Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T09:17:04.382Z Has data issue: false hasContentIssue false

22 - Ask me anything

Published online by Cambridge University Press:  05 April 2013

Scott Aaronson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

To remind you, this book is based on a course I taught in 2006. On the last day of class, I followed the great tradition pioneered by Richard Feynman, in which the last class should be one where you can ask the teacher anything. Feynman's rule was that you could ask about anything except politics, religion, or the final exam. In my case, there was no final exam, and I didn't even make politics or religion off-limits. This chapter collects some of the questions people asked me, together with my responses.

  1. Student: Do you often think about using computer science to limit or give us a hint about physical theories? Do you think that we'll be able to discover physical theories which give more powerful models than quantum computation?

  2. Scott: Is BQP the end of the road, or is there more to be found? That's a fantastic question, and I wish more people would think about it. I’m being a bit of a politician here and not answering directly, because obviously the answer is “I don't know.” I guess the whole idea with science is that if we don't know the answer, we don't try to sprout one out of our butt or something. We try to base our answers on something. So, everything we know is consistent with the idea that quantum computing is the end of the road. Greg Kuperberg had an analogy I really liked. He said that there are people who keep saying that we've gone from classical to quantum mechanics so what other surprises are in store? But maybe that's like first assuming the Earth is flat, and then on discovering that it's round, saying who knows, maybe it has the topology of a Klein bottle. There's a surprise in a given direction, but once you've assimilated it, there may not be any further surprise in that same direction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mathur, S. D., The fuzzball proposal for black holes: an elementary review. Fortschritte der Physik, 53 (2005), 793–827.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ask me anything
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ask me anything
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ask me anything
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.023
Available formats
×