Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:35:14.215Z Has data issue: false hasContentIssue false

6 - Relaxing the IID assumption – introducing variants of the MNL model

Published online by Cambridge University Press:  06 July 2010

Jordan J. Louviere
Affiliation:
University of Sydney
David A. Hensher
Affiliation:
University of Sydney
Joffre D. Swait
Affiliation:
University of Florida
Get access

Summary

Setting the context for behaviourally more plausible models

Many applications in marketing, transport, and the environment use the simple multinomial (MNL) logit model presented in chapter 3. This approach is common to studies using stand-alone stated preference (SP) or revealed preference (RP) data, as well as cases with multiple data sets, such as combined SP and RP data (see chapter 8). A great majority of empirical studies go no further than this. Some studies progress to accommodating some amount of difference in the structure of the random component of utility, through a nested logit (NL) model. The NL model partitions the choice set to allow alternatives to share common unobserved components among one another compared with a non-nested alternative.

Despite the practitioner's support for the MNL model and occasionally for the NL model (the latter being the main focus of this chapter), much research effort is being devoted to increasing the behavioural realism of discrete-choice models. This effort is concentrated on relaxing the strong assumptions associated with IID (independent and identically distributed) error terms in ways that are behaviourally enriching, computationally tractable and practical. Choice models are now available in which the identically distributed structure of the random components is relaxed (e.g., Bhat 1995, 1997b, Hensher 1997b). Extensions that permit non-independence between alternatives, such as mixed logit (ML) and multinomial probit (MNP) models, have also been developed, adding further behavioural realism but at the expense of additional computational complexity (see Greene 1997; Geweke, Keane and Runkle 1994; Bolduc 1992; Daganzo 1980, McFadden and Train 1996; Brownstone, Bunch and Train 1998).

Type
Chapter
Information
Stated Choice Methods
Analysis and Applications
, pp. 138 - 212
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×