickson, D. W., Johnson, K. A., Knopman, D. S., Boeve, B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology 63, 665–672.CrossRefGoogle ScholarPubMed
Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., et al. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology, 29, 125–132.CrossRefGoogle ScholarPubMed
Poon, L. W., & Harrington, C. A. (2006). Commonalities in aging- and fitness-related impact on cognition. In Poon, L. W., Chodzko-Zajko, W., & Tomporowski, P. D. (Eds.), Active living, cognitive functioning, and aging (Vol. 1, pp. 33–50). Champaign, IL: Human Kinetics.Google Scholar
Poon, L. W., Woodard, J. L., Miller, L. S., Davey, A., Arnold, J., & Martin, P., et al. (2010). Population-based study of dementia prevalence and behavioral staging among the oldest old. Manuscript in preparation.
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20, 310–319.CrossRefGoogle ScholarPubMed
Raz, N. (2005). The aging brain observed in vivo: Differential changes and their modifiers. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 19–57). New York: Oxford University Press.Google Scholar
Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K. M., & Acker, J. D. (2003). Hypertension and the brain: Vulnerability of the prefrontal regions and executive functions. Behavioral Neuroscience, 117, 1169–1180.CrossRefGoogle ScholarPubMed
Roberts, R. O., Geda, Y. E., Knopman, D. S., Teresa, J. H., Christianson, B. S., Pankratz, V. S., et al. (2008). Association of duration and severity of diabetes mellitus with mild cognitive impairment. Archives of Neurology, 65, 1066–1073.CrossRefGoogle ScholarPubMed
Rowe, J. W., & Kahn, R. L. (1998). Successful aging. New York: Pantheon Books.Google ScholarPubMed
Salthouse, T. (2009). When does age-related decline begin? Neurobiology of Aging, 30, 507–514.CrossRefGoogle ScholarPubMed
Schaie, K. W. (1989). Individual differences in rate of cognitive change in adulthood. In Bengston, V. L. & Schaie, K. W. (Eds.), The course of later life: Research and reflections (pp. 65–85). New York: Springer.Google Scholar
Schaie, K. W. (2005). What can we learn from longitudinal studies of adult development? Research in Human Development, 2, 133–158.CrossRefGoogle ScholarPubMed
Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited: Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Barch, D. M., Garcia, K., Gersing, K., Pieper, C., Welsh-Bohmer, , K., et al. (2006). Cognitive function in late life depression: Relationships to depression severity, cerebrovascular risk factors and processing speed. Biological Psychiatry, 60, 58–65.CrossRefGoogle ScholarPubMed
Sirevaag, A. M., Black, J. E., Shafron, D., & Greenough, W. T. (1988). Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats. Developmental Brain Research, 471, 299–304.CrossRefGoogle ScholarPubMed
Starr, J. M., McGurn, B., Whiteman, M., Pattie, A., Whalley, L. J., & Deary, I. J. (2004). Life long changes in cognitive ability are associated with prescribed medications in old age. International Journal of Geriatric Psychiatry, 19, 327–332.CrossRefGoogle ScholarPubMed
Stine-Morrow, E. A. L. (2007). The Dumbledore hypothesis of cognitive aging. Association for Psychological Science, 16, 295–299.Google Scholar
Storandt, M., Grant, E. A., Miller, J. P., & Morris, J. C. (2002). Rates of progression in mild cognitive impairment and early Alzheimer's disease. Neurology, 59, 1034–1041.CrossRefGoogle ScholarPubMed
Studenski, S., Carlson, M. C, Fillit, H., Greenough, W. T., Kramer, A. F., & Rebok, G. W. (2006). From bedside to bench: Does mental and physical activity promote cognitive vitality in late life? Science of Aging Knowledge Environment, 6, 21.Google Scholar
