Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some Elements of Continuum Mechanics
- 3 Motivation for Seeking a Molecular Scale-Dependent Perspective on Continuum Modelling
- 4 Spatial Localisation, Mass Conservation, and Boundaries
- 5 Motions, Material Points, and Linear Momentum Balance
- 6 Balance of Energy
- 7 Fine-Scale Considerations: Moments, Couple Stress, Inhomogeneity, and Energetics
- 8 Time Averaging and Systems with Changing Material Content
- 9 Elements of Mixture Theory
- 10 Fluid Flow through Porous Media
- 11 Linkage of Microscopic and Macroscopic Descriptions of Material Behaviour via Cellular Averaging
- 12 Modelling the Behaviour of Specific Materials: Constitutive Relations and Objectivity
- 13 Comments on Non-Local Balance Relations
- 14 Elements of Classical Statistical Mechanics
- 15 Summary and Suggestions for Further Study
- Appendix A Vectors, Vector Spaces, and Linear Algebra
- Appendix B Calculus in Euclidean Point Space ℰ
- References
- Index
Appendix A - Vectors, Vector Spaces, and Linear Algebra
Published online by Cambridge University Press: 05 November 2012
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some Elements of Continuum Mechanics
- 3 Motivation for Seeking a Molecular Scale-Dependent Perspective on Continuum Modelling
- 4 Spatial Localisation, Mass Conservation, and Boundaries
- 5 Motions, Material Points, and Linear Momentum Balance
- 6 Balance of Energy
- 7 Fine-Scale Considerations: Moments, Couple Stress, Inhomogeneity, and Energetics
- 8 Time Averaging and Systems with Changing Material Content
- 9 Elements of Mixture Theory
- 10 Fluid Flow through Porous Media
- 11 Linkage of Microscopic and Macroscopic Descriptions of Material Behaviour via Cellular Averaging
- 12 Modelling the Behaviour of Specific Materials: Constitutive Relations and Objectivity
- 13 Comments on Non-Local Balance Relations
- 14 Elements of Classical Statistical Mechanics
- 15 Summary and Suggestions for Further Study
- Appendix A Vectors, Vector Spaces, and Linear Algebra
- Appendix B Calculus in Euclidean Point Space ℰ
- References
- Index
Summary
Preamble
The functions of space and time (i.e., fields) used to model material behaviour take values which may be real numbers, vectors, or higher-order tensors. Formal manipulations of tensors (i.e., tensor algebra) are best understood in terms of vector spaces. Here basic concepts and results are reviewed for completeness and for establishing familiarity with the notation employed. Vectorial entities (i.e., entities which have both direction and magnitude and combine like displacements) are modelled in terms of a three-dimensional inner-product vector space V, and higher-order tensorial entities are described in terms of algebraic constructs of V.
Simple considerations of rectilinear changes of position (i.e., displacements) and the notion of perpendicularity are used to establish the three-dimensional inner product vector space V used to model vectorial quantities, irrespective of their physical dimensions of mass, length, and time, and units of measurement. Linear transformations on V are defined and shown to have algebraic features in common with V, so motivating the definition of a general abstract vector space. The transpose of a linear transformation L on V and the tensor product of two vectors are defined without recourse to basis-dependent representations: such representations are derived upon selecting an orthonormal basis for V. Criteria which establish the invertibility or otherwise of a linear transformation L on V are identified, and the principal invariants and characteristic equation of L are analysed using alternating trilinear forms on V.
- Type
- Chapter
- Information
- Physical Foundations of Continuum Mechanics , pp. 303 - 355Publisher: Cambridge University PressPrint publication year: 2012