Thornton, W. J. L., & Dumke, H. A. (2005). Age differences in everyday problem-solving and decision-making effectiveness: A meta-analytic review. Psychology and Aging, 20, 85–99.CrossRefGoogle ScholarPubMed
Toba, K., Nakai, R., Akishita, M., Iijima, S., Nishinaga, M., Mizoguchi, T., et al. (2002). Vitality index as a useful tool to assess elderly with dementia. Geriatrics and Gerontology International, 2, 23–29.CrossRefGoogle Scholar
Tomporowski, P. D. (2006). Physical activity, cognition, and aging: A review of reviews. In Poon, L. W., Chodzko-Zajko, W., & Tomporowski, P. D. (Eds.), Active living, cognitive functioning, and aging (Vol. 1, pp. 15–32). Champaign, IL: Human Kinetics.Google Scholar
Wade, D. T., & Collin, C. (1988). The Barthel ADL Index: A reliability study. International Disability Studies, 10, 61–63.CrossRefGoogle Scholar
Walter-Ginzburg, A., Shmotkin, D., Blumstein, T., & Shorek, A. (2005). A gender-based dynamic multidimensional longitudinal analysis of resilience and mortality in the old-old in Israel: The Cross-sectional and Longitudinal Aging Study (CALAS). Social Science and Medicine, 60, 1705–1715.CrossRefGoogle ScholarPubMed
Walter-Ginzburg, A., Shmotkin, , Eyal, N., & Guralnik, J. M. (2008). Can cognitive vitality reduce incident disability? Evidence from the Cross-Sectional and Longitudinal Aging Study (CALAS) of old-old Israelis. Unpublished manuscript.
Willcox, B. J., Willcox, D. C., He, Q., Curb, J. D., & Suzuki, M. (2006). Siblings of Okinawan centenarians share lifelong mortality advantages. Journal of Gerontology: Biological Sciences, 61, 345–354.Google ScholarPubMed
Willis, S. L. (1991). Cognition and everyday competence. In Schaie, K. W. & Lawton, M. P. (Eds.), Annual review of gerontology and geriatrics (Vol. 11, pp. 80–109). New York: Springer.Google Scholar
Willis, S. L. (1993). Test manual for the Everyday Problems Test for Cognitively Challenged Elderly. University Park: Pennsylvania State University.Google Scholar
Willis, S. L. (1996). Everyday cognitive competence in elderly persons: Conceptual issues and empirical findings. Gerontologist, 36, 595–601.CrossRefGoogle ScholarPubMed
Willis, S. L., & Marsiske, M. (1993). Manual for the Everyday Problems Test. University Park: Pennsylvania State University.Google Scholar
Wilson, R. S., Beckett, L. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2003). Terminal decline in cognitive function. Neurology, 60, 1782–1787.CrossRefGoogle ScholarPubMed
Wilson, R., Schneider, J., Arnold, S., Bienias, J., & Bennett, D. (2007). Conscientiousness and the incidence of Alzheimer disease and mild cognitive impairment. Archives of General Psychiatry, 6, 1204–1212.CrossRefGoogle Scholar
Wilson, R., Schneider, J., Boyle, P., Arnold, S., Tang, Y., & Bennett, D. (2007). Chronic distress and incidence of mild cognitive impairment. American Academy of Neurology, 68, 2085–2092.CrossRefGoogle ScholarPubMed
,World Health Organization. (1948). Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference, New York, 19–22 June, 1946. In Official Records of the World Health Organization. Retrieved from http://www.who.int/about/definition/en/print.html.
Yevchak, A., Loeb, S., & Fick, D. (2008). Promoting cognitive health and vitality: A review of clinical implications. Geriatric Nursing, 29, 302–310.CrossRefGoogle ScholarPubMed
Ylikoski, R., Ylikoski, A., Keskivaara, P., Tilvis, R., Sulkava, R., & Erkinjuntti, T. (1999). Heterogeneity of cognitive profiles in aging: Successful aging, normal aging, and individuals at risk for cognitive decline. European Journal of Neurology, 6, 645–652.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